Influence of Additional White, Red and Far-Red Light on Growth, Secondary Metabolites and Expression of Hormone Signaling Genes in Scots Pine under Sunlight
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Morphological Analyses
2.3. Anatomical Studies
2.4. Definition of Transpiration and Fluorescence Chlorophyll
2.5. Phenolic Compounds
2.6. Analysis of Total Terpenoids
2.7. RNA Extraction and RT-PCR
2.8. Statistics
3. Results
3.1. Morphometric Indicators
3.2. Anatomical Studies
3.3. Total Phenolic Compounds, Low-Molecular-Weight Antioxidants, Flavonoids, Catechins, Proanthocyanidins, Terpenoids and Pigments Were Identified
3.4. Fluorescent Parameters and Stomatal Conductance
3.5. Gene Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pashkovskiy, P.; Ivanov, Y.; Ivanova, A.; Kreslavski, V.D.; Vereshchagin, M.; Tatarkina, P.; Kuznetsov, V.V.; Allakhverdiev, S.I. Influence of Light of Different Spectral Compositions on Growth Parameters, Photosynthetic Pigment Contents and Gene Expression in Scots Pine Plantlets. Int. J. Mol. Sci. 2023, 24, 2063. [Google Scholar] [CrossRef] [PubMed]
- Pashkovskiy, P.; Kreslavski, V.D.; Ivanov, Y.; Ivanova, A.; Kartashov, A.; Shmarev, A.; Strokina, V.; Kuznetsov, V.V.; Allakhverdiev, S.I. Influence of Light of Different Spectral Compositions on the Growth, Photosynthesis, and Expression of Light-Dependent Genes of Scots Pine Seedlings. Cells 2021, 10, 3284. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.; Arkebauer, T.; Solovchenko, A.; Nguy-Robertson, A.; Inoue, Y. An Insight into Spectral Composition of Light Available for Photosynthesis via Remotely Assessed Absorption Coefficient at Leaf and Canopy Levels. Photosynth. Res. 2022, 151, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Zhen, S.; Bugbee, B. Substituting Far-Red for Traditionally Defined Photosynthetic Photons Results in Equal Canopy Quantum Yield for CO2 Fixation and Increased Photon Capture during Long-Term Studies: Implications for Re-Defining PAR. Front. Plant Sci. 2020, 11, 581156. [Google Scholar] [CrossRef]
- Chiang, C.; Olsen, J.E.; Basler, D.; Bånkestad, D.; Hoch, G. Latitude and Weather Influences on Sun Light Quality and the Relationship to Tree Growth. Forests 2019, 10, 610. [Google Scholar] [CrossRef]
- Gallemí, M.; Martínez-García, J.F. bZIP and bHLH Family Members Integrate Transcriptional Responses to Light. In Plant Transcription Factors; Elsevier: Amsterdam, The Netherlands, 2016; pp. 329–342. [Google Scholar]
- Wei, Y.; Wang, S.; Yu, D. The Role of Light Quality in Regulating Early Seedling Development. Plants 2023, 12, 2746. [Google Scholar] [CrossRef]
- Ponnu, J.; Hoecker, U. Signaling Mechanisms by Arabidopsis Cryptochromes. Front. Plant Sci. 2022, 13, 844714. [Google Scholar] [CrossRef]
- Zhang, Z.; Ji, R.; Li, H.; Zhao, T.; Liu, J.; Lin, C.; Liu, B. CONSTANS-LIKE 7 (COL7) Is Involved in Phytochrome B (phyB)-Mediated Light-Quality Regulation of Auxin Homeostasis. Mol. Plant 2014, 7, 1429–1440. [Google Scholar] [CrossRef]
- Liu, Y.; Jafari, F.; Wang, H. Integration of Light and Hormone Signaling Pathways in the Regulation of Plant Shade Avoidance Syndrome. Abiotech 2021, 2, 131–145. [Google Scholar] [CrossRef]
- Yuan, C.; Ahmad, S.; Cheng, T.; Wang, J.; Pan, H.; Zhao, L.; Zhang, Q. Red to Far-Red Light Ratio Modulates Hormonal and Genetic Control of Axillary Bud Outgrowth in Chrysanthemum (Dendranthema Grandiflorum ‘Jinba’). Int. J. Mol. Sci. 2018, 19, 1590. [Google Scholar] [CrossRef]
- Li, Z.; He, Y. Roles of Brassinosteroids in Plant Reproduction. Int. J. Mol. Sci. 2020, 21, 872. [Google Scholar] [CrossRef]
- Moreno, J.E.; Tao, Y.; Chory, J.; Ballaré, C.L. Ecological Modulation of Plant Defense via Phytochrome Control of Jasmonate Sensitivity. Proc. Natl. Acad. Sci. USA. 2009, 106, 4935–4940. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Li, L. Hormonal Regulation in Shade Avoidance. Front. Plant Sci. 2017, 8, 1527. [Google Scholar] [CrossRef] [PubMed]
- Reichel, P.; Munz, S.; Hartung, J.; Kotiranta, S.; Graeff-Hönninger, S. Impacts of Different Light Spectra on CBD, CBDA and Terpene Concentrations in Relation to the Flower Positions of Different Cannabis Sativa L. Strains. Plants 2022, 11, 2695. [Google Scholar] [CrossRef] [PubMed]
- Sankhuan, D.; Niramolyanun, G.; Kangwanrangsan, N.; Nakano, M.; Supaibulwatana, K. Variation in Terpenoids in Leaves of Artemisia annua Grown under Different LED Spectra Resulting in Diverse Antimalarial Activities against Plasmodium falciparum. BMC Plant Biol. 2022, 22, 128. [Google Scholar] [CrossRef] [PubMed]
- Pashkovskiy, P.; Kreslavski, V.; Khudyakova, A.; Ashikhmin, A.; Bolshakov, M.; Kozhevnikova, A.; Kosobryukhov, A.; Kuznetsov, V.V.; Allakhverdiev, S.I. Effect of High-Intensity Light on the Photosynthetic Activity, Pigment Content and Expression of Light-Dependent Genes of Photomorphogenetic Solanum lycopersicum hp Mutants. Plant Physiol. Biochem. 2021, 167, 91–100. [Google Scholar] [CrossRef]
- Boncan, D.A.T.; Tsang, S.S.; Li, C.; Lee, I.H.; Lam, H.-M.; Chan, T.-F.; Hui, J.H. Terpenes and Terpenoids in Plants: Interactions with Environment and Insects. Int. J. Mol. Sci. 2020, 21, 7382. [Google Scholar] [CrossRef]
- Pérez-Llorca, M.; Pollmann, S.; Müller, M. Ethylene and Jasmonates Signaling Network Mediating Secondary Metabolites under Abiotic Stress. Int. J. Mol. Sci. 2023, 24, 5990. [Google Scholar] [CrossRef]
- Liao, K.; Peng, Y.-J.; Yuan, L.-B.; Dai, Y.-S.; Chen, Q.-F.; Yu, L.-J.; Bai, M.-Y.; Zhang, W.-Q.; Xie, L.-J.; Xiao, S. Brassinosteroids Antagonize Jasmonate-Activated Plant Defense Responses through BRI1-EMS-SUPPRESSOR1 (BES1). Plant Physiol. 2020, 182, 1066–1082. [Google Scholar] [CrossRef]
- Akula, R.; Ravishankar, G.A. Influence of Abiotic Stress Signals on Secondary Metabolites in Plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef]
- Pashkovskiy, P.; Ivanov, Y.; Ivanova, A.; Kartashov, A.; Zlobin, I.; Lyubimov, V.; Ashikhmin, A.; Bolshakov, M.; Kreslavski, V.; Kuznetsov, V. Effect of Light of Different Spectral Compositions on Pro/Antioxidant Status, Content of Some Pigments and Secondary Metabolites and Expression of Related Genes in Scots Pine. Plants 2023, 12, 2552. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Li, G. Auxin-Dependent Cell Elongation during the Shade Avoidance Response. Front. Plant Sci. 2019, 10, 914. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, T.; Feder, N.; McCully, M.E. Polychromatic Staining of Plant Cell Walls by Toluidine Blue O. Protoplasma 1964, 59, 368–373. [Google Scholar] [CrossRef]
- Zlobin, I.E.; Kartashov, A.V.; Ivanov, Y.V.; Ivanova, A.I.; Kuznetsov, V.V. Stem Notching Decreases Stem Hydraulic Conductance but Does Not Influence Drought Impacts and Post-drought Recovery in Scots Pine and Norway Spruce. Physiol. Plant. 2022, 174, e13813. [Google Scholar] [CrossRef] [PubMed]
- Klughammer, C.; Schreiber, U. Complementary PS II Quantum Yields Calculated from Simple Fluorescence Parameters Measured by PAM Fluorometry and the Saturation Pulse Method. PAM Appl. Notes 2008, 1, 201–247. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Kim, D.-O.; Chun, O.K.; Kim, Y.J.; Moon, H.-Y.; Lee, C.Y. Quantification of Polyphenolics and Their Antioxidant Capacity in Fresh Plums. J. Agric. Food Chem. 2003, 51, 6509–6515. [Google Scholar] [CrossRef]
- Sun, B.; Ricardo-da-Silva, J.M.; Spranger, I. Critical Factors of Vanillin Assay for Catechins and Proanthocyanidins. J. Agric. Food Chem. 1998, 46, 4267–4274. [Google Scholar] [CrossRef]
- Varela, M.C.; Arslan, I.; Reginato, M.A.; Cenzano, A.M.; Luna, M.V. Phenolic Compounds as Indicators of Drought Resistance in Shrubs from Patagonian Shrublands (Argentina). Plant Physiol. Biochem. 2016, 104, 81–91. [Google Scholar] [CrossRef]
- Cacho, J.; Ferreira, V. Spectrophotometric Determination of Total Monoterpenols at Low Concentrations. Analyst 1990, 115, 657–661. [Google Scholar] [CrossRef]
- Kolosova, N.; Miller, B.; Ralph, S.; Ellis, B.E.; Douglas, C.; Ritland, K.; Bohlmann, J. Isolation of High-Quality RNA from Gymnosperm and Angiosperm Trees. BioTechniques 2004, 36, 821–824. [Google Scholar] [CrossRef] [PubMed]
- Pashkovskiy, P.P.; Vankova, R.; Zlobin, I.E.; Dobrev, P.; Ivanov, Y.V.; Kartashov, A.V.; Kuznetsov, V.V. Comparative Analysis of Abscisic Acid Levels and Expression of Abscisic Acid-Related Genes in Scots Pine and Norway Spruce Seedlings under Water Deficit. Plant Physiol. Biochem. 2019, 140, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Demotes-Mainard, S.; Péron, T.; Corot, A.; Bertheloot, J.; Le Gourrierec, J.; Pelleschi-Travier, S.; Crespel, L.; Morel, P.; Huché-Thélier, L.; Boumaza, R. Plant Responses to Red and Far-Red Lights, Applications in Horticulture. Environ. Exp. Bot. 2016, 121, 4–21. [Google Scholar] [CrossRef]
- Fernbach, E.; Mohr, H. Coaction of Blue/Ultraviolet-A Light and Light Absorbed by Phytochrome in Controlling Growth of Pine (Pinus Sylestris L.) Seedlings. Planta 1990, 180, 212–216. [Google Scholar] [CrossRef] [PubMed]
- OuYang, F.; Ou, Y.; Zhu, T.; Ma, J.; An, S.; Zhao, J.; Wang, J.; Kong, L.; Zhang, H.; Tigabu, M. Growth and Physiological Responses of Norway Spruce (Picea Abies (L.) H. Karst) Supplemented with Monochromatic Red, Blue and Far-Red Light. Forests 2021, 12, 164. [Google Scholar] [CrossRef]
- Vuosku, J.; Martz, F.; Hallikainen, V.; Rautio, P. Changing Winter Climate and Snow Conditions Induce Various Transcriptional Stress Responses in Scots Pine Seedlings. Front. Plant Sci. 2022, 13, 1050903. [Google Scholar] [CrossRef]
- Hogewoning, S.W.; Trouwborst, G.; Maljaars, H.; Poorter, H.; van Ieperen, W.; Harbinson, J. Blue Light Dose–Responses of Leaf Photosynthesis, Morphology, and Chemical Composition of Cucumis Sativus Grown under Different Combinations of Red and Blue Light. J. Exp. Bot. 2010, 61, 3107–3117. [Google Scholar] [CrossRef]
- Kleine, T.; Kindgren, P.; Benedict, C.; Hendrickson, L.; Strand, A. Genome-Wide Gene Expression Analysis Reveals a Critical Role for CRYPTOCHROME1 in the Response of Arabidopsis to High Irradiance. Plant Physiol. 2007, 144, 1391–1406. [Google Scholar] [CrossRef]
- Kreslavski, V.D.; Khudyakova, A.Y.; Strokina, V.V.; Shirshikova, G.N.; Pashkovskiy, P.P.; Balakhnina, T.I.; Kosobryukhov, A.A.; Kuznetsov, V.V.; Allakhverdiev, S.I. Impact of High Irradiance and UV-B on the Photosynthetic Activity, pro-/Antioxidant Balance and Expression of Light-Activated Genes in Arabidopsis Thaliana Hy4 Mutants Grown under Blue Light. Plant Physiol. Biochem. 2021, 167, 153–162. [Google Scholar] [CrossRef]
- OuYang, F.; Mao, J.-F.; Wang, J.; Zhang, S.; Li, Y. Transcriptome Analysis Reveals That Red and Blue Light Regulate Growth and Phytohormone Metabolism in Norway Spruce [Picea Abies (L.) Karst.]. PLoS ONE 2015, 10, e0127896. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Zhou, Z.; Qin, H.; Tan, J.; Ding, G. Exogenous Brassinosteroid Facilitates Xylem Development in Pinus massoniana Seedlings. Int. J. Mol. Sci. 2021, 22, 7615. [Google Scholar] [CrossRef] [PubMed]
- Alallaq, S.; Ranjan, A.; Brunoni, F.; Novák, O.; Lakehal, A.; Bellini, C. Red Light Controls Adventitious Root Regeneration by Modulating Hormone Homeostasis in Picea abies Seedlings. Front. Plant Sci. 2020, 11, 586140. [Google Scholar] [CrossRef] [PubMed]
- Patra, B.; Schluttenhofer, C.; Wu, Y.; Pattanaik, S.; Yuan, L. Transcriptional Regulation of Secondary Metabolite Biosynthesis in Plants. Biochim. Biophys. Acta (BBA)-Gene Regul. Mech. 2013, 1829, 1236–1247. [Google Scholar] [CrossRef]
Current-Year Roots | Control | WL | RL | FRL | RL+FRL |
---|---|---|---|---|---|
TEAC, µmol Trolox/g FW | 98.8 ± 16.2 b | 91.7 ± 11.0 b | 113.7 ± 13.0 a | 90.5 ± 14.4 b | 101.5 ± 8.7 b |
GAE, mg/g FW | 5.05 ± 0.62 a | 4.97 ± 0.55 a | 5.85 ± 1.00 a | 4.82 ± 0.63 a | 5.31 ± 0.35 a |
Flavonoids, mg catechin/g FW | 5.25 ± 0.65 a | 5.29 ± 0.49 a | 6.07 ± 1.04 a | 5.09 ± 0.78 a | 5.48 ± 0.44 a |
Catechins + proanthocyanidins, mg catechin/g FW | 8.44 ± 1.33 b | 8.36 ± 1.16 b | 10.83 ± 1.23 a | 8.41 ± 1.42 b | 9.16 ± 0.76 b |
Proanthocyanidins, mg cyaniding/g FW | 2.02 ± 0.29 a | 2.25 ± 0.27 a | 2.64 ± 0.50 a | 2.18 ± 0.34 a | 2.38 ± 0.20 a |
Current-Year Needles | Control | WL | RL | FRL | RL+FRL |
---|---|---|---|---|---|
TEAC, µmol Trolox/g FW | 62.8 ± 10.9 b | 59.7 ± 4.5 b | 79.8 ± 7.3 a | 40.9 ± 2.6 b | 65.0 ± 7.2 b |
GAE, mg/g FW | 3.85 ± 0.82 a | 2.97 ± 0.30 a | 4.26 ± 0.93 a | 2.52 ± 0.41 a | 3.23 ± 0.27 a |
Flavonoids, mg catechin/g FW | 0.68 ± 0.08 a | 0.71 ± 0.08 a | 0.94 ± 0.20 a | 0.54 ± 0.08 a | 0.75 ± 0.09 a |
Catechins + proanthocyanidins, mg catechin/g FW | 0.83 ± 0.15 b | 2.06 ± 0.42 a | 2.91 ± 0.48 a | 0.70 ± 0.21 b | 2.44 ± 0.62 a |
Proanthocyanidins, mg cyaniding/g FW | 0.37 ± 0.14 b | 0.96 ± 0.16 a | 1.15 ± 0.18 a | 0.31 ± 0.13 b | 1.20 ± 0.28 a |
Terpenoids, mg/g DW | 6.98 ± 0.23 a | 6.98 ± 0.08 a | 6.24 ± 0.31 a | 6.74 ± 0.31 a | 6.62 ± 0.20 a |
Chl a, mg/g DW | 2.50 ± 0.06 a | 2.77 ± 0.17 a | 1.85 ± 0.17 b | 2.46 ± 0.05 a | 2.54 ± 0.21 a |
Chl b, mg/g DW | 1.14 ± 0.03 a | 1.23 ± 0.08 a | 0.81 ± 0.08 b | 1.23 ± 0.02 a | 1.19 ± 0.10 a |
Carotenoids, mg/g DW | 0.53 ± 0.01 a | 0.60 ± 0.03 a | 0.43 ± 0.03 b | 0.56 ± 0.01 a | 0.55 ± 0.04 a |
Chl a/Chl b | 2.20 ± 0.02 b | 2.27 ± 0.02 ab | 2.32 ± 0.04 a | 2.02 ± 0.03 c | 2.13 ± 0.01 b |
Carotenoid/chlorophyll a + b ratio | 0.147 ± 0.002 b | 0.151 ± 0.002 b | 0.164 ± 0.004 a | 0.151 ± 0.002 b | 0.148 ± 0.002 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pashkovskiy, P.; Vereshchagin, M.; Kartashov, A.; Ivanov, Y.; Ivanova, A.; Zlobin, I.; Abramova, A.; Ashikhmina, D.; Glushko, G.; Kreslavski, V.D.; et al. Influence of Additional White, Red and Far-Red Light on Growth, Secondary Metabolites and Expression of Hormone Signaling Genes in Scots Pine under Sunlight. Cells 2024, 13, 194. https://doi.org/10.3390/cells13020194
Pashkovskiy P, Vereshchagin M, Kartashov A, Ivanov Y, Ivanova A, Zlobin I, Abramova A, Ashikhmina D, Glushko G, Kreslavski VD, et al. Influence of Additional White, Red and Far-Red Light on Growth, Secondary Metabolites and Expression of Hormone Signaling Genes in Scots Pine under Sunlight. Cells. 2024; 13(2):194. https://doi.org/10.3390/cells13020194
Chicago/Turabian StylePashkovskiy, Pavel, Mikhail Vereshchagin, Alexander Kartashov, Yury Ivanov, Alexandra Ivanova, Ilya Zlobin, Anna Abramova, Darya Ashikhmina, Galina Glushko, Vladimir D. Kreslavski, and et al. 2024. "Influence of Additional White, Red and Far-Red Light on Growth, Secondary Metabolites and Expression of Hormone Signaling Genes in Scots Pine under Sunlight" Cells 13, no. 2: 194. https://doi.org/10.3390/cells13020194
APA StylePashkovskiy, P., Vereshchagin, M., Kartashov, A., Ivanov, Y., Ivanova, A., Zlobin, I., Abramova, A., Ashikhmina, D., Glushko, G., Kreslavski, V. D., & Kuznetsov, V. V. (2024). Influence of Additional White, Red and Far-Red Light on Growth, Secondary Metabolites and Expression of Hormone Signaling Genes in Scots Pine under Sunlight. Cells, 13(2), 194. https://doi.org/10.3390/cells13020194