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Abstract: Primary Biliary Cholangitis (PBC) is a chronic autoimmune liver disorder characterized by
progressive cholestatic that, if untreated, can progress to liver fibrosis, cirrhosis and liver decompen-
sation requiring liver transplant. Although the pathogenesis of the disease is multifactorial, there
is a consensus that individuals with a genetic predisposition develop the disease in the presence of
specific environmental triggers. A dysbiosis of intestinal microbiota is increasingly considered among
the potential pathogenic factors. Cholangiocytes, the epithelial cells lining the bile ducts, are the
main target of a dysregulated immune response, and cholangiocytes senescence has been recognized
as a driving mechanism, leading to impaired bile duct function, in disease progression. Bile acids
are also recognized as playing an important role, both in disease development and therapy. Thus,
while bile acid-based therapies, specifically ursodeoxycholic acid and obeticholic acid, have been the
cornerstone of therapy in PBC, novel therapeutic approaches have been developed in recent years.
In this review, we will examine published and ongoing clinical trials in PBC, including the recently
approved peroxisome-proliferator-activated receptor (PPAR) agonist, elafibranor and seladelpar.
These novel second-line therapies are expected to improve therapy in PBC and the development of
personalized approaches.

Keywords: cholangiocytes; cholestasis; farnesoid-x-receptor (FXR); macrophages; peroxisome-
proliferator-associated receptors (PPAR); T cells

1. Introduction

Primary Biliary Cholangitis (PBC), formerly Primary Biliary Cirrhosis, is a progressive
cholestatic disease that if untreated might progress to cirrhosis and liver decompensation
requiring liver transplant [1]. PBC is considered an organ-specific autoimmune disorder
and, along with the autoimmune hepatitis (AIH) and the primary sclerosing cholangitis
(PSC), is classified as an autoimmune liver disease. In contrast, however, to AIH and
PSC, the treatment paradigm for PBC is based on bile acids, such as ursodeoxycholic
acid and obeticholic acid (OCA), a Farnesoid-X-Receptor (FXR) agonist, and Peroxisome
Proliferator-Activated Receptor (PPAR)s ligands [2], although these agents have no effects
on AIH, where the cornerstone therapy is the immunosuppression, and no licensed drug
have been proven effective in slowing disease progression in PSC [3,4]. Supporting the
view that PBC should be considered as an autoimmune disease, there is its high gender
specificity (approx. 90% of patients are female), the positivity to disease-specific anti-
mitochondrial autoantibodies (AMAs), the prototypical liver histopathology and frequent
concomitance with other autoimmune diseases (e.g., Hashimoto’s thyroiditis, rheumatoid
arthritis) [5,6]. The incidence of PBC in the European Union (EU), the USA and Canada,
Asia and Australia range between 0.9 and 5.8 per 100,000 population per year, while the
prevalence is 1.9–40.2 per 100,000. In Western countries, it is estimated that 1 in 1000 women
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over the age of 40 live with PBC [7]. The prevalence of PBC has witnessed a constant increase
in the last two decades in the EU, North America and the Asia-Pacific regions while the
quality of life is improving along with a reduction in liver transplants and mortality [8].

PBC is a progressive hepatic disease and the early stages of the disease manifest with
fatigue, pruritus, right upper quadrant abdominal discomfort and jaundice. The diagnosis
of PBC, in these early stages, is confirmed when at least two out of the following three
criteria are satisfied: (1) biochemical indicators of cholestasis, particularly elevated levels of
alkaline phosphatase (ALP); (2) detection of antimitochondrial antibodies (AMA) or other
PBC-specific autoantibodies, such as sp100 or sp210, if AMA is not detected (<10%); and,
(3) typical histopathology features at liver biopsy [9–12].

The introduction of ursodeoxycholic acid (UDCA), a secondary bile acid normally
present in human bile at low concentrations, (<3% of total bile acids) [3,4], in the treatment
of PBC patients has changed the disease course, improving transplant-free survival rates
to up to 60% of patients, thereby reducing mortality. Currently, life expectancy in PBC
patients under UDCA therapy is similar to non-PBC patients.

2. Pathogenic Mechanisms in PBC

Although the exact etiology of PBC remains elusive, it is generally accepted that in the
presence of a permissive genetic background, exposure to certain environmental factors
may lead to the presentation of the E2 subunits of the pyruvate dehydrogenase complex
(PDC-E2) to antigen-presenting cells. This early step is then followed by the expansion
of both innate and adaptive immunity that plays a role in bile duct destruction, relapse
and chronic progression. Because the PDC-E2 is expressed by cholangiocytes, the immune
response is directed toward these cells resulting in injury biliary to epithelial cells, chronic
cholestasis and periductular fibrosis that might progress to liver fibrosis (Figure 1).

2.1. Genetics of PBC

Despite precise genetic associations still not having been completely unveiled, poly-
morphisms in a Major Histocompatibility Complex (MHC)—Human Leukocyte Antigens
(HLA) in humans—might be responsible for the augmented immunogenicity of the self-
peptide-MHC complex interacting with T-cell co-receptors [13,14]. In particular, for HLA
class II antigens, HLA DRw8 incidence was found to be significantly increased in PBC pa-
tients compared with controls (36% vs. 3.6%) [15]. Similarly, the presence of the DRB1*0801-
DQA1*0401/0601-DQB1*04 haplotype is also increased among woman living with PBC
compared with non-PBC subjects. Conversely, there is lower incidence of DRB1*1501-
DQA1*0102-DQB1*0602 and DRB1*1302-DQA1*0102-DQB1*0604 haplotypes in women
living with PBC, highlighting a potential protective role against disease development [16].

Single nucleotide polymorphisms (SNPs) of genes encoding for molecules involved in
the immune response such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) [17], interleukin-1
(IL-1) [18] and IL-10 [19] seem to be associated with PBC susceptibility. Alterations in genes
involved in B-cell activation and autoantibodies production, such as POU domain class
2-associating factor 1 (POU2AF) and Spi-B transcription factor (SPIB), were found to be
associated with PBC [20].

The first Genome-Wide Association Study (GWAS) carried out in the USA and Canada
has detected a robust association between PBC and some genetic variants of IL-12 and
IL-12 receptor β2 genes. Of relevance, these receptors drive a Th1 polarization of CD4+ T
cells, further supporting a role for auto-immunity [21]. Nevertheless, the same association
was not found in another study performed on an Asian cohort, which identified the tumor
necrosis factor (TNF) superfamily member 15 (TNFSF15) as a potential risk locus for
PBC development [22]. These discrepancies among different ethnic groups sharing the
same genetic background point to the important influence of environmental factors in
PBC pathogenesis.
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Figure 1. Gut-driven pathogenesis of PBC and PSC. Gut microbiota dysbiosis, characterized by a 
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tolerance with subsequent activation of B cells and AMA production directed against intrahepatic 

Figure 1. Gut-driven pathogenesis of PBC and PSC. Gut microbiota dysbiosis, characterized by a
reduction in microbial abundance and diversity, as well as pathobiont increase, represents the first
step in both PBC and PSC onset. Specifically, in PBC, such a condition promotes the loss of immune
tolerance with subsequent activation of B cells and AMA production directed against intrahepatic
cholangiocytes; further immune cell recruitment and cytokine secretion, then, contribute to periductal
fibrosis. In PSC, microbiota dysbiosis entails a decreased production of secondary bile acids and
short-chain fatty acids (SCFAs) as well as reduced epithelial barrier function resulting in increased
entry of bacteria into the circulation; this induces intestinal T-cell activation, the initiation of chronic
liver inflammation and the formation of the characteristics of an “onion-ring”, concentric layers of
fibrotic tissue around bile ducts.

2.2. Epigenetics and Environmental Factors

Despite genetics having a critical impact on disease onset and development, there is a
consensus that individuals with genetic predisposition develop the disease in the presence
of specific environmental triggers [23].

Multiple epidemiological studies correlated E. coli-derived recurrent urinary tract
infections (rUTI) to PBC onset, postulating the microorganism (the most prevalent isolated
in women with rUTI) to be a possible trigger for disease development [24]: microbial
infection seems to have a role in AMA induction through a mechanism of molecular
mimicry, i.e., the presence of cross-reactivity between infectious and self-epitopes [25].
In particular, human PDC-E2, a non-covalent enzymatic complex located on the inner
mitochondrial membrane that catalyzes the oxidative decarboxylation of pyruvate to acetyl
CoA [26], is molecularly similar to E. coli PDC-E2, thus being responsible for immunological
cross-reactivity and the breakdown of tolerance to mitochondrial autoantigens [27].

Another microorganism deemed to be involved in PBC development through molec-
ular mimicry and cross-reactivity towards PDC-E2 is Novosphingobium aromaticivorans, a
ubiquitous gram-negative xenobiotic-metabolizing bacterium containing lipoylated pro-
teins 100- to 1000-fold more reactive than those of E. coli [28]. A study from Selmi et al.
reported that in sera from 100% of anti-PDC-E2 (77/77) positive PBC patients were found
antibodies against Novosphingobium aromaticivorans, providing further support for the
concept that exposure to Novosphingobium aromaticivorans could be a trigger for PBC devel-
opment [28,29].
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Extensive epidemiological data suggest that xenobiotics are likely to be involved in
PBC development: a study by Trivedi et al. showed how 2-octynamide, derived from
2-octynoic acid (a cosmetics ingredient), mimics the structure of the PDC-E2 immunodom-
inant autoantigen [11]. Moreover, frequent use of nail polish and a history of smoking
or hormone replacement therapy were also found to be significantly correlated to PBC
onset while, on the contrary, never having been pregnant was significantly associated with
protection from disease development [30].

3. The Immunology of PBC

As mentioned above, PBC is characterized by high titers of AMAs and progressive
intrahepatic cholestasis due to inflammatory cholangitis (Figure 2).
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Figure 2. Breakdown of tolerance has a pivotal role in PBC pathogenesis. Aberrant expression of
PDC-E2 subunit by cholangiocytes causes the recruitment of B cells, T cells and DCs promoting
anti-PDC-E2 autoantibody secretion. Pro-inflammatory cytokine secretion and further immune cell
recruitment (e.g., CD8+ T and NK cells) induce cholangiocytes senescence and apoptosis, responsible
for biliary cholestasis. Cholangiocytes’ senescence-associated secretory phenotype (SASP) onset, fi-
nally, promotes portal fibroblast activation and subsequent biliary fibrosis. MAIT, mucosal-associated
invariant T (MAIT) cells.

Pathognomonic anti-PDC-E2 autoantibodies, present in at least 95% of PBC pa-
tients [31], result from autoreactive B-cell and T-cell responses directed against mitochon-
drial autoantigens. Interestingly, recent epitope mapping studies revealed that autoreactiv-
ity is specifically directed to the C-terminus of the molecule, where the enzymatic catalytic
active site is located [32]. Secretory IgAs anti-PDC-E2 have been found in the saliva, bile
and urine of PBC patients [33]. However, it is still not clear why, although the antigen is
expressed in all nucleated cells, the autoimmune response is restricted to the intra-hepatic
bile ducts. Although present in only about 30% of PBC patients, anti-nuclear antibodies
(ANAs) represent another characteristic feature of the disease. ANA are more frequently
detected in the AMA-negative PBC patients [34]. The anti-nuclear pore complex (NPCs)
autoantibodies such as gp210 and p62 were also detected in AMA-negative woman living
with PBC and associates to a more aggressive disease [35].
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Typical PBC organ-specific damage limited to the liver and characterized by chronic
progressive destruction of small intrahepatic bile ducts with cholestasis, portal inflamma-
tion and, ultimately, fibrosis is mainly caused by the liver accumulation (Figures 1 and 2) of
autoreactive CD4+ and CD8+ T cells present both in peripheral blood and hepatic infiltrating
cells [36]. Again, as for humoral response, T-cell responses appear to be principally directed
against the PDC-E2 subunit [37]: recent data from murine models of PBC have suggested
that a critical mechanism of biliary destruction is actually mediated by liver-infiltrating
CD8+ T cells [38]. TH1 and TH17 cells accumulate around damaged bile ducts of inflamed
portal tracts in PBC patients, leading to the release of pro-inflammatory cytokines and
chemokines and growth factors (Figure 2), reflecting the formation of a pro-inflammatory
microenvironment [39,40]. In contrast, low levels of circulating CD4+ CD25high regulatory
T cells (Treg), which mediate the immune system self-tolerance and are essential for autoim-
mune disease prevention, are detected in patients with PBC compared with controls [41].
In addition, mucosal-associated invariant T (MAIT) cells also play a role in the in the patho-
genesis of PBC. MAIT cells accumulate in the liver through CXCL12-CXCR4-mediated
chemotaxis, leading to the production of pro-inflammatory cytokines and contributing to
portal inflammation, potentially driven by increased levels of IL-18.

4. Immunobiology of Cholangiocytes in PBC

Cholangiocytes, or biliary epithelial cells (BECs), are postmitotic ciliated cuboidal
epithelial cells that form the lining of the intra- and extrahepatic biliary ducts [42]. Al-
though being a relatively rare hepatic cell type (~4% of the total liver parenchymal cells),
BECs play a pivotal role in primary bile production and modification via absorption and
the secretion of ions, solutes and water as it is transported along the biliary tree [43,44].
Moreover, several studies confirmed BECs’ ability to represent the first line of defense
against luminal microbes in the biliary system thanks to the expression of a variety of
pathogen-recognition receptors (PRRs) such as toll-like receptors (TLRs) and nucleotide-
binding oligomerization domain proteins (NODs) [45,46]. Recognizing and discriminating
both structurally conserved pathogen-associated molecular patterns (PAMPs) and danger-
associated molecular patterns (DAMPs) released by damaged liver cells, BECs work in all
respects as mediators of the innate immune response [47]. In response to infectious, toxic,
inflammatory or autoimmune challenges, cholangiocytes transition from a quiescent state
to an activated state, known as ‘reactive cholangiocytes’ (Figure 2). Upon the activation of
the NF-κB pathway, these cells begin to proliferate and secrete various proinflammatory
and profibrogenic factors described in Figure 2. These are mediators in both paracrine and
autocrine manners [48–51]. IL-6 facilitates the proliferation of BECs and promotes B-cell
differentiation and immunoglobulin secretion [52,53]. TNF-α enhances the expression
of adhesion molecules ((Figure 2) on BECs and augments the functions of cytotoxic T
lymphocytes, and drives an apoptotic damage to the bile ducts [54,55]. The antimicrobial
activity of BECs is further mediated through the secretion of human β-defensin 1 (HBD-1)
and HBD-2 [56–58].

Such a condition persists unless the initial insult is removed: otherwise, ongoing
stimulation caused by a persistent liver injury provokes progression towards fibrosis,
cholestasis and, at last, malignant transformation [50]. Cholangiocyte-released TGF-β
promotes the myofibroblastic differentiation of portal fibroblasts and hepatic stellate cells
(HSCs) [59] and regulates extracellular matrix (ECM) deposition by nearby mesenchymal
cells [60]; similarly, MCP-1 induces myofibroblast differentiation and collagen-1 release by
portal fibroblasts as a result of chronic inflammation [49]. Finally, a loss of tolerance to the
mitochondrial antigen PDC-E2 represents the trigger event for the immune-pathogenesis of
PBC. In particular, it seems that pro-inflammatory cytokines could enhance the expression
of microRNA-506 (miR-506) in BECs, resulting in the overexpression and mislocalization of
PDC-E2 in PBC patients [61] followed by NKT cell, MAIT cell, and CD4+ and CD8+ cell
infiltration around intrahepatic bile ducts [62].



Cells 2024, 13, 1580 6 of 31

Cholestasis is a major clinical feature of PBC. Due to altered cholangiocytes’ physiol-
ogy and hyperproliferation, leading to bile ducts obstruction [63], bile cannot be properly
synthesized nor excreted into the duodenum and accumulates inside hepatocytes, leading
to high bilirubin blood levels, pruritus, osteodystrophy and fatigue, in addition to con-
tributing to liver cell injury with the accumulation of hydrophobic and potentially toxic
bile acids [64]. PBC patients develop a profound alteration in their bile acid structure when
compared with healthy controls, characterized by a decreased conversion of primary to sec-
ondary bile acids, indicating the impaired microbial metabolism of intestinal bile acids by
the intestinal microbiota. In particular, it has been recognized that deoxycholic acid (DCA)
levels are inversely correlated with PBC-enriched gut microbes (e.g., Veillonella, Klebsiella),
while being positively correlated with control-enriched microbes (e.g., Faecalibacterium,
Oscillospira) [65]. Since DCA is an endogenous ligand for the G protein-coupled bile acid
receptor (GPBAR1, also known as TGR5), this alteration might have a mechanistic relevance
in the development of immune dysregulation in PBC [66,67].

Apoptosis and Senescence of Cholangiocytes

In most cases, however, biliary proliferation halts and senescence or apoptotic mech-
anisms become prevalent with the development of ductopenia [68], a condition typical
of cholangiopathies (i.e., a category of chronic liver diseases sharing cholangiocytes as a
central target) such as PBC [69]. Both mechanisms, which are mutually exclusive, contribute
to disease development [70].

Apoptosis is a pathway of programmed cell death occurring regularly in order to
maintain the homeostatic balance between cell formation and cell death rates [71]. Ac-
tually, two apoptotic pathways can be identified: the intrinsic, activated by intracellular
triggers like mitochondrial stress or unfolded protein response (UPR), and the extrinsic
one, initiated by the interaction between ‘death receptors’ and their ligands (TNFα, FasL
and a tumor necrosis factor-related apoptosis-inducing ligand, TRAIL) [72]. Despite the
two pathways differing from each other for the initial triggering events, they converge to a
common final pathway regulated by a series of cleavage-activated caspases [73]. Differently
from necrosis, characterized by the spillage of intracellular content into the surrounding
tissue with subsequent inflammation and damage, apoptosis produces membrane-bound
vesicles derived from the disassembly of apoptotic cells and known as apoptotic bodies
that are then removed by macrophages through phagocytosis [74,75]. Multiple studies
have demonstrated a hyperactivation of apoptosis in BECs of PBC patients if compared
with healthy controls, detecting higher expressions of TNFα, Fas, FasL and TRAIL [76–78].
Moreover, the overexpression of caspase-3 and -8 as well as that of proinflammatory CXCL9
and CXCL10 in the liver tissue of PBC patients has been demonstrated too [79,80], while
in vitro studies have shown UDCA’s ability to inhibit apoptosis via the induction of several
pro-survival pathways [81]. Bile acid pool alteration, typical of PBC patients, together with
a reduction in bicarbonate umbrella secretion by the bile duct cells, cause BECs to be more
sensitive to apoptosis induced by cytotoxic hydrophobic BAs [7]. As mentioned before,
PBC patients are typically characterized by gut microbiota dysbiosis, with high levels of
Firmicutes and Proteobacteria and reduced levels of Bacteroidetes [82]: this has been associated
with increased BEC apoptosis through TLR2 signaling activation [83]. Moreover, the levels
of the tumor suppressor protein p53 (referred to as “the guardian of the genome”) and
p53-induced apoptosis are enhanced in PBC patients [84].

On the other side, cellular senescence is a phenomenon in which proliferating cells
enter a cell cycle arrest, being permanently blocked in the G1 or G2 phase, unable to grow
but still metabolically active [70]. Senescent cells are resistant to apoptosis thanks to the
over-expression of anti-apoptotic mediators (e.g., Bcl-2, Bcl-xL) or the reduced expression
of pro-apoptotic ones, as happens in PBC BECs [85]. Senescence is physiologically triggered
by DNA damage, with telomere shortening occurring after repetitive cell divisions (age-
ing) or other stress signals: however, particular conditions can push cells into premature
senescence, playing a fundamental role in the progression of some diseases such as dia-
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betes, cardiac and end-stage liver diseases, cholestasis included [86]. Senescence cells have
deleterious effects on the surrounding microenvironment via the acquisition of a senescence-
associated secretory phenotype (SASP), or Senescence-Messaging Secretome (SMS) [87]. In
particular, cells undergo profound changes in protein expression and secretion, starting
to produce soluble factors (interleukins, chemokines and grow factors), proteases and
ECM components able to modify adjacent tissues structure as well as to recruit inflam-
matory mediators [88]. Endoplasmic reticulum (ER) stress markers, glucose-regulated
protein 78 (GRP78) and protein disulfide isomerases (PDI), were significantly increased
in in vitro models of PBC and correlated with premature BEC senescence: both condi-
tions were significantly suppressed following a pretreatment with UDCA [89]. Sasaki et al.
demonstrated that BECs derived from damaged bile ducts of PBC patients are characterized
by SASP, an increased expression of senescence-associated β-galactosidase (SA-βGal), a
significant reduction in telomere length and multiple gammaH2AX-DNA-damage-foci,
features absent both in the BECs of normal livers and chronic viral hepatitis [90]. Increased
levels of cyclin-dependent kinase inhibitors p16 and p21 (promoting cell cycle arrest in
G1 phase) are detected in senescent BECs of bile ducts derived by PBC patients when
compared with healthy controls: moreover, the expression of p16 and p21 was much more
enhanced in later (3-4) than in earlier (1-2) PBC stages, confirming the pivotal role of
cholangiocytes senescence in disease progression [91].

5. Bile Acid-Regulated Receptors in PBC: From Pathogenesis to Therapy

As mentioned above, the cornerstone of PBC therapy is bile acid-derived agents. The
introduction of ursodeoxycholic acid (UDCA), a secondary bile acid (BA) normally present
in human bile (low concentration, 3% of total BAs) [3,4], in PBC treatment has changed the
disease course, improving transplant-free survival rates to up to 60% of patients. Multiple
studies, indeed, confirmed UDCA to be an important agonist for GPBAR1, the receptor
responsive to primary (cholic acid, CA, and chenodeoxycholic acid, CDCA, synthesized by
hepatocytes) and secondary (deoxycholic acid, DCA, and lithocholic acid, LCA, derivatives
of primary BA metabolism operated by intestinal microbiota) bile acids and expressed
by BECs lining small and large intrahepatic ducts, extrahepatic ducts and gallbladder
epithelium [92,93]. In the liver, GPBAR1 activation is fundamental for hepatic homeostasis
and results in (i) the increased cystic fibrosis transmembrane conductance regulator (CFTR)-
dependent chloride and bicarbonate secretion, enhancing choleresis and protecting hepatic
parenchyma from BA toxicity through the so called “bicarbonate umbrella” [94]; (ii) the
increased expression and phosphorylation of junctional adhesion molecule A (JAM-A), thus
regulating and stabilizing biliary epithelial barrier function—both in vivo and in vitro—as
well as protecting against bile leakage [95]; (iii) the secretion of vasodilatory molecules
(e.g., nitric oxide, NO) and the inhibition of vasoconstrictor ones (e.g., endothelin-1, ET-1)
by sinusoids, contributing to liver microcirculation modulation and portal hypertension
mitigation [96,97]. Moreover, the activation of GPBAR1 on Kupffer cells decreases the
NF-κB-dependent inflammatory response, thus reducing hepatic inflammation [98–100].
At a systemic level, GPBAR1 is expressed by circulating tissue resident myeloid cells and
dendritic cells (DCs), and the activation promotes a macrophage polarization towards
an anti-inflammatory phenotype (M2) as well as the inhibition of maturation and the
differentiation of DCs and Natural Killer T (NKT cells) [101,102]. GPBAR1 is therefore
essential for the development of immune tolerance [103].

UDCA at a dose of 13–15 mg/kg/die is the first-line therapy for PBC [104]. The
mechanism of cation of UDCA remains elusive, but over the years, several potential benefi-
cial effects have been reported, including choleretic activity, the promotion of bicarbonate
secretion and the displacement of endogenous hydrophobic hepatotoxic BAs by expanding
the hydrophilic pool modulating BA homeostasis, maintaining the integrity of the biliary
tree epithelial barrier, inhibiting the pro-inflammatory NF-κB pathway, helping in the
management of PBC symptoms (i.e., pruritus, jaundice, fatigue), improving liver biochem-
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istry (normalization of total bilirubin, alkaline phosphatase and alanine transaminase) and
prolonging liver transplant (LT)-free survival [100,105–107].

Other bile acid-based therapies include ligands for the nuclear receptors Farnesoid-X-
Receptor (FXR), Vitamin D receptor (VDR) and Pregnane-X-Receptor (PXR).

BECs represent one of the three non-parenchymal cell types in the liver that express
GPBAR1, alongside Kupffer cells and liver sinusoidal endothelial cells. The activation
of GPBAR1 in cholangiocytes facilitates several protective mechanisms, including (a) the
upregulation of cystic fibrosis transmembrane conductance regulator (CFTR)-mediated
chloride and bicarbonate secretion, which strengthens the “bicarbonate umbrella” effect [94];
(b) the enhanced expression and phosphorylation of junctional adhesion molecule A (JAM-
A), leading to the stabilization and regulation of the biliary epithelial barrier both in vitro
and in vivo, thereby preventing bile leakage [95]; (c) the secretion of vasodilatory agents
such as nitric oxide (NO), along with the inhibition of vasoconstrictors like endothelin-
1 (ET-1) by liver sinusoidal endothelial cells, which contributes to the maintenance of
hepatic microcirculation [96,97]. Moreover, the activation of GPBAR1 in Kupffer cells,
which are the resident macrophages of the liver, results in reduced inflammation through
the negative modulation of NF-κB [98–100,108]. GPBAR1 is also expressed in blood-
derived macrophages and dendritic cells (DCs), where its activation promotes macrophage
polarization towards an anti-inflammatory M2 phenotype and inhibits the maturation and
differentiation of DCs and Natural Killer T (NKT) cells [101,102].

UDCA has been the first drug approved by the FDA for the treatment of PBC and
remains the first-line therapy [104]. Clinically, UDCA at a dose of 15 mg/kg/day or
higher alleviates symptoms of PBC, such as pruritus, jaundice and fatigue, improves
liver biochemical markers (e.g., normalization of total bilirubin, alkaline phosphatase
and alanine transaminase) and extends transplant-free survival [100,105–107]. Evidence
suggests that UDCA may modulate GPBAR1; our in vitro studies have demonstrated
that UDCA can directly transactivate GPBAR1 [92,93]. Consistent with these findings,
the in vivo administration of UDCA induces GPBAR1-like effects, including enhanced
bicarbonate secretion and anti-NF-κB activity, contributing to the integrity of the biliary
epithelial barrier. However, other studies propose that UDCA might function as a FXR
antagonist [109]. Since the therapeutic efficacy of OCA, an FXR agonist, in PBC patients
is additive to UDCA, it seems unlikely that UDCA is an effective FXR antagonist in this
context [93,107]. Currently, there are no clinical trials evaluating selective GPBAR1 agonists
in PBC patients.

FXR is a receptor for primary bile acids [110] and is predominantly expressed in liver
parenchymal cells, cholangiocytes and hepatic stellate cells (HSCs) [111]. FXR activation
mitigates innate immune responses in the liver through various mechanisms: (a) FXR
agonism negatively regulates NF-κB in liver-resident macrophages [112] or blood-derived
leukocytes, thereby reducing the secretion of pro-inflammatory cytokines [113–115] and in
HSCs through a pathway involving the small heterodimer partner (SHP), an FXR-regulated
transcription factor [116–118]; (b) FXR also acts as a negative regulator of NLRP3 inflam-
masome activation in cholangiocytes [119]. The NLRP3 inflammasome is a multiprotein
complex that detects cellular stress, triggering caspase-1 activation and the release of pro-
inflammatory cytokines IL-1β and IL-18. Several studies have confirmed that FXR agonism
might reverse cholestasis, and several FXR agonists have been advanced through clinical
trials [120,121]. However, animal studies have shown that FXR-deficient mice are protected
from cholestasis [122] and there is evidence that FXR activation might inhibit the expression
activity of Multidrug Resistance Protein 4 (MRP4) [123], raising some concerns over the
potential utility of FXR agonism in cholestasis, while these animal studies might support
the development of anti-FXR therapies in cholestasis [124,125].

In contrast to this view, various FXR agonists have been developed to treat cholestasis.
The first class of these agents, the obeticholic acid (OCA), was originally developed at
the University of Perugia, in Fiorucci’s lab in 2002 [126] and was approved in 2016 by
Food and Drug Administration (FDA), USA, as a second-line treatment for PBC patients
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who have incomplete responses to UDCA or who are intolerant to UDCA [127]. The
labelled indication excludes patients with decompensated cirrhosis [127]. The efficacy of
OCA in treating patients with PBC has been corroborated by numerous studies, including
real-world effectiveness data from international cohorts [128]. However, ongoing clinical
trials continue to assess its safety profile, particularly due to reported adverse effects in
some patients, such as exacerbation of pruritus and incidents of liver decompensation or
failure in cirrhotic PBC patients [111,128–132]. OCA has also been shown to have beneficial
additive effects when used in combination with fibrates [133].

The VDR is expressed in cholangiocytes, and its activation by lithocholic acid (LCA)
plays a role in modulating the innate immune response. VDR activation suppresses
the proliferation and differentiation of B cells, inhibits the formation of Th17 cells and
promotes the differentiation of regulatory T cells (Tregs) [134–142]. Studies have shown
that VDR expression is reduced in PBC patients compared with healthy controls, which
may contribute to disease progression [143]. Given that 3-oxo-DCA and iso-allo-LCA, in
addition to LCA, may also activate VDR, further investigation of this pathway in PBC
patients could be of significant importance [144–146].

PXR, mainly expressed by enterocytes and hepatocytes, is a well-known nuclear recep-
tor involved in xenobiotics’ catabolism, transport and clearance via CYP3A induction [147].
PXR is expressed on a variety of tissues including bone and intestine [135] but also in
immune cells [135] and cholangiocytes [136]. Rifampicin and rifaximin act as a PXR agonist,
and have been used to treat cholestasis [148–150]. PXR acts as a receptor for LCA [138] and
modulates both the innate and adaptive immune system by blocking B-cell proliferation
and differentiation [138], preventing Th17 cell formation [139], while facilitating Treg differ-
entiation [140] and inhibiting the monocyte secretion of typical proinflammatory cytokines
such as IL-1, IL-6, IL-8 and TNF-α [141]. Experimental cholestasis is exacerbated by PXR
gene ablation [151,152] and rifampicin, a human PXR agonist, is clinically used to promote
bilirubin excretion and as an itching treatment in PBC [153]. PXR also suppresses NF-κB
induction in mouse models of liver injury [149,154,155].

6. Intestinal Microbiota in PBC

Intestinal dysbiosis is frequently observed in patients with PBC and is increasingly
recognized as a contributing factor to both the onset and progression of the disease [66,156].
Using the inverse variance weighted (IVW) method, it has been demonstrated that the rela-
tive abundance of Selenomonadales, Bifidobacteriales and the genus Lachnospiraceae_UCG_004
is positively associated with an increased risk of developing PBC, while a higher abundance
of Peptostreptococcaceae and Ruminococcaceae appears to be protective [157]. Additional stud-
ies have identified a reduction in the relative abundance of bacteria capable of producing
SCFAs, such as Faecalibacterium spp. and Oscillospira spp. [158]. These microbial changes
were mitigated by treatment with UDCA, indicating that UDCA may play a role in mod-
ulating the intestinal microbiota. Microbiota-derived SCFAs, particularly butyrate, may
be implicated in the regulation of myeloid-derived suppressor cells (MDSCs), a subset of
myeloid cells involved in PBC pathogenesis [159]. Unlike classic monocytes, MDSCs pos-
sess strong immunosuppressive abilities and inhibit the proliferation of T cells, B cells, and
Natural Killer (NK) cells. Therefore, a decrease in butyrate-producing bacteria could result
in impaired MDSC function and a suboptimal response to UDCA treatment, suggesting
that microbiota-targeted therapies could have therapeutic potential in PBC patients.

7. Current Therapeutic Landscape in PBC
7.1. UDCA

UDCA is the standard treatment for PBC, regardless of stage of disease [160], repre-
senting the first-line treatment at a recommended dose of 13–15 mg/kg/day. The use of
UDCA is associated with improved survival without liver transplantation, even among
patients with an incomplete biochemical response (Figure 3).
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Figure 3. Comparison between current and new paradigms of PBC treatment. Current approaches
include initiation of UDCA with assessment after 1 year of therapy and eventual shift to a second-
line therapy in case of insufficient response to UDCA chosen on the basis of existing symptoms,
comorbidities and drug availability. In contrast, the new paradigm is based on a more personalized
approach that takes into account individual risk assessment since the beginning of the therapy.

Various scores have been developed to define responses to therapy with UDCA in
PBC patients (Table 1). Biochemical analyses carried out after 6 or 12 months of therapy
with UDCA have shown to be effective in providing prognostic information and predict-
ing ongoing risk of disease progression during treatment. The biochemical treatment
response is currently assessed after 12 months of therapy, focusing on ALP and bilirubin
values (Figure 3).

Table 1. Assessment of clinical response to UDCA in various clinical trials.

Name Response Criteria

GLOBAL-PBC [161] Bilirubin, ALP, albumin and platelet count after 12 months of UDCA and age at baseline

Paris-I [162] ALP > 3 × upper normal values or AST > 2 × upper normal values or bilirubin > 1.0 mg/dL after
12 months of UDCA

Paris-II [163] All three of the following: ALP > 1.5 × upper normal values, AST 1.5 × upper normal values,
bilirubin > 1 mg/dL after 12 months of UDCA

Rotterdam [164] Bilirubin > 1 × upper normal values and/or albumin < 1 × upper normal values afer 12 months UDCA

Barcelona [165] Decrease in ALP < 40% and ALP > 1.0 × upper normal values after 12 months of UDCA

Toronto [166] ALP > 1.67 × upper normal values after 24 months UDCA

Rochester [167] ALP > 2 × upper normal values after 6 months or 12 months of UDCA
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An important consideration when starting therapy in PBC patients is also related
to the severity of liver fibrosis at the start of therapy [168]. Several studies have shown
that the severity of liver fibrosis is an independent risk factor for progression indepen-
dent of treatment response [169]. Patients with advanced fibrosis/cirrhosis have a re-
duced transplant-free survival time compared with patients in the early stage of disease.
Ultrasound-based noninvasive technologies such as transient elastography are of increasing
importance for liver stiffness measurement (LSM) at the start of therapy and also to monitor
responses to treatment in clinical trials. A baseline LSM > 15 kPa predicts a worse prognosis,
whereas patients with LSM < 8 kPa have a lower risk of developing severe fibrosis under
treatment [169].

7.2. Second-Line Therapies and Novel Approaches in PBC

While UDCA is currently recommended as the first-line therapy in PBC, with reassess-
ment of efficacy after 1 year of therapy (Figure 3), a number of additional therapies are
currently available or under development and more personalized approaches are likely
to be developed in the near future, not only in cases of insufficient response to UDCA but
also with the aim to improve quality of life and reach normalization of liver biochemistry
(Table 2 and Figure 4).
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Figure 4. Overview of additional therapies available for the treatment of PBC patients. The therapeutic
targets are multiple, corresponding to the multiple symptoms of PBC. Specifically, therapies targeting
hepatocytes include the use of PPAR or FXR agonists, HMG-CoA reductase or IMPDH inhibitors
and antifibrotic agents that prevent ROS generation and HSC activation. Another therapeutic
target is cholangiocytes, where the use of UDCA and norUDCA increases HCO3

− production and
stimulates hepatobiliary secretion of bile acids. Potential intestinal therapies involve manipulating
the microbiota or using apical sodium-dependent bile acid transporter (ASBT) inhibitors to reduce
bile acid reabsorption. Finally, JAK1/2 inhibitors and calcineurin inhibitors can be used to modulate
the immune response.
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Table 2. Current and investigational therapies in PBC.

Intervention/Target Mechanism(s) Drug

Bile acids Various mechanisms, including increased bile acid flow and immunemodulation UDCA and norUDCA

Antifibrotic agents
NOX1/4 inhibitor

Prevents generation of ROS and transformation of hepatic stellate cells in
myo-fibroblasts Setanaxib

Apical Sodium BA Transporter (ABST) Inhibitors Mitigates the reabsorption of conjugated BAs from the ileum
A3907
Volixibat
Linerixibat

FXR agonist Various mechanisms
Linafexor, Cilofexor
OCA, TQA3526
ASC42

PPAR agonists Various mechanisms including immune modulation

Elafibranor (α/δ)
Seladelpar (δ)
Benzafibrate (α)
Fenofibrate (α)
Saroglitazar (α/γ)

Anti-pruritogens

# MrgprX4 antagonist
# Opioid receptor agonists

Attenuates itching induced by pruritogens (e.g., BAs, bilirubin)
Agosnitsfor the opioid K receptors

EP547
Difelikefalin (CR845)

HMG-CoA reductase inhibitors Lowers cholesterol production and reduces dyslipidemia-associated complications
Atorvastatin
Rosuvastatin
Simvastatin

Gut microbiome-based therapies Shifts the gut microbiota profile toward a lower abundance of pathological species
while promoting taxa responsible for immune tolerance Probiotics and Fecal microbiota transplantation

IMPDH inhibitor Prodrug of mycophenolic acid (MPA), limits de-novo synthesis of
guanosine nucleotides Mycophenolate

Calcineurin inhibitor Immunosuppressant activity Cyclosporine A

JAK1/2 inhibitor Reduces cell proliferation, shows immunosuppressant activity and induces
cell apoptosis Baricitinib (LY3009104)
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These novel pharmacological approaches are directed toward a variety of consolidated
or innovative molecular targets, including novel anti-itching agents [170]. Among the
various treatments mentioned in Table 3, two PPAR agonists, elafibranor and seladelpar,
have completed phase 3 trials and gained approval for the treatment of PBC patients
in 2024 [171]. PPARs are members of the nuclear receptor family of ligand-activated
transcription factors. The PPARs family include α, β, δ, and γ subtypes that are widely dis-
tributed in endocrine and non-endocrine tissues in humans. PPAR-α is mainly expressed
in hepatocytes, whereas PPAR-δ has ubiquitous expression, including liver parenchy-
mal cells, liver macrophages, HSC and BEC [172]. PPAR-α and PPAR-δ agonists have
anti-inflammatory properties and affect both innate and adaptive immunity by counter-
regulating the polarization of macrophages and T cells toward non-inflammatory and
regulatory phenotypes (i.e., M2 and Treg) [66,173]. PPAR-α agonism induces the differ-
entiation of regulatory T cells, whereas PPAR-δ agonism suppresses the polarization of
type 17 helper T cells. Elafibranor [2,174] is a first-in-class of pan-PPAR agonists. Elafi-
branor activates PPAR-α, PPAR-γ and PPAR-δ in vitro, and has been developed for the
treatment of PBC [175] and metabolic-associated steatotic liver disease (MASLD) [176]. On
10 June 2024, “elafibranor has received an accelerated approval based on reduction of alka-
line phosphatase (ALP) in the USA for the treatment of PBC in combination with UDCA in
adults who have an inadequate response to UDCA, or as monotherapy in patients unable to
tolerate UDCA” (https://www.ipsen.com/press-releases/ipsens-iqirvo-receives-u-s-fda-
accelerated-approval-as-a-first-in-class-ppar-treatment-for-primary-biliary-cholangitis/#:
~:text=PARIS,%20FRANCE,%2010%20June%202024,acid%20(UDCA)%20in%20adults%20
who accessed on 29 August 2024).

Elafibranor has also received a positive opinion over its dossier from the EMA [171].
Following elafibranor, on 14 August 2024, the FDA also granted an accelerated approval for
seladelpar [177] for the treatment of PBC patients in combination with UDCA in adults who
have an inadequate response to UDCA, or as monotherapy in patients unable to tolerate
UDCA. The use of seladelpar is not recommended for people who have or develop decompen-
sated cirrhosis (https://www.gilead.com/news-and-press/press-room/press-releases/2024
/8/gileads-livdelzi-seladelpar-granted-accelerated-approval-for-primary-biliary-cholangitis-
by-us-fda accessed on 29 August 2024).

Thus, similarly to OCA, elafibranor and seladelpar are second-line therapies in patients
that do not respond or have intolerance to UDCA [178]. However, since PPARs might
impact several metabolic pathways, the recent approval of these agents raises the need
for an accurate stratification of patients to identify subsets that might benefit from early
therapies in addition to or as a substitution for UDCA.

https://www.ipsen.com/press-releases/ipsens-iqirvo-receives-u-s-fda-accelerated-approval-as-a-first-in-class-ppar-treatment-for-primary-biliary-cholangitis/#:~:text=PARIS,%20FRANCE,%2010%20June%202024,acid%20(UDCA)%20in%20adults%20who
https://www.ipsen.com/press-releases/ipsens-iqirvo-receives-u-s-fda-accelerated-approval-as-a-first-in-class-ppar-treatment-for-primary-biliary-cholangitis/#:~:text=PARIS,%20FRANCE,%2010%20June%202024,acid%20(UDCA)%20in%20adults%20who
https://www.ipsen.com/press-releases/ipsens-iqirvo-receives-u-s-fda-accelerated-approval-as-a-first-in-class-ppar-treatment-for-primary-biliary-cholangitis/#:~:text=PARIS,%20FRANCE,%2010%20June%202024,acid%20(UDCA)%20in%20adults%20who
https://www.ipsen.com/press-releases/ipsens-iqirvo-receives-u-s-fda-accelerated-approval-as-a-first-in-class-ppar-treatment-for-primary-biliary-cholangitis/#:~:text=PARIS,%20FRANCE,%2010%20June%202024,acid%20(UDCA)%20in%20adults%20who
https://www.gilead.com/news-and-press/press-room/press-releases/2024/8/gileads-livdelzi-seladelpar-granted-accelerated-approval-for-primary-biliary-cholangitis-by-us-fda
https://www.gilead.com/news-and-press/press-room/press-releases/2024/8/gileads-livdelzi-seladelpar-granted-accelerated-approval-for-primary-biliary-cholangitis-by-us-fda
https://www.gilead.com/news-and-press/press-room/press-releases/2024/8/gileads-livdelzi-seladelpar-granted-accelerated-approval-for-primary-biliary-cholangitis-by-us-fda
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Table 3. Recently published trial in PBC.

Treatment Clinical Trial Treatments End Points Results Ref.

Elafibrinor
PPARα/δ Phase 3

161 PBC adults, who had incomplete response to
UDCA.
Treatments: Group 1: elafibrinor 80 mg;
Group 2: placebo.

Reduction in ALP levels (ALP ≥ 1.67-fold
the upper limit of normal (ULN) at
52 weeks.

A biochemical response (the primary end point)
was observed in 51% of the patients (55 of 108)
who received elafibranor and in 4% (2 of 53)
who received placebo, for a difference of
47 percentage points
(95% confidence interval [CI], 32 to 57;
p < 0.001).

[2]

Obeticolic acid
(OCA) Phase 2

Patients with PBC from POISE cohort and external
control patients from Global PBC cohort and UK-PBC
cohort.
Treatments:
Group 1: OCA (POISE cohort n = 209); Group 2:
non-OCA-treated external control (Global PBC cohort
n = 1381 and UK-PBC cohort n = 2135).

Evaluate time to first occurrence of liver
transplantation or death in patients with
OCA vs. comparable non-OCA-treated
external controls.

During the 6-year follow-up, there were 5
deaths or liver transplantations in Group 1
(2.4%), 135 in the Global PBC cohort control
(10.0%) and 281 in the UK-PBC control (13.2%).

[128]

Phase 2

59 PBC patients, intolerant to UDCA.
Treatments:
Group 1: placebo (n = 23)
Group 2: OCA 10 mg (n = 20).
Group 3: OCA 50 mg (n = 16)

The percent change in ALP from baseline to
the end of the double-blind phase of the
study.

ALP levels were reduced in both OCA groups,
respectively, by −53.9% in 10 mg group and by
−37.2% in 50 mg group compared with placebo
−0.8% (p < 0.05). Similar reductions were
observed through 6 years of open-label
extension treatment.
Side effects: pruritus increased
dose-dependently with OCA treatment. 15%
(OCA 10 mg) and 38% (OCA 50 mg)
discontinued due to pruritus.

[129]

Linerixibat
IBAT inhibitor Phase 2b

147 adult PBC patients with moderate to severe
pruritus, numerical rating scale (NRS) ≥ 3 after
4 week of placebo treatment.
Treatments:
Group 1: placebo (n = 36); Group 2: linerixibat at
20 mg/d (n = 16); 90 mg/d (n = 23) 180 mg/d (n = 27);
40 mg/b.d. (n = 23); 90 mg/b.d. (n = 22), for 12 weeks
(from week 4 to week 16), followed by single-blind
placebo (to week 20).

Investigate dose-related changes in Mean
Worst Daily Itch (MWDI) score at week 16.

At week 16, MWDI analysis showed significant
differences between placebo and and linerixibat
180 mg/d (p < 0.05), 40 mg/b.d. (p < 0.05) and
90 mg/b.d. (p < 0.05).
Diarrhea was the most frequent adverse event,
and incidence increased with dose.

[179]

Seladelpar
PPARδ Phase 3

193 PBC patients with an inadequate response or
intolerance to UDCA were enrolled.
Treatments: Group 1: sedalpar 10 mg/d (n = 89);
Group 3: placebo for 12 months

Primary
composite biochemical response
(ALP < 1.67 × ULN and
total bilirubin ≤ ULN) at month 12.

Primary
61.7 % improvement in Group 1 and 41.7% in
the placebo p < 0.05.

[177]
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Table 3. Cont.

Treatment Clinical Trial Treatments End Points Results Ref.

Saroglitazar
PPARα/γ Phase 2 Phase 2

37 PBC patients with UDCA resistance or
intolerance.
Treatments:
Group 1: saroglitazar 4 mg/d (n = 13);
Group 2: saroglitazar 2 mg/d (n = 14):
Group 3: placebo (n = 10).

At week 16, patients from Group 1 showed a
reduction of ALP levels by −163.3 U/L and
Group 2 by −155.8 U/L compared to placebo
(−21.1 U/L) (p < 0.05).
Study drug was discontinued in 4 patients
(3 patients in Group 1 and 1 patient in the
Group 2) due to ALP increases.

[180]

Fenofibrate
PPAR Phase 3

117 PBC treatment-naive patients.
Treatments:
Group 1: UDCA; Group 2: UDCA plus fenofibrate
200 mg/d

Biochemical response percentage, according
to the Barcelona criterion at 12 months.

In Group 2, 81.4% of patients achieved the
primary outcome and 64.3% in Group 1
achieved the primary outcome (p < 0.05).
There was no difference between the 2 groups
in liver fibrosis and biochemical markers.

[181]

Rituximab
Anti-CD20 Phase 3

57 aged 18-years-old or older patients with PBC and
moderate to severe fatigue.
Treatments:
Group 1: rituximab 1000 mg/b.d.; Group 2: placebo

Primary
Measurement of fatigue severity using the
PBC-40 fatigue domain at 3 months.

Primary
Improvement in fatigue score was seen in both
groups
No adverse events were registered.

[182]

OP-724
CREB-binding
protein/β-catenin inhibitor

Phase 1

7 PBC patients median aged 68 years.
Treatments: Group 1: OP-724 280 mg/m2/4 h/tw
Group 2: OP-724 280 mg/m2/4 h/tw
Only five of these completed twelve cycles of
treatment. Consequently, the recommended dosage
was determined to be 280 mg/m2/4 h.

Primary
Assessment of the incidence of serious
adverse events (SAEs).
Secondary
Measurement of the improvement in the
modified Histological Activity Index
(mHAI) score.

Primary
SAEs did not occur.
Secondary
The most common AEs were abdominal
discomfort (29%) and abdominal hepatic
function (43%).
Histological improvements in the fibrosis stage
(2/5 40%) and mHAI score (3/5 60%).

[183]

Setanaxib
NADP oxidase 1/4
inhibitor

Phase 2

111 patients with ≥6 months of UDCA treatment.
Treatments:
Group 1: oral setanaxib 400 mg/d (n = 38)
Group 2 oral setanaxib 400 mg/b.d. (n = 36)
Group 3: placebo (n = 37).

Primary
Assessment of percentage change from
baseline in GGT at Week 24.

Primary
104/111 patients completed Week 24.
The primary end point was not met: change in
GGT to Week 24 was −4.9% for Group 1
patients, −19.0% for Group 2 and −8.4% for
placebo.

[184]

Ursodeoxycholic acid
(UDCA)

73 PBC patients with poor response or who did not
respond completely to a standard dose of UDCA.
Treatments:
Group 1: standard dosage of 13–15 mg/kg/d
Group 2: higher dosage of 18–22 mg/kg/d.

Primary
Evaluation of the rate of response at
6 months and drug side effects.
Secondary
Evaluation of the rate of response at
12 months and drug side effects.

Primary
At 6 months, Group 2 patients achieved a
response rate of 59.4% compared with 36.1% in
the first group (p < 0.05)
Secondary
At 12 months, the Group 2 achieved a response
rate of 59.4% compared with 47.2% in the
Group 1 (p > 0.05).

[185]



Cells 2024, 13, 1580 16 of 31

Table 3. Cont.

Treatment Clinical Trial Treatments End Points Results Ref.

Budesonide/UDCA Phase 3

62 PBC patients after at least 6 months of UDCA
terapy and hepatic inflammatory activity as assessed
by Ishak score, and ALP >1.5 × ULN.
Treatments:
Group 1: budesonide 9 mg/d plus
UDCA 12–16 mg/kg/d
Group 2: placebo plus UDCA 12–16 mg/kg/d.

Primary
Assessment of an improvement in liver
histology with respect to inflammation and
no progression of fibrosis.
Secondary
Measurement of changes in biochemical
markers of liver injury.

Primary
Comparing patients with paired biopsies only
(n = 43), the primary histologic endpoint was
not met (p > 0.05).
Secondary
Group 1 patients had a reduction of mean ALP
and 35% of them achieved normalization of
ALP (placebo 9%) (p < 0.05). Serious adverse
events occurred in 10 patients receiving
budesonide and 7 patients receiving placebo.

[186]

A4250
IBAT inhibitor Phase 2

9 patients with PBC, after a two-week whash out of
bile acid sequestrant, treatment of cholestatic pruritus.
Treatments:
Group 1: A4250 0.75 mg (n = 4);
Group 2: A2450 1.5 mg (n = 5).

After 4 weeks, evaluation of the effect of
A4250 on pruritus, assessed by Visual
Analogue Scale (VAS), 5D-itch scale and the
pruritus module of the PBC40
questionnaire.

All 9 patients had an improvement in pruritus,
until none or mild according to 5D-itch, VAS
and PBC40 pruritus.
Study was not completed due to abdominal
pain (5/5) and diarrhoea (4/5).

[187]

Bezafibrate
PPAR Phase 2

74 cholestatic patients (24 PBC, 44 PSC, 2 SSC) with
moderate to severe pruritus (≥5 of 10 on VAS).
Treatments:
Group 1: benzafibrate 400 mg/d
Group 2: placebo.

Primary
After 21 days, reduction of pruritus ≥ 50%
in Group 1 patients.
Secondary
Evaluation of pruritus changes through
VAS and 5D-Itch questionnaire.
Evaluation of biochemical features changes.

70/74 patients completed the trial
Primary
Group 1 patients had a reduction of 45%
(41% PSC, 55% PBC) and Group 2 of 11% to
≥50% reduction of severe or moderate pruritus
(p < 0.05).
Secondary
Group 1 exhibited a reduction of morning
(p < 0.05 vs. placebo) and evening (p < 0.05)
VAS and improved the validated 5D-Itch
questionnaire (p < 0.05 vs. placebo) compared
with Group 2 patients.

[188]

Rifampin/sertraline
PXR/SSRIs Phase

36 patients with PSC and PBC. Treatments:
Group 1: sertraline 100 mg/d (n = 18); Group 2:
rifampin 300 mg/d (n = 18).

End points: pruritus severity, ALT, AST,
ALP and total bilirubin at baseline and after
4 weeks of treatment.

No difference between sertraline and rifampin
on pruritus improvement and total bilirubin. [189]
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8. Ongoing Clinical Trial PBC 2018–2023

In addition to the studies shown in Table 3, the consultations of the clinical trials
website (https://clinicaltrials.gov/) provide a number of ongoing additional studies in
patients with PBC. Some of these trials are listed in Table 4.

https://clinicaltrials.gov/
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Table 4. Registered clinical trials.

Treatment Clinical Trial Treatments End Points

Benzafibrate (BZF)
PPARα

NCT04514965
Phase N.A.

PBC patients with inadequate response to UDCA.
Group 1: BZF, dosages not given

Primary
Assessment of sCD163 macrophages marker and other fibrosis markers levels,
liver stiffness and bile acid composition from 4 weeks up to 3 years
Secondary
assessment of itching degree from 4 weeks up to 3 years

Benzafibrate (BZF)
PPARα

NCT04751188
Phase III

PBC patients with inadequate response to UDCA.
Group 1: Benzafibrate 200 mg/b.d. + UDCA 13–15 mg/kg/d
Group 2: Placebo Comparator: Placebo b.d. + UDCA 13–15 mg/kg/d

Primary
Evaluation of biochemical response as the reduction of ALP ≤ 1.5-fold the upper
limit of normal (ULN), AST ≤ 1.5-fold the ULN and Bilirubin ≤ 1 mg/dL at
6 months
Secondary
Assessment of quality of life and pruritus intensity using visual analogue scales
after 6 months

Fenofibrate PPARα NCT05749822
Phase II/III

PBC with compensated cirrhosis and inadequate biochemical response to
UDCA.
Group 1: Placebo Comparator: Placebo + UDCA 13–15 mg/kg/d
Group 2: Fenofibrate 200 mg/d + UDCA 13–15 mg/kg/d

Primary
Evaluation of serum ALP levels normalization at 48 weeks
Secondary
Evaluation of serum ALP levels normalization; changes in pruritus and fatigue;
onset of biological or clinical AEs (increased creatinine, blood urea nitrogen,
creatine kinase, AST, ALT) at 4, 12, 24, 36 and 48 weeks

Fenofibrate PPARα NCT05751967
Phase III

PBC patients with inadequate biochemical response to UDCA.
Group 1: Placebo Comparator: Placebo + UDCA 13–15 mg/kg/d
Group 2: Fenofibrate 200 mg/d + UDCA 13–15 mg/kg/d

Primary
Assessment of ALP and total bilirubin normalization at 48 weeks
Secondary
Assessment of ALP and total bilirubin normalization; changes in fatigue, pruritus
and quality of life; drug-related adverse events onset; survival rates without liver
transplantation or liver decompensation, pruritus, portal hypertension and
others at 4, 12, 24, 36 and 48 weeks

Fenofibrate PPARα NCT06174402
Phase II/III

PBC patients.
Group 1: Fenofibrate 200 mg/d + UDCA 13–15 mg/kg/d
Group 2: Placebo Comparator: Placebo + UDCA 13–15 mg/kg/d

Primary
Assessment of ALP levels normalization at 48 weeks
Secondary
Assessment of ALP levels normalization; changes in pruritus and fatigue
(VAS scale); biological or clinical adverse events onset (creatinine, AST and ALT
increase); hepatic impairment development at 4, 12, 24, 36 and 48 weeks

Obeticholic Acid (OCA)
Benzafibrate (BZF)

NCT05239468
Phase II

PBC patients.
Group 1: Double Blind phase treatment A:
BZF 100 mg/d + 1 OCA Placebo + 1 BZF Placebo
Group 2: Double Blind phase treatment B: BZF 400 mg/d + 1 OCA
Group 3: Double Blind phase treatment C:
OCA 5 mg/d + BZF 100 mg/d + 1 BZF Placebo
Group 4: Double Blind phase treatment D: OCA 5 mg/d + BZF 400 mg/d
Group 5: Long Term Safety Extension (LTSE) Phase treatment D:
OCA 5 mg/d + BZF 400 mg/d

Primary
Evaluation of ALP levels change at 2, 4, 6, 8, 10 and 12 weeks
Secondary
Assessment of percentage changes in ALP levels; AST, ALT, GGT, total and
conjugated bilirubin and lipid pool normalization; changes in bile acids plasma
values at 2, 4, 6, 8, 10 and 12 weeks
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Table 4. Cont.

Treatment Clinical Trial Treatments End Points

Obeticholic Acid (OCA)
Benzafibrate (BZF)

NCT04594694
Phase II

PBC patients.
Group 1: Treatment A: BZF 200 mg/d Immediate Release
(IR) + 1 OCA Placebo + 1 BZF 400 mg/d Placebo
Group 2: Treatment B:
BZF 400 mg/d SR + 1 BZF 200 mg/d Placebo + 1 OCA Placebo
Group 3: Treatment C:
OCA 5 to 10 mg/d + BZF 200 mg/d IR + BZF 400 mg/d Placebo
Group 4: Treatment D:
OCA 5 mg to 10 mg + BZF 400 mg/d SR + BZF 200 mg/d Placebo
Group 5: LTSE phase, OCA + BZF: participants will continue the original
treatment assigned but OCA and BZF dose may be optimized based on
safety and efficacy

Primary
Evaluation of ALP levels at day 1 and 4, 8 and 12 weeks
Secondary
Percentage assessment of ALP, AST, ALT, GGT normalization at day 1 and 4, 8
and 12 weeks; change in total and conjugated bilirubin, lipid and bile acids pool
at day 1 and 4, 8 and 12 weeks

Obeticholic Acid (OCA) NCT05450887
Phase III

PBC patients.
Group 1: OCA 5 to 10 mg/d + UDCA 13–15 mg/kg/d if already receiving
UDCA; if the subjects could not tolerate UDCA, they were not treated with
UDCA
Group 2: Placebo Comparator + UDCA 13–15 mg/kg/d if already receiving
UDCA; if the subjects could not tolerate UDCA, they were not treated with
UDCA

Primary
Evaluation of ALP ≤ 1.67-fold the ULN, ALP decrease ≥ 15% from baseline and
total bilirubin ≤ ULN up to 12 months
Secondary
Assessment of absolute and percentage change of ALP, AST, ALT, GGT, total and
direct bilirubin; quality of life evaluation via PBC-40 score percentage change at 3,
6, 9 and 12 months

Volixibat
ASBT inhibitor

NCT05050136
Phase II

Group 1: Volixibat 20 mg/b.d.
Group 2: Volixibat 80 mg/b.d.
Group 3: Placebo

Primary
Assessment of mean change in the daily itch scores using the Adult Itch Reported
Outcome (Adult ItchRO) questionnaire up to week 28
Secondary
Evaluation of ALP, total bilirubin, serum bile acids levels change; adverse events
incidents; assessment of quality of life (PBC-40 score), fatigue and sleep
disturbance (PROMIS®) up to 28 weeks

Linerixibat
IBAT imnhibitor

NCT04950127
Phase III

PBC patients.
Group 1: Linerixibat, dosages not given
Group 2: Linerixibat followed by Placebo, dosages not given
Group 3: Placebo
Group 4: Placebo followed by Linerixibat, dosages not given

Primary
Assessment of change from baseline in Monthly Itch Scores using Numerical
Rating Scale (NRS) over 24 weeks
Secondary
Evaluation of changes in Mean Worst Daily Itch score at Week 2. Changes in
PBC-40 score, PGI-S, PGI-C and Monthly Sleep Score, measured by NRS;
reduction in the Monthly Itch Score; changes in ALP and bilirubin levels up to
24 weeks
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Table 4. Cont.

Treatment Clinical Trial Treatments End Points

Linerixibat
Ileal Bile Acid Transporter
Inhibitor (IBAT)

NCT04167358
Phase III

Patients with PBC
Group 1: Linerixibat in participant who previously participated in the
Phase 2 studies (BAT117213 and 201000 GLIMMER [Group 1]) and Phase 3
study (212620 GLISTEN [Group 2]), dosages not given

Primary
Assessment of AEs and SAEs onset up to 66 months
Secondary
Changes in PBC-40 score, in health-related quality of life (EQ-5D-3L score) and
self-related health (EQ VAS score); assessment of depression intensity (BDI-II
score); changes in hematology, biochemistry and coagulation parameters up to
65 months. Changes in pruritus (MIS-NRS), fatigue (MFS-NRS) and sleep
(MSS-NRS) up to week 52 of continuous treatment

Obeticholic Acid (OCA)
UDCA

NCT04956328
Phase III

PBC patients with inadequate response to UDCA.
Group 1: OCA 5–10 mg/d + UDCA (continue pre-study dose) for 24 weeks
and then titrating up to 10 mg based on tolerability and response
Group 2: Placebo + UDCA (continue pre-study dose) for 48 weeks

Primary
Percentage of patients with ALP < 1.67-fold the ULN, ALP decreased at least 15%
and total bilirubin ≤ ULN up to 48 weeks
Secondary
Percentage of patients with ALP < 1.67-fold the ULN, ALP decreased at least 15%
and total bilirubin ≤ ULN at 4, 12, 24 and 36 weeks. Assessment of rate of change
of AST, ALT, ALP, GGT, total bile acids and total bilirubin ad liver function
indicators up to 48 weeks

UDCA
Total Glucosides of Peony
(TGP) Anti-inflammatory and
immune regulatory effects

NCT04618575
Phase IV

PBC patients with Autoimmune Hepatitis (AIH) 1.
Group 1: UDCA + TGP, dosages not given
Group 2: UDCA only, dosages not given

Primary
Percentage of patients in biochemical remission defined as normalization of
serum ALT and IgG levels after 24 weeks and up to 12 months
Secondary
Assessment of patients in partial remission (AST/ALT > 1-fold the ULN and
<2-fold the ULN), with minimal response (AST/ALT still > 2-fold the ULN) or
with treatment failure; drug-related side-effects and clinical symptoms (jaundice,
fatigue, itching) onset; changes in the proportion of blood immune cells
(% of T cells, DCs, Treg, NK.) up to 12 months

UDCA
Low-Dose Glucocorticoid
(GC)
Decrease in symptoms severity

NCT04617561
Phase IV

PBC patients with Autoimmune Hepatitis (AIH) 2.
Group 1: UDCA 13–15 mg/kg/d
Group 2: UDCA 13–15 mg/kg/d + Methylprednisolone 12 mg/d in
induction phase (2–4 mg/d in maintenance phase)

Primary
Percentage of patients in biochemical remission defined as normalization of
serum ALT and IgG levels up to 12 months
Secondary
Assessment of patients in partial remission (AST/ALT > 1-fold the ULN and
<2-fold the ULN), with minimal response (AST/ALT still > 2-fold the ULN) or
with treatment failure up to 12 months. Drug-related side-effects onset and
changes in the proportion of blood immune cells (% of T cells, DCs, Treg, NK.) at
12 months. Assessment of AST, ALT and IgG serum levels at 3, 6 and 12 months
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Table 4. Cont.

Treatment Clinical Trial Treatments End Points

Saroglitazar Magnesium
PPARα/γ

NCT05133336
Phase III

PBC patients.
Group 1: Saroglitazar Magnesium 2 mg/d
Group 2: Saroglitazar Magnesium 1 mg/d
Group 3: Placebo

Primary
Assessment of number of subjects with biochemical response as ALP < 1.67-fold
the ULN, ALP decrease ≥ 15% from baseline and total bilirubin ≤ ULN (or direct
bilirubin ≤ ULN in patients with known Gilbert’s Syndrome) up to 52 weeks
Secondary
Assessment of number of subjects with biochemical response as ALP < 1.67-fold
the ULN, ALP decrease ≥ 15% from baseline and total bilirubin ≤ ULN (or direct
bilirubin ≤ ULN in patients with known Gilbert’s Syndrome) at 4, 8, 16 and
24 weeks. Percentage improvement or normalization in ALP values;
improvement in liver stiffness measurement of at least 25% via FibroScan®;
changes in liver enzyme (AST, ALT, GGT, total bilirubin and albumin) and lipid
(TG, LDL-C, HDL-C, total cholesterol) parameters; changes in serum bile acids at
24 and 52 weeks. Assessment of changes in health-related quality of life
(PBC-40 score) and itching (5D scale, PGI-C scale, PGT-B scale, PGI-Worst Itch
Severity scale) at 4, 8, 16, 24 and 52 weeks. Assessment of treatment-related AEs,
SAEs, AEs of special interest (e.g., DILI) onset; significant changes in clinical
laboratory test results (hematology, biochemistry, urinalysis), in vital signs, in
ECG and in body weight at 52 weeks

Setanaxib
NADP oxidase (NOX) 1/4
inhibitor

NCT05014672
Phase III

PBC patients.
Group 1: Setanaxib 1200 mg/day. Eventual escalation to 1600 mg/day will
be determined for the extension period
Group 2: Setanaxib 1600 mg/d. Eventual reduction to 1200 mg/day mg/day
will be determined for the extension period
Group 3: Placebo. During the extension period, participants will switch from
placebo to Setanaxib at a dose of either 1200 or 1600 mg/d depending on
interim analysis outcome

Primary
Assessment of biochemical response as ALP < 1.67-fold the ULN,
ALP decrease ≥ 15% from baseline and total bilirubin ≤ ULN up to 52 weeks
Secondary
Assessment of changes in fatigue (PROMIS®, PBC-40 score, PGI-S, PGI-C), liver
stiffness (FibroScan®), itching (WI-NRS, PBC-40, PGI-S, PGI-C); TEAEs and
AESIs onset up to 52 weeks

HTD1801 (BUDCA)
Hypolipidemic agent

NCT04604652
Phase II

PBC patients with inadequate response to standard UDCA therapy.
Group 1: HTD1801 (BUDCA) 2000 mg/d

Primary
Evaluation of changes in serum ALP at 12 weeks
Secondary
Assessment of serum bilirubin, GGT, total cholesterol, LDL-C, tryglicerides and
inflammatory markers (fibrinogen, CRP, haptoglobin, IgG) changes; itching
variations (Pruritus VAS), AEs onset as well as changes in physical examinations,
vital signs and clinical laboratory values at 12 weeks

TQA3526
FXR

NCT04278820
Phase II

PBC patients.
Group 1: Climbing Group: TQ3526 drug or Placebo once daily,
dosages not given
Group 2: Titration Group: TQ3526 drug or Placebo once daily,
dosages not given
Group 3: Extension Group: TQ3526 drug or Placebo once daily,
dosages not given

Primary
Evaluation of ALP levels reduction up to 24 weeks
Secondary
Assessment of ALP, ALT, AST, GGT, total bilirubin, LDL-C, HDL-C, TG and TC at
2, 4, 8, 12, 14, 16, 20 and 24 weeks. Assessment of Cmax and Tmax. Evaluation of
TEAEs and SAEs onset up to 24 weeks
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Table 4. Cont.

Treatment Clinical Trial Treatments End Points

ASC42
FXR

NCT05190523
Phase II

PBC patients.
Group 1: ASC42 5 mg/d
Group 2: ASC42 10 mg/d
Group 3: ASC42 15 mg/d
Group 4: Placebo

Primary
Evaluation of percentage changes in ALP levels at day 85
Secondary
Evaluation of percentage and absolute changes of ALP, GGT, ALT, AST; incidence
of TEAEs, SAEs and AESI onset at day 15, 29, 57 and 85

EP547
MAS related GPR family
member X4 (MrgprX4)

NCT05525520
Phase II

PBC or PSC patients with cholestatic pruritus.
Group 1: EP547 100 mg/d
Group 2: Placebo

Primary
Evaluation of changes in pruritus (WI-NRS) up to 6 weeks
Secondary
Evaluation of changes and reduction in pruritus (5D-Itch scale, PGI-C, PGI-S);
assessment of AEs onset; measurement of Cmax up to 6 weeks

Probiotics
(Micro V Probiotics)

NCT03521297
Phase II

PBC patients with inadequate response to UDCA.
Group 1: Placebo + SOC UDCA 13–15 mg/kg/d
Group 2: Oral administration three times per day of Probiotics + SOC UDCA
13–15 mg/kg/d

Assessment of percentage of patients with biochemical response as serum ALP or
GGT decreased by 20% from baseline after 6 months

Mycophenolate Mofetil
IMPDH inhibitor
Cyclosporin A
Calcineurin
inhibitor/immunosuppressive
agent

NCT04376528
Phase IV

PBC patients with PBC-AIH overlap syndrome and nonresponsive to UDCA
standard therapy.
Group 1: Cyclosporin A + UDCA SOC, dosages not given
Group 2: Mycophenolate Mofetil + UDCA SOC, dosages not given

Primary
Evaluation of percentage of patients in biochemical remission as normalization of
serum ALT and IgG levels after 24 weeks and up to 6 months
Secondary
Evaluation of partial remission (AST or ALT serum levels > ULN and <2-fold
ULN), minimal response (AST or ALT still > 2-fold ULN) or treatment failure;
assessment of changes in liver stiffness (shear-wave elastography); drug-related
side effects onset up to 6 months

CNP-104
Immunomodulating agent

NCT05104853
Phase I/II

PBC patients non-responsive to UDCA and/or OCA.
Group 1: 200 mL intravenous infusion of CNP-104 4 mg/kg on
day 1 and day 8
Group 2: 200 mL intravenous infusion of CNP-104 8 mg/kg on
day 1 and day 8
Group 3: Placebo Comparator

Primary
Assessment of AEs and SAEs onset; laboratory tests (hematology, serum
chemistry, coagulation panel, urinalysis) through study completion, an average
of 720 days. Assessment of serum cytokines (TNFα, IL-4, IL-6, IL-10, IL-1β,
MCP-1, IFN-γ) for an average of 15 days. Evaluation of ALP changes at day 60
Secondary
Evaluation of changes in AMA and liver fibrosis (FibroScan®) at day 90 and 720.
Changes in modified PBC-40 score, Weekly Mean Itch Score, liver enzyme levels
(albumin, bilirubin, AST, ALT, GGT) and antigen-specific CD4+/CD8+ T cells
asset at day 60 and 720. Assessment of ALP levels at day 720.
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9. Conclusions

UDCA at a dose of 15 mg/kg (or higher) remains the cornerstone of treatment for
PBC. In case of an incomplete response or intolerance, which is uncommon, a second-line
therapy could be initiated with a choice between OCA, elafibranor and seladelpar [179].
An incomplete response is currently defined as an ALP level > 1.6× ULN or abnormal
levels of bilirubin when a correct dose of UDCA (at least 15 mg/kg) is given for 12 months.
It is expected that a combination of UDCA with novel second-line drugs or a combination
of novel therapies with a more robust immune-mediated effect will make it possible to
reach a complete normalization of markers of cholestasis including ALP. Whether this will
indicate a disease cure remains to be determined.

In recent years OCA, a FXR agonist, first approved in 2016 as a second-line therapy
for PBC, has shown efficacy in reducing ALP, but side effects associated with this agent
seem to preclude its further use [190], and in June 2024, the EMA recommended revoking
conditional marketing authorization for OCA in the EU (https://www.ema.europa.eu/en/
news/ema-recommends-revoking-conditional-marketing-authorisation-ocaliva accessed
on 29 August 2024). The EMA’s human medicines committee (CHMP) has recommended
that the marketing authorization for OCA, “be revoked, because its benefits are no longer
considered to outweigh its risks”. More specifically, at the time of its conditional marketing
authorization in 2016, OCA was shown to reduce the ALP and bilirubin in patients with
PBC, and this was considered indicative of an improvement in the condition of the liver.
However, the clinical benefits of OCA needed to be demonstrated in further studies, which
were requested by the EMA as part of the conditions for granting marketing authorization
to the medicine. Study 747-302, a Phase 4, Double Blind, Randomized, Placebo Controlled,
Multicenter Study Evaluating the Effect of OCA on Clinical Outcomes in Subjects with Pri-
mary Biliary Cholangitis (COBALT Study) was a randomized clinical trial aimed at confirm-
ing the clinical benefits and safety of OCA in PBC patients that were resistant or intolerant
to UDCA. The conclusions of the panel were that: “after reviewing the available evidence,
the committee concluded that the clinical benefits of OCA have not been confirmed”. In par-
ticular, study 747-302 failed to show that OCA was more effective than a placebo in terms
of the number of patients whose disease worsened or who died, both in the overall popula-
tion and in a group of patients with early stage PBC (https://www.ema.europa.eu/en/
news/ema-recommends-revoking-conditional-marketing-authorisation-ocaliva accessed
on 29 August 2024).

Other FXR agonists are currently under evaluation, including cilofexor and tropifexor,
but these agents also seem to induce pruritus. In Europe, the pan-PPAR agonist bezafibrate
is frequently used off label as a second-line therapy for PBC [191]. The recent approval of
elafibranor and seladelpar, however, opens novel perspectives for a more individualized
approach using a personalized combination of drugs based on whether the patient is in
an early disease stage, whether there is fibrosis or if the patient suffers from pruritus or
severe fatigue.
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