Sulfated Bile Acids in Serum as Potential Biomarkers of Disease Severity and Mortality in COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.1.1. Untargeted Metabolomics
2.1.2. Targeted Metabolomics
2.2. Sample Preparation
2.2.1. Untargeted Metabolomics
2.2.2. Targeted Metabolomics
2.3. Untargeted Metabolomics Workflow
2.4. Targeted Metabolomics Workflow
2.5. Study Design and Study Population
3. Results
3.1. Study Population
3.2. Untargeted Metabolomic Analysis
3.3. Untargeted and Targeted Metabolomics Comparison
3.4. Correlation Matrix, Logistic Regression, and ROC
3.5. Chemometric Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.; To, K.K. Biomarkers for severe COVID-19. EBioMedicine 2021, 68, 103405. [Google Scholar] [CrossRef] [PubMed]
- Tjendra, Y.; Al Mana, A.F.; Espejo, A.P.; Akgun, Y.; Millan, N.C.; Gomez-Fernandez, C.; Cray, C. Predicting Disease Severity and Outcome in COVID-19 Patients: A Review of Multiple Biomarkers. Arch. Pathol. Lab. Med. 2020, 144, 1465–1474. [Google Scholar] [CrossRef] [PubMed]
- Hottz, E.D.; Azevedo-Quintanilha, I.G.; Palhinha, L.; Teixeira, L.; Barreto, E.A.; Pão, C.R.R.; Righy, C.; Franco, S.; Souza, T.M.L.; Kurtz, P.; et al. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood 2020, 136, 1330–1341. [Google Scholar] [CrossRef]
- Contoli, M.; Papi, A.; Tomassetti, L.; Rizzo, P.; Sega, F.V.D.; Fortini, F.; Torsani, F.; Morandi, L.; Ronzoni, L.; Zucchetti, O.; et al. Blood Interferon-α Levels and Severity, Outcomes, and Inflammatory Profiles in Hospitalized COVID-19 Patients. Front. Immunol. 2021, 12, 648004. [Google Scholar] [CrossRef] [PubMed]
- Kimura-Ohba, S.; Asaka, M.N.; Utsumi, D.; Takabatake, Y.; Takahashi, A.; Yasutomi, Y.; Isaka, Y.; Kimura, T. d-Alanine as a biomarker and a therapeutic option for severe influenza virus infection and COVID-19. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2022, 1869, 166584. [Google Scholar] [CrossRef]
- Khalaji, A.; Amirkhani, N.; Sharifkashani, S.; Peiman, S.; Behnoush, A.H. Systematic Review of Endocan as a Potential Biomarker of COVID-19. Angiology 2023, 75, 107–115. [Google Scholar] [CrossRef]
- Park, M.; Hur, M.; Kim, H.; Lee, C.H.; Lee, J.H.; Kim, H.W.; Nam, M.; Lee, S. Soluble ST2 as a Useful Biomarker for Predicting Clinical Outcomes in Hospitalized COVID-19 Patients. Diagnostics 2023, 13, 259. [Google Scholar] [CrossRef]
- Frischbutter, S.; Durek, P.; Witkowski, M.; Angermair, S.; Treskatsch, S.; Maurer, M.; Radbruch, A.; Mashreghi, M. Serum TGF-β as a predictive biomarker for severe disease and fatality of COVID-19. Eur. J. Immunol. 2023, 53, e2350433. [Google Scholar] [CrossRef]
- Kumar, A.; Karn, E.; Trivedi, K.; Kumar, P.; Chauhan, G.; Kumari, A.; Pant, P.; Munisamy, M.; Prakash, J.; Sarkar, P.G.; et al. Procalcitonin as a predictive marker in COVID-19: A systematic review and meta-analysis. PLOS ONE 2022, 17, e0272840. [Google Scholar] [CrossRef]
- Spadaro, S.; Fogagnolo, A.; Campo, G.; Zucchetti, O.; Verri, M.; Ottaviani, I.; Tunstall, T.; Grasso, S.; Scaramuzzo, V.; Murgolo, F.; et al. Markers of endothelial and epithelial pulmonary injury in mechanically ventilated COVID-19 ICU patients. Crit. Care 2021, 25, 74. [Google Scholar] [CrossRef]
- Sega, F.V.D.; Fortini, F.; Spadaro, S.; Ronzoni, L.; Zucchetti, O.; Manfrini, M.; Mikus, E.; Fogagnolo, A.; Torsani, F.; Pavasini, R.; et al. Time course of endothelial dysfunction markers and mortality in COVID-19 patients: A pilot study. Clin. Transl. Med. 2021, 11, e283. [Google Scholar] [CrossRef]
- Wan, Y.-J.Y.; Sheng, L. Regulation of bile acid receptor activity. Liver Res. 2018, 2, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Franco, P.; Porru, E.; Fiori, J.; Gioiello, A.; Cerra, B.; Roda, G.; Caliceti, C.; Simoni, P.; Roda, A. Identification and quantification of oxo-bile acids in human faeces with liquid chromatography–mass spectrometry: A potent tool for human gut acidic sterolbiome studies. J. Chromatogr. A 2018, 1585, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Bathena, S.P.R.; Mukherjee, S.; Olivera, M.; Alnouti, Y. The profile of bile acids and their sulfate metabolites in human urine and serum. J. Chromatogr. B 2013, 942-943, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.; Beuers, U.; Spengler, U.; Zwiebel, F.M.; Koebe, H.-G. Hepatic levels of bile acids in end-stage chronic cholestatic liver disease. Clin. Chim. Acta 1996, 251, 173–186. [Google Scholar] [CrossRef]
- Kato, T.; Yoneda, M.; Nakamura, K.; Makino, I. Enzymatic determination of serum 3α-sulfated bile acids concentration with bile acid 3α-sulfate sulfohydrolase. Dig. Dis. Sci. 1996, 41, 1564–1570. [Google Scholar] [CrossRef] [PubMed]
- Takikawa, H.; Otsuka, H.; Beppu, T.; Seyama, Y.; Yamakawa, T. Serum Concentrations of Bile Acid Glucuronides in Hepatobiliary Diseases. Digestion 1983, 27, 189–195. [Google Scholar] [CrossRef]
- Fu, J.; Yu, M.; Xu, W.; Yu, S. Research Progress of Bile Acids in Cancer. Front. Oncol. 2022, 11, 778258. [Google Scholar] [CrossRef]
- Castañé, H.; Iftimie, S.; Baiges-Gaya, G.; Rodríguez-Tomàs, E.; Jiménez-Franco, A.; López-Azcona, A.F.; Garrido, P.; Castro, A.; Camps, J.; Joven, J. Machine learning and semi-targeted lipidomics identify distinct serum lipid signatures in hospitalized COVID-19-positive and COVID-19-negative patients. Metabolism 2022, 131, 155197. [Google Scholar] [CrossRef]
- Escarcega, R.D.; Honarpisheh, P.; Colpo, G.D.; Ahnstedt, H.W.; Couture, L.; Juneja, S.; Torres, G.; Ortiz, G.J.; Sollome, J.; Tabor, N.; et al. Sex differences in global metabolomic profiles of COVID-19 patients. Cell Death Dis. 2022, 13, 461. [Google Scholar] [CrossRef]
- Piñol-Jiménez, F.N.; Paz, V.C.-D.; Ruiz-Torres, J.F.; Montero-González, T.; A Urgellés-Carreras, S.; Breto-García, A.; Amador-Armenteros, A.; Llerena-Mesa, M.M.; Galarraga-Lazcano, A.G. High Levels of Serum Bile Acids in COVID-19 Patients on Hospital Admission. MEDICC Rev. 2022, 24, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yan, D.; Li, Y.; Gong, Y.; Mai, Y.; Li, B.; Zhu, X.; Wan, X.; Xie, L.; Jiang, H.; et al. Clinical and antibody characteristics reveal diverse signatures of severe and non-severe SARS-CoV-2 patients. Infect. Dis. Poverty 2022, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Minato, K.; Suzuki, M.; Nagao, H.; Suzuki, R.; Ochiai, H. Development of analytical method for simultaneous determination of five rodent unique bile acids in rat plasma using ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry. J. Chromatogr. B 2015, 1002, 399–410. [Google Scholar] [CrossRef]
- Roda, G.; Porru, E.; Katsanos, K.; Skamnelos, A.; Kyriakidi, K.; Fiorino, G.; Christodoulou, D.; Danese, S.; Roda, A. Serum Bile Acids Profiling in Inflammatory Bowel Disease Patients Treated with Anti-TNFs. Cells 2019, 8, 817. [Google Scholar] [CrossRef]
- Campo, G.; Contoli, M.; Fogagnolo, A.; Sega, F.V.D.; Zucchetti, O.; Ronzoni, L.; Verri, M.; Fortini, F.; Pavasini, R.; Morandi, L.; et al. Over time relationship between platelet reactivity, myocardial injury and mortality in patients with SARS-CoV-2-associated respiratory failure. Platelets 2020, 32, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Wang, Q.; Zhang, D.; Ding, J.; Huang, Q.; Tang, Y.-Q.; Wang, Q.; Miao, H. Lymphopenia predicts disease severity of COVID-19: A descriptive and predictive study. Signal Transduct. Target. Ther. 2020, 5, 61. [Google Scholar] [CrossRef]
- Minasyan, H. Sepsis and septic shock: Pathogenesis and treatment perspectives. J. Crit. Care 2017, 40, 229–242. [Google Scholar] [CrossRef]
- Patil, M.; Singh, S.; Henderson, J.; Krishnamurthy, P. Mechanisms of COVID-19-induced cardiovascular disease: Is sepsis or exosome the missing link? J. Cell. Physiol. 2020, 236, 3366–3382. [Google Scholar] [CrossRef]
- Bautista-Vargas, M.; Bonilla-Abadía, F.; Cañas, C.A. Potential role for tissue factor in the pathogenesis of hypercoagulability associated with in COVID-19. J. Thromb. Thrombolysis 2020, 50, 479–483. [Google Scholar] [CrossRef]
- Wu, N.; Chen, X.; Cai, T.; Wu, L.; Xiang, Y.; Zhang, M.; Li, Y.; Song, Z.; Zhong, L. Association of Inflammatory and Hemostatic Markers With Stroke and Thromboembolic Events in Atrial Fibrillation: A Systematic Review and Meta-analysis. Can. J. Cardiol. 2014, 31, 278–286. [Google Scholar] [CrossRef]
- Vaughan, D.E. PAI-1 and atherothrombosis. J. Thromb. Haemost. 2005, 3, 1879–1883. [Google Scholar] [CrossRef] [PubMed]
- Willeit, K.; Pechlaner, R.; Willeit, P.; Skroblin, P.; Paulweber, B.; Schernthaner, C.; Toell, T.; Egger, G.; Weger, S.; Oberhollenzer, M.; et al. Association Between Vascular Cell Adhesion Molecule 1 and Atrial Fibrillation. JAMA Cardiol. 2017, 2, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Andersen, L.W.; Mackenhauer, J.; Roberts, J.C.; Berg, K.M.; Cocchi, M.N.; Donnino, M.W. Etiology and Therapeutic Approach to Elevated Lactate Levels. Mayo Clin. Proc. 2013, 88, 1127–1140. [Google Scholar] [CrossRef] [PubMed]
- Tezcan, M.; Gokce, G.D.; Sen, N.; Kaymak, N.Z.; Ozer, R. Baseline electrolyte abnormalities would be related to poor prognosis in hospitalized coronavirus disease 2019 patients. New Microbes New Infect. 2020, 37, 100753. [Google Scholar] [CrossRef]
- Lippi, G.; South, A.M.; Henry, B.M. Electrolyte imbalances in patients with severe coronavirus disease 2019 (COVID-19). Ann. Clin. Biochem. Int. J. Biochem. Lab. Med. 2020, 57, 262–265. [Google Scholar] [CrossRef]
- Sarvazad, H.; Cahngaripour, S.; Roozbahani, N.E.; Izadi, B. Evaluation of electrolyte status of sodium, potassium and magnesium, and fasting blood sugar at the initial admission of individuals with COVID-19 without underlying disease in Golestan Hospital, Kermanshah. New Microbes New Infect. 2020, 38, 100807. [Google Scholar] [CrossRef]
- De Carvalho, H.; Richard, M.C.; Chouihed, T.; Goffinet, N.; Le Bastard, Q.; Freund, Y.; Kratz, A.; Dubroux, M.; Masson, D.; Figueres, L.; et al. Electrolyte imbalance in COVID-19 patients admitted to the Emergency Department: A case–control study. Intern. Emerg. Med. 2021, 16, 1945–1950. [Google Scholar] [CrossRef]
- Wu, Y.; Hou, B.; Liu, J.; Chen, Y.; Zhong, P. Risk Factors Associated With Long-Term Hospitalization in Patients With COVID-19: A Single-Centered, Retrospective Study. Front. Med. 2020, 7, 315. [Google Scholar] [CrossRef]
- Alonso, A.; Yu, B.; Qureshi, W.T.; Grams, M.E.; Selvin, E.; Soliman, E.Z.; Loehr, L.R.; Chen, L.Y.; Agarwal, S.K.; Alexander, D.; et al. Metabolomics and Incidence of Atrial Fibrillation in African Americans: The Atherosclerosis Risk in Communities (ARIC) Study. PLOS ONE 2015, 10, e0142610. [Google Scholar] [CrossRef]
- Hui, D.S.; Azhar, E.I.; Madani, T.A.; Ntoumi, F.; Kock, R.; Dar, O.; Ippolito, G.; McHugh, T.D.; Memish, Z.A.; Drosten, C.; et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2020, 91, 264–266. [Google Scholar] [CrossRef]
- Perschinka, F.; Mayerhöfer, T.; Lehner, G.F.; Hasslacher, J.; Klein, S.J.; Joannidis, M. Immunologic response in bacterial sepsis is different from that in COVID-19 sepsis. Infection 2022, 50, 1035–1037. [Google Scholar] [CrossRef] [PubMed]
- Seymour, C.W.; Yende, S.; Scott, M.J.; Pribis, J.; Mohney, R.P.; Bell, L.N.; Chen, Y.-F.; Zuckerbraun, B.S.; Bigbee, W.L.; Yealy, D.M.; et al. Metabolomics in pneumonia and sepsis: An analysis of the GenIMS cohort study. Intensiv. Care Med. 2013, 39, 1423–1434. [Google Scholar] [CrossRef] [PubMed]
- Fajnzylber, J.; Regan, J.; Coxen, K.; Corry, H.; Wong, C.; Rosenthal, A.; Worrall, D.; Giguel, F.; Piechocka-Trocha, A.; Atyeo, C.; et al. SARS-CoV-2 viral load is associated with increased disease severity and mortality. Nat. Commun. 2020, 11, 5493. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Du, J.; Wei, T.-T.; Chen, L.-Y.; Yang, X.-X.; Bo, T.; Liu, H.-Y.; Xie, M.-Z.; Zhao, T.-S.; Yang, J.-L.; et al. Alterations in bile acids as metabolic signatures in the patients with human adenovirus type 7 infection. Front. Med. 2022, 9, 896409. [Google Scholar] [CrossRef] [PubMed]
- Duboc, H.; Rajca, S.; Rainteau, D.; Benarous, D.; Maubert, M.-A.; Quervain, E.; Thomas, G.; Barbu, V.; Humbert, L.; Despras, G.; et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut 2012, 62, 531–539. [Google Scholar] [CrossRef]
- Farshidfar, F.; Koleini, N.; Ardehali, H. Cardiovascular complications of COVID-19. J. Clin. Investig. 2021, 6. [Google Scholar] [CrossRef]
- Wang, J.; Choy, K.W.; Lim, H.Y.; Ho, P. Laboratory markers of severity across three COVID-19 outbreaks in Australia: Has Omicron and vaccinations changed disease presentation? Intern. Emerg. Med. 2022, 18, 43–52. [Google Scholar] [CrossRef]
Survivors (n = 15) | Non-Survivors (n = 15) | p-Value (α: 0.05) | |
---|---|---|---|
Age (years) | 61 ± 9 | 71 ± 8 | 0.04 |
Male sex, no. (%) | 12 (80) | 12 (80) | ˃0.99 |
BMI (kg/m2) | 28 ± 4 | 28 ± 4 | ˃0.99 |
Comorbidities, no. (%) | |||
Hypertension | 7 (47) | 11 (73) | 0.15 |
Dyslipidemia | 2 (13) | 4 (27) | 0.65 |
Former smoker | 2 (13) | 7 (47) | 0.11 |
Diabetes type 2 | 3 (20) | 2 (13) | ˃0.99 |
Prior MI | 0 (0) | 2 (13) | 0.48 |
Prior coronary revascularization | 0 (0) | 2 (13) | 0.48 |
Prior CVA | 0.07 (0.2) | 0 (0) | 0.33 |
Peripheral artery disease | 1 (7) | 5 (33) | 0.17 |
Chronic coronary syndrome | 0 (0) | 2 (13) | 0.48 |
Transient ischemic attack (mini stroke) | 1 (7) | 0 (0) | ˃0.99 |
Atrial flutter | 2 (13) | 2 (13) | ˃0.99 |
CHA₂DS₂-VASc score for atrial fibrillation stroke risk (≥ 2) | 6 (40) | 11 (73) | 0.14 |
Other CVD | 1 (7) | 1 (7) | ˃0.99 |
Chronic kidney disease | 3 (20) | 8 (53) | 0.13 |
Cancer | 2 (13) | 4 (27) | 0.65 |
Home medical therapy, no. (%) | |||
Aspirin | 0 (0) | 3 (20) | 0.22 |
Statins | 2 (13) | 5 (33) | 0.39 |
ACE inhibitors | 4 (27) | 9 (60) | 0.26 |
Beta-blockers | 2 (13) | 5 (33) | 0.39 |
Calcium channel blockers | 2 (13) | 5 (33) | 0.39 |
Diuretics | 1 (7) | 5 (33) | 0.17 |
Glucose drugs | 1 (7) | 1 (7) | ˃0.99 |
System | Clinical Parameters | Correlation with | Reported in the Literature |
---|---|---|---|
Immune system | Lymphocytes | GLCA-3S | Lymphopenia has been defined as an effective and reliable indicator of the severity and hospitalization in patients with COVID-19 [26]. |
GLCA-3S/(GCDCA + GLCA-3S) | |||
Procalcitonin (PCT) | GLCA-3S | Pct is one marker used for sepsis detection and is a sensitive marker of acute COVID-19 disease [2,27]. | |
GCDCA-3S | |||
GCDCA-3S/(GCDCA-3S+GCDCA) | |||
Interleukin 10 (IL-10) | GLCA-3S | Increased expression of IL-10 in patients who have progressed to severe or life-threatening COVID-19 disease [4]. (Contoli et al. 2021). | |
GLCA-3S/(GCDCA+GLCA-3S) | |||
Tumor necrosis factor alpha (TNF-α) | GCDCA-3S/ (GCDCA+GCDCA-3S) | Cytokine storm, characterized by an increased production of cytokines, mainly IL-6, C-reactive protein (CRP), TNF-α, IL-1β, IL-33, IFNγ, and others, is a phenomenon noticed in patients with severe forms of COVID-19 [28]. This process fuels the inflammation that characterizes pneumonia due to a defect in the control system that can no longer block the immune response. | |
Cardiovascular system | Tissue factor (TF) | GLCA-3S/(GCDCA+GLCA-3S) | TF has been associated with developing thrombotic phenomena in COVID-19, which often causes mortality [29]. |
Thrombomodulin | GCDCA-3S | ||
Plasminogen activator inhibitor-1 (PAI-1) | GLCA-3S | PAI-1, the major physiological inhibitor of tissue-type plasminogen activators in serum, was significantly associated with stroke in AF [30]. There is epidemiological evidence that PAI-1 may contribute to the development of ischemic cardiovascular disease [31]. | |
GLCA-3S/(GCDCA+GLCA-3S) | |||
Soluble vascular cell adhesion molecule-1 (s-VCAM) | GLCA-3S/(GCDCA+GLCA-3S) | sVCAM-1 was identified as the only marker of inflammation significantly associated with long-term risk of AF among the other 13 biomarkers investigated [32]. | |
Lactic acid | GLCA-3S | It is known that serum lactic acid levels get higher when strenuous exercise or other conditions—such as heart failure, a severe infection (sepsis), or shock—lower blood flow and oxygen throughout the body [33]. | |
GLCA-3S/(GCDCA+GLCA-3S) | |||
Kidney | Potassium | GCDCA-3S | Recent studies have reported a high prevalence of electrolyte disorders in patients with SARS-CoV-2 infection, including sodium, potassium, chloride, and calcium abnormalities [34,35,36,37]. However, electrolyte disorder is also positively related to severe clinical outcomes, such as cardiovascular diseases [38]. |
GCDCA-3S/(GCDCA-3S+GCDCA) | |||
Calcium | GLCA-3S/(GCDCA+GLCA-3S) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porru, E.; Comito, R.; Interino, N.; Cerrato, A.; Contoli, M.; Rizzo, P.; Conti, M.; Campo, G.; Spadaro, S.; Caliceti, C.; et al. Sulfated Bile Acids in Serum as Potential Biomarkers of Disease Severity and Mortality in COVID-19. Cells 2024, 13, 1576. https://doi.org/10.3390/cells13181576
Porru E, Comito R, Interino N, Cerrato A, Contoli M, Rizzo P, Conti M, Campo G, Spadaro S, Caliceti C, et al. Sulfated Bile Acids in Serum as Potential Biomarkers of Disease Severity and Mortality in COVID-19. Cells. 2024; 13(18):1576. https://doi.org/10.3390/cells13181576
Chicago/Turabian StylePorru, Emanuele, Rossana Comito, Nicolò Interino, Andrea Cerrato, Marco Contoli, Paola Rizzo, Matteo Conti, Gianluca Campo, Savino Spadaro, Cristiana Caliceti, and et al. 2024. "Sulfated Bile Acids in Serum as Potential Biomarkers of Disease Severity and Mortality in COVID-19" Cells 13, no. 18: 1576. https://doi.org/10.3390/cells13181576
APA StylePorru, E., Comito, R., Interino, N., Cerrato, A., Contoli, M., Rizzo, P., Conti, M., Campo, G., Spadaro, S., Caliceti, C., Marini, F., Capriotti, A. L., Laganà, A., & Roda, A. (2024). Sulfated Bile Acids in Serum as Potential Biomarkers of Disease Severity and Mortality in COVID-19. Cells, 13(18), 1576. https://doi.org/10.3390/cells13181576