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Abstract: Skin mast cells (MCs) mediate acute allergic reactions in the cutaneous environment and
contribute to chronic dermatoses, including urticaria, and atopic or contact dermatitis. The cAMP
response element binding protein (CREB), an evolutionarily well conserved transcription factor (TF)
with over 4,000 binding sites in the genome, was recently found to form a feedforward loop with KIT,
maintaining MC survival. The most selective MC function is degranulation with its acute release of
prestored mediators. Herein, we asked whether CREB contributes to the expression and function of
the degranulation-competent receptors FcεRI and MRGPRX2. Interference with CREB by pharmaco-
logical inhibition (CREBi, 666-15) or RNA interference only slightly affected the expression of these
receptors, while KIT was strongly attenuated. Interestingly, MRGPRX2 surface expression moderately
increased following CREB-knockdown, whereas MRGPRX2-dependent exocytosis simultaneously de-
creased. FcεRI expression and function were regulated consistently, although the effect was stronger
at the functional level. Preformed MC mediators (tryptase, histamine, β-hexosaminidase) remained
comparable following CREB attenuation, suggesting that granule synthesis did not rely on CREB
function. Collectively, in contrast to KIT, FcεRI and MRGPRX2 moderately depend on unperturbed
CREB function. Nevertheless, CREB is required to maintain MC releasability irrespective of stimulus,
insinuating that CREB may operate by safeguarding the degranulation machinery. To our knowledge,
CREB is the first factor identified to regulate MRGPRX2 expression and function in opposite direction.
Overall, the ancient TF is an indispensable component of skin MCs, orchestrating not only survival
and proliferation but also their secretory competence.

Keywords: mast cell; CREB; FcεRI; MRGPRX2; degranulation; skin; flow cytometry; RTqPCR;
RNA interference

1. Introduction

Mast cells (MCs) are critical effector cells in IgE-dependent type-I-hypersensitivity
reactions, key events in urticaria, allergic rhinoconjunctivitis, allergic asthma, food allergy
and anaphylaxis [1–3].

In the skin, where MC density is highest in the steady-state [4], MCs are overabundant
and/or hyperactive and contribute to chronic diseases like atopic and contact dermatitis,
mast cell activation syndrome, psoriasis, rosacea and other conditions [5–7]. Furthermore,
inflammatory circuits initiated by the MC-neuronal crosstalk underly the sensation of pain
and especially itch through operating units with sensory neurons [8–12]. As the receptor for
various neuropeptides, MRGPRX2 (Mas-related G protein coupled receptor X2) is believed
to chiefly mediate the latter responses [13–23].
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While MRGPRX2 and FcεRI organize MC activation, KIT is the major receptor tyrosine
kinase of the lineage. Together with its ligand SCF, KIT orchestrates differentiation from
precursor cells, and regulates the survival, proliferation, and function of fully mature
subsets [24–28]. SCF stimulation of skin MCs induces drastic changes in the proteome-
wide phosphoproteome with ≈5400 out of ≈10,500 phosphosites being affected [29]. A
substrate implicated in this pathway is CREB, which experiences robust phosphorylation
in SCF-stimulated skin MCs [30].

CREB is an interesting transcription factor (TF) from several standpoints. It is one of
the oldest and evolutionarily best-conserved TFs with over 4000 binding sites in the human
genome [31]. This fits its involvement in a wide range of biological functions. Though
largely ubiquitous, CREB expression levels are nevertheless regulated and particularly
abundant in granulocytes, MCs, some other leukocytes, and the brain [32,33]. As a stimulus-
inducible TF, CREB is constitutively present in the nucleus but requires posttranslational
modification (especially phosphorylation at Ser-133) to drive transactivation by recruiting
coactivators to the transcriptional machinery [34–36].

Since CREB function in MCs had received fairly little attention, limited mainly to
its fate following activation [37–40], while regulating survival in other lineages [34,41–44],
we recently queried whether skin MC maintenance requires an unperturbed CREB sys-
tem. Indeed, by engaging in a circular relationship with KIT, CREB was found to be an
indispensable component of skin MCs, whereby its absence abolished the skin MC com-
partment [45]. In particular, long-term interference with CREB resulted in nearly complete
elimination, while a more nuanced and less drastic phenotype was observed following
CREB suppression for a few days [45].

Here, we asked whether CREB is involved in the expression and function of
degranulation-competent receptors. We report that short-term perturbation of CREB by a
selective inhibitor or RNA interference (RNAi) modestly impacts MRGPRX2 or FcεRI ex-
pression in a positive (MRGPRX2) or negative (FcεRI) fashion, while potently suppressing
MC degranulation independently of the eliciting route. This suggests that CREB may be
involved in the maintenance of the degranulation machinery.

Our findings emphasize the factor’s relevance in skin MCs by highlighting that it
may not only contribute to MC hyperplasia (e.g., in the context of mastocytosis) but also
initiate or maintain inflammatory dermatoses through contribution to the complex program
preceding degranulation [46,47].

2. Materials and Methods
2.1. Cells and Treatments

MCs were isolated from human foreskin tissue as described [48]. Each mast cell prepa-
ration/culture originated from several (2–15) donors to achieve sufficient cell numbers, as
routinely performed in our lab [49–52]. The skin was obtained from circumcisions, with
written, informed consent of the patients or legal guardians and approval by the university
ethics committee (protocol code EA1/204/10, 9 March 2018). The experiments were con-
ducted according to the Declaration of Helsinki Principles. Briefly, the skin was cut into
strips and treated with dispase (26.5 mL per preparation, activity: 3.8 U/mL; Boehringer-
Mannheim, Mannheim, Germany) at 4◦ C overnight. The epidermis was removed, and the
dermis finely chopped, and digested with 2.29 mg/mL collagenase (activity: 255 U/mg;
Worthington, Lakewood, NJ, USA), 0.75 mg/mL hyaluronidase (activity: 1000 U/mg;
Sigma, Deisenhofen, Germany), and DNase I at 10 µg/mL (Roche, Basel, Switzerland).
Cells were filtered stepwise from the resulting suspension (100 and 40 µm strainers, Fisher
Scientific, Berlin, Germany). MC purification was achieved by anti-human c-Kit microbeads
(#130-091-332) and the Auto-MACS separation device (both from Miltenyi-Biotec, Bergisch
Gladbach, Germany), giving rise to 98-100% pure preparations (by acidic toluidine blue
staining, 0.1% in 0.5 N HCl (Fisher Scientific, Berlin, Germany), as described [53,54]. In
selected experiments, MCs were isolated from adult female skin obtained from breast
reduction surgeries. Here, each preparation was from a single donor.
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Purified skin MCs from individual preparations were cultured in Basal Iscove’s
medium with 10% FCS (Biochrom, Berlin, Germany) in the presence of SCF (100 ng/mL),
and IL-4 (20 ng/mL), freshly provided twice weekly when cultures were re-adjusted to
5 × 105 /mL. MCs were automatically counted by CASY-TTC (Innovatis/Casy Technology,
Reutlingen, Germany) [52,55].

For inhibition studies, cells were pre-incubated with 666-15 (CREB inhibitor; 5 µM;
from Merck Chemicals, Darmstadt, Germany), or imatinib-mesylate (Gleevec, KIT inhibitor;
10 µM, from Biozol Diagnostica, Eching, Germany), or both combined for 30 min. Stim-
ulation by SCF was at 100 ng/mL. It was reported that 666-15 inhibited the interaction
between CREB and its co-activators, CREB binding protein and p300, and its potency and
selectivity were shown in previous literature [56–58]. Cells were harvested after the times
given in the legends and/or Results.

2.2. Accell® Mediated RNA Interference

A well-established and efficient siRNA method for skin MCs was utilized [29,50,59,60].
In brief, skin MCs were transfected by CREB-targeting siRNA (E-003619-00-0050, Dharma-
con, Lafayette, CO, USA) or control siRNAs ([30] (each at 1 µM) for 2 d in Accell® medium
(Dharmacon, Lafayette, CO, USA) (supplemented with 100 ng/mL SCF, and Non-Essential
Amino Acids and L-Glutamine, both from Carl Roth, Karlsruhe, Germany).

2.3. Flow Cytometry

MCs were blocked with human AB serum (Biotest, Dreieich, Germany) for 15 min
at 4 ◦C and then stained with either a specific anti-CD117 (Miltenyi-Biotec #130-111-593,
Bergisch Gladbach, Germany) antibody, an anti-FcεRI-FITC (eBiosciene #11-5899-42, Fisher
Scientific, Berlin, Germany) antibody or an anti-MRGPRX2-APC antibody (Biolegends,
#359006, Amsterdam, The Netherlands) for 30 min at 4 ◦C. Corresponding isotype controls
were used in each experiment. After incubation, cells were washed in phosphate-buffered
saline (PBS) and resuspended in fluorescence activated cell sorting (FACS) buffer consisting
of 2% fetal bovine serum in PBS. The cells were immediately processed in a Sony ID7000™
Spectral Cell Analyzer (Berlin, Germany) and gated on the population of identifiable,
healthy cells in the forward scatter/side scatter plot, excluding debris and evidently dead
cells. The data were analyzed with the FlowJo V10 analysis software (FlowJo LLC., Ashland,
OR, USA).

2.4. Reverse Transcription-Quantitative PCR (RT-qPCR)

RNA was isolated using the NucleoSpin RNA kit from Macherey-Nagel (Düren,
Germany) following the manufacturer’s instructions. cDNA synthesis (reverse transcrip-
tion kit from Fisher Scientific) and RT-qPCR were performed using optimized conditions
as described elsewhere [48] using materials from Roche (Roche Diagnostics, Mannheim,
Germany). The primer pairs are summarized in Table 1. They were synthesized by TibMol-
Biol, Berlin, Germany. The 2−∆∆CT method was used to quantify the relative expression
levels of the target genes to three reference genes (appearing at the end of Table 1).

Table 1. Primer pairs used for RT-PCR.

Gene Forward 5′-3′ Reverse 5′-3′

CREB1 GAGAAGCGGAGTGTTGGTGA TCCGTCACTGCTTTCGTTCA
KIT ACTGTGGCCGTTATCTGGAA GAAGTGCCCCTGAAGTACCT

FCERIA ACCTGCTGCTGAGTTGAGAT AAGTGTGGCAGCTGGACTAT
MRGPRX2 CGGCCTGGGGAACAGAAAGT GGATCAGGAAGACCGGGATCA

HPRT GCCTCCCATCTCCTTCATCA CCTGGCGTCGTGATTAGTGA
PPIB * AAGATGTCCCTGTGCCCTAC ATGGCAAGCATGTGGTGTTT

GAPDH ATCTCGCTCCTGGAAGATGG AGGTCGGAGTCAACGGATTT
* The PPIB gene encodes Cyclophilin B.
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2.5. β-Hexosaminidase Release Assay

Detection of MC degranulation by β-hexosaminidase quantification was performed
as described [49,50]. Briefly, cells were treated with vehicle (spontaneous release), or chal-
lenged with codeine-phosphate at 100 µg/mL (solution prepared by the Charité pharmacy
at 0.9% in water), substance P (SP) at 30 µM (Bachem, Budendorf, Switzerland) or anti-
FcεRIα-Ab (clone AER-37, eBioscience, San Diego, CA, USA) at 0.1 µg/mL for 60 min in
PAG-CM buffer (Piperazine-N,N-bis[2-ethanesulfonic acid]-Albumin-Glucose buffer con-
taining 3 mM CaCl2 and 1.5 mM MgCl2, pH 7.4). Supernatants (SNs) were collected, and
the pelleted MCs were rapidly frozen with 100 µL H2O at −80 ◦C. After thawing, 50 µL of
SNs and lysates were incubated with 4-methyl umbelliferyl-N-acetyl-beta-D-glucosaminide
(Sigma-Aldrich, Munich, Germany) solution at 5 µM in citrate buffer (pH 4.5) of the same
volume and incubated for 60 min at 37 ◦C. Then, 100 mM sodium carbonate buffer (pH 10.7)
was added to stop the reaction. Fluorescence intensity was determined at excitation at
355 nm and emission wavelength of 460 nm. Percent β-hexosaminidase release = [fluores-
cence intensity SN/(fluorescence intensity SN + fluorescence intensity lysate)] × 100. Net
release was calculated by subtracting spontaneous release.

2.6. Quantification of Tryptase

Tryptase activity was measured according to an established protocol [61,62]. Then,
50,000 skin mast MCs were lysed in 100 µL of distilled water and 50 µL samples thereof
were analyzed in 3–4 dilutions. Enzyme activity was determined by monitoring the
cleavage of the peptide N-CBZ-Gly-Pro-Arg-pNA (Sigma-Aldrich, Munich, Germany) at
0.5 mg/mL. To 50 µL of each sample, 150 µL of sample buffer (150 mM Tris pH 7.6, 300 mM
KCl, 50 µg/mL heparin) was added. To eliminate confounding enzyme activities, alpha-1
antitrypsin at a final concentration of 1 mg/mL served to suppress trypsin-like proteases.
The changes in optical density per minute, caused by the cleavage of the substrate, were
monitored, and recorded by measuring absorbance at 405 nm every 2 min on the VICTOR
X5 2030 Multilabel HTS Microplate Reader (Perkin Elmer, Berlin, Germany).

2.7. Quantification of Histamine

The HTRF Histamine Dynamic kit (Revvity, Hamburg, Germany) was used according
to the manufacturer’s instructions. As such, 1000 MCs were pelleted and lysed in 100 µL of
distilled water. Different dilutions thereof were used for the assay. Optical densities were
recorded on the VICTOR X5 2030 Multilabel HTS Microplate Reader, as above.

2.8. CD107a Exteriorization

CD107a exteriorization was performed as described previously [59,63]. In brief, MCs
were stimulated by FcεRI-aggregation (for 15 min), or SP, or codeine (at 100 µg/mL) for
8 min, or no stimulus (control). The reaction was stopped by ice-cold 4% paraformaldehyde
for 15 min. After washing, the cells were incubated with 10 µL of anti-human CD107a-FITC
antibody (LAMP-1) (BD Pharmingen, Catalog number 555800, San Diego, CA, USA) to-
gether with 10 µL of human AB-serum for 30 min at 4 ◦C, then washed. CD107a expression
was detected by flow cytometry as above.

2.9. Statistics

Statistical analyses were carried out using PRISM 8.0 (GraphPad Software, La Jolla, CA,
USA). Comparisons between two groups were performed using the paired Student’s t-test.
For comparisons across more than two groups, an RM one-way ANOVA with Dunnett’s
multiple comparisons test was used. A one-sample t-test (normal distribution) was applied
to assess the significance of normalized values. A p value of less than 0.05 was considered
statistically significant.
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3. Results
3.1. CREB Is Modestly Implicated in MRGPRX2 and FcεRI Expression in Skin MCs

We recently reported that the major receptor tyrosine kinase of the MC lineage, i.e., KIT
depends on unperturbed CREB activity in skin MCs [45]. Herein, we analyzed whether the
TF molds the MC phenotype and function more broadly. MRGPRX2 and FcεRI are the major
systems efficiently eliciting exocytosis of preformed mediators in skin MCs [49,52,59,64].
Using the selective CREB inhibitor 666-15, we found no major influence on MRGPRX2 or
FcεRI surface expression (Figure 1A). As expected, KIT expression was potently reduced on
CREBi treatment, making KIT the most susceptible of the studied receptors. At the mRNA
level, no effect was noted for the MRGPRX2 or KIT transcript (Figure 1B), confirming
that downregulation of KIT protein was caused by a post-transcriptional mechanism, as
reported [45]. FcεRIα mRNA was modestly reduced to ≈80% of control (Figure 1B). In
addition, the inhibitor had little effect on the expression of its own target, suggesting
absence of major feedback or feedforward loops (Figure S2A). We also confirmed that
CREB expression was comparable between female, adult and male, juvenile skin MCs in
accordance with a previous report [65] (Figure S1).
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Figure 1. Pharmacological inhibition of CREB results in modest changes in MRGPRX2 or FcεRIα
expression. Skin MCs were treated for 2 d with either the 666-15 inhibitor (CREBi) or vehicle (ctrl)
and harvested for either flow cytometry analysis using specific antibodies to MRGPRX2, FcεRIα
and KIT as indicated (A) or RT-qPCR (B). MFI, mean fluorescence intensity. In (A), results are
given connecting dots of the same experiment. In (B), results (normalized to housekeeping genes as
described in Methods) are expressed relative to the control set as 1 and given as mean ± SEM and
individual dots. *, p < 0.05, **, p < 0.01, ns, not significant. (A) paired t-test, (B) one sample t-test or
Wilcoxon test.

To ascertain that the above effects were mediated by CREB, we employed our estab-
lished RNA interference strategy, which gives rise to a reduction of >50% [30,45], confirmed
in the current study (Figure S2). This most selective strategy led to a slight increase in
MRGPRX2 at the cell surface (Figure 2A) without significant modification of its transcript
(Figure 2B), while simultaneously dampening FcεRI protein and mRNA (Figure 2). As
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expected, CREB suppression gave rise to robust reduction of KIT protein, while KIT mRNA
was only weakly downregulated, confirming previous results [45]. We conclude that among
lineage-specifying entities, KIT is the receptor whose expression most strongly depends on
unperturbed CREB function.
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Figure 2. CREB-selective RNA interference results in a slight increase in MRGPRX2, and reduction of
FcεRI expression. Skin MCs were transfected with either a control small interfering RNA (si_ctrl)
or an siRNA specific to CREB (si_CREB) and harvested 2 d later for either flow cytometric analysis
with specific antibodies to MRGPRX2, FcεRIα and KIT (A) or RT-qPCR (B). MFI, mean fluorescence
intensity. In (A), results are given connecting dots of the same experiment. In (B), results (normalized
to housekeeping genes as described in Methods) are expressed relative to the control set as 1 and
given as mean ± SEM and individual dots. *, p < 0.05, **, p < 0.01, ns, not significant. (A) paired t-test,
(B) one sample t-test or Wilcoxon test.

3.2. CREB Contributes to SCF-Triggered Upregulation of FcεRI

FcεRIα expression and function are positively influenced by the SCF/KIT axis in skin
MCs [52]. While in accordance with Figure 1, FcεRI expression was only slightly reduced
following CREB inhibition, CREBi interfered with its upregulation by SCF (Figure 3A).
We speculated that the latter stems from suppression of the SCF/KIT axis [45] and is
therefore a consequence of CREB’s impact on KIT in the first place. The KIT kinase inhibitor
imatinib mesylate (KITi) was used to corroborate this assumption. While KITi interfered
with SCF, and completely abrogated FcεRI upregulation (green versus purple in Figure 3B),
combining the two inhibitors had hardly any additional effect compared to KITi alone
(magenta versus green in Figure 3B). Therefore, while CREB modestly contributes to FcεRI
expression, it is required for SCF-triggered augmentation of FcεRI, and this occurs to a
significant part through its influence on the SCF/KIT axis.
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vehicle control or the CREB inhibitor 666-15 (CREBi), either alone (A) or in combination with the KIT
inhibitor imatinib-mesylate (KITi) versus KITi alone (B). Cells were stimulated 15 min later with SCF,
where indicated. After 2 d, cells were harvested and submitted to flow cytometric analysis using
an anti-FcεRIα antibody. MFI, mean fluorescence intensity. Each graph represents an individual
experiment. **, p < 0.01, ***, p < 0.001, ****, p < 0.0001, using RM one-way ANOVA; ns, not significant.

3.3. CREB Maintains the Secretory Competence of Skin MCs

Exocytosis is a complex process, orchestrated by a finely tuned interplay between
hundreds of participants required for migration, tethering, docking, priming, and finally
fusion of the secretory granules with the plasma membrane [46,47,66]. While expression
of MRGPRX2 and FcεRI were only slightly affected by CREB perturbation (and if so, in
opposite directions), we asked whether CREB-regulated processes may have a critical role
in degranulation as such. In fact, pretreatment with CREBi for 2 d led to hyporesponsive-
ness to Substance P or codeine, two major ligands of the MRGPRX2 receptor (Figure 4A,
left and center). A similar effect was noted for the FcεRI dependent route though the
decrease in granule discharge was somewhat less steep than in the MRGPRX2 pathway
(Figure 4A, right). The effects observed with the inhibitor were fully reproduced with
our RNAi strategy (Figure 4B), highlighting the fact that CREB is vital to maintaining MC
degranulability. To confirm the results of β-hexosaminidase release by an independent
method, we measured the upregulation of CD107a, an activation marker externalized to
the surface of on skin MCs upon MRGPRX2 ligand binding or FcεRI aggregation [59,67].
While pretreatment with CREBi nearly abolished CD107a upregulation stimulated by SP,
codeine or FcεRI-crosslinking (Figure S3A), CREB-RNAi likewise diminished CD107a exte-
riorization induced by the three stimuli (Figure S3B). This confirmed that the maintenance
of skin MC degranulability requires the continuous action of CREB.

We also queried whether CREB influences the abundance of preformed MC media-
tors, by measuring tryptase, histamine and β-hexosaminidase following CREB manipula-
tion. The quantity of granule-contained mediators remained comparable for both CREBi
(Figure 5A) and CREB-RNAi (Figure 5B), however. This was found for tryptase, histamine
and β-hexosaminidase alike, suggesting that granule architecture was largely maintained
when CREB was not (fully) functional. This result also underlines the fact that CREB does
not control the ratios of prefabricated mediators, since no shifts in favor of selected entities
could be observed following CREB manipulation.
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Figure 5. CREB has a minimal effect on the abundance of preformed mediators in skin MCs. Skin
MCs were either pretreated with the CREB inhibitor 666-15 (CREBi) or vehicle (control) for 2 d (A) or
transfected with control (si_ctrl) or CREB-targeting siRNA (si_CREB) for 2 d (B). The quantities of
cell-contained tryptase, histamine, and β-hexosaminidase were determined in quiescent cells by the
respective assays, as given in Methods. The data are depicted as violin plots with the p-values given
above (paired t-test).

4. Discussion

Skin MCs take center stage in the orchestration of immune responses to invading
pathogens, but they are also the root of acute hypersensitivity reactions and multiple
dermatoses [3,5,6,68–71]. The most selective MC function is degranulation with its release
of highly active preformed mediators, several of which unique to MCs [72]. In the skin, signs
and symptoms that directly reflect preceding MC activation can be manifested as wheals
(edema), flares, angioedema, and/or pruritus. In addition, skin MCs are major effector
cells in anaphylaxis, the most severe clinical presentation of an acute allergic reaction, of
which IgE-dependent and IgE-independent forms exist, the latter encompassing MRGPRX2
activation by a broad spectrum of drugs [15,73].

Understanding the process of MC exocytosis is therefore of great clinical significance
in MC-dependent or -assisted skin diseases such as urticaria, angioedema, atopic and
contact dermatitis, rosacea, prurigo, and psoriasis. Having recently reported that CREB
has a nonredundant role in skin MC preservation, we asked herein whether its activity is
also required for safeguarding the cells’ releasability. Indeed, both strategies employed (i.e.,
CREBi and CREB-RNAi) substantially reduced the secretory competence of skin MCs.

Of note, MRGPRX2-elicited degranulation was at least as strongly affected as the
process triggered via FcεRI. Since (a slight) downregulation of the respective receptors
was only found in the case of FcεRI, while MRGPRX2 showed the opposite trend, this
result highlights the fact that CREB’s impact unlikely proceeds via modulation of receptor
expression in the first place. It rather insinuates CREB’s role in the regulation of post-
receptor events, possibly through transcriptional regulation of components making up the
granule transport and exocytosis machinery [46,47,66]. This may explain why secretory
competence downstream of MRGPRX2 was affected to the same or even greater extent
than that downstream of FcεRI, even though MRGPRX2 was negatively regulated by
CREB, whereby CREB-selective RNAi led to a moderate increase in its expression. The
late signaling events of degranulation are highly complex and still less well investigated
than the early steps that occur shortly after receptor stimulation. Notwithstanding, a
large set of proteins is involved in the traffic, priming, tethering and docking of secretory
granules, including SNARE (soluble N-ethylmale-imide-sensitive factor-attachment protein
receptors) proteins, Rab, Munc13 and Munc18 family members, and Ca2+ sensors like
synaptotagmins [47]. Regarding the large spectrum of Rab components, some have recently
been described as coordinately regulating degranulation by different stimuli, including
FcεRI and MRGPRX2 (e.g., RAB7, RAB12) [74]. It remains to be determined whether
these genes form part of the CREB-regulated transcriptome, but if they do and their levels
are decisive in dictating the magnitude of degranulation, it could provide a plausible
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explanation for the current findings. In support of this assumption, the nearly perfect
correlation between FcεRI- and Ca++ ionophore elicited secretion in skin MCs [75] likewise
suggests the existence of rate-limiting components downstream of receptor-proximal events.
In further support, CREB is a master regulator of neurogenesis, and its target genes are
implicated in neurotransmission [76], while neurotransmitter release and MC degranulation
show many overlaps [77]. The overall dependence of skin MCs on CREB further highlights
this intricate relationship between these otherwise unrelated lineages.

While this study used male MCs, we know from a genome-wide screen that male
foreskin-derived and female breast skin-derived MCs show comparable expression of
CREB1 (67, 64 tpm in the former versus 73 and 71 tpm in the latter) [65]. We could confirm
this pattern herein by RT-qPCR (Figure S1). Previous data have also indicated that, although
foreskin-derived and breast skin-derived MCs differ by age, sex and skin of origin of the
donors, they share many features, and variability seems to be more strongly influenced
by individuals with their selective (epi-)genomes than by the skin of origin (including sex
or age) [78]. Although it will have to be experimentally proven, we therefore surmise that
CREB plays similar roles in skin MCs in both sexes.

CREB is activated by several kinases, including ERK1/2 [30,79–81], and positioned
at a hierarchically privileged position based on its ability to drive the expression of a
large number of genes. Several of these encode crucial TFs themselves with the ability to
regulate plenty of enhancers and promoters on their own. In fact, many immediate early
genes (IEGs) are TFs (including members of the AP-1, EGR, and NR4A families). These
genes are highly expressed in skin MCs and/or robustly induced by different types of
stimulation in an ERK1/2- and CREB-dependent manner [29,30,65,82]. Based on large-
scale studies and bioinformatics predictions, AP-1 alone has several tens of thousands of
binding sites, for instance, regulating a broad spectrum of physiological and pathological
processes, even though only a fraction will be functional in any given cell [83–89]. Other
key TFs that do not belong to the IEG category are also regulated by CREB, including
MITF in melanocytes [90–94], in which CREB also becomes phosphorylated upon KIT
activation [95,96]. In addition to melanocytes, MITF is also a master regulator of the
MC lineage [97,98]. Since MITF transcription in MCs uses a different promoter than in
melanocytes [32,33], it remains to be seen whether CREB can regulate MITF abundance in
MCs as well. Our preliminary data upon CREB inhibition do not support a strong regulatory
effect in MCs, however. Collectively, as a master switch CREB can regulate various genes
during homeostasis and activation either directly (by activating transcription from their
promoters/enhancers) or indirectly (by supporting the expression of subordinate TFs).

Our study also allows us to further estimate the degree of correspondence between
mRNA and protein abundance of the crucial MC receptors studied herein. Overall, the
predictive power of mRNA for protein levels has been estimated to be 40% on average but
with substantial variance among genes [99].

For KIT, mRNA and protein have been shown to be uncoupled, likely owing to the
various levels at which regulation occurs (e.g., translational efficiency, internalization and
protein stability) [30,100].

In case of FcεRI, we know from population-based studies that mRNA levels moder-
ately predict cell surface appearance of the αβγ2 receptor complex [101–103], while FcεRIβ
and FcεRIγ do not [75]. Moreover, despite the rather modest correlation based on MCs from
many individuals, FcεRI surface density and FcεRIα-specific transcript typically trend in
the same direction after microenvironmental changes [50,52,53]. This is reproduced here, as
CREB-RNAi led to consistent reduction of FcεRIα protein and transcript. Binding sites for
the activating transcription factor (ATF) (which resemble those of CREB [76]) were detected
in the FCER1A gene [https://www.genecards.org/cgi-bin/carddisp.pl?gene=FCER1A,
last accessed 18 August 2024]. We saw consistent downregulation of its transcript following
manipulation of CREB by CREBi or CREB-RNAi. Therefore, it appears possible that CREB
binds to these sites and positively regulates the FCER1A gene directly, but clarification will
require future efforts.

https://www.genecards.org/cgi-bin/carddisp.pl?gene=FCER1A
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For MRGPRX2, transcript and protein abundance robustly correlate, and MRGPRX2
expression also gives a good estimate of the receptor’s functional outputs, based on pre-
vious studies [49,52,64]. Overall, though the association is not absolute, variability in
MRGPRX2 expression better predicts the strength of MRGPRX2 function than variability in
FcεRI abundance predicts FcεRI elicited outcomes.

It therefore came as a surprise that, while MRGPRX2 increased following CREB-
RNAi, MRGPRX2 elicited exocytosis was potently reduced by the same strategy. To our
knowledge, this is the first report that shows this type of uncoupling, identifying CREB as
differentially regulating MRGPRX2 at the expressional and functional levels.

Since CREB plays a tremendous role in skin MCs [30,45], it may be envisaged to use
CREB inhibitors at low concentrations in combination with other therapies aiming to re-
duce MC hyperactivity in inflammatory disorders. Combining low concentrations of drugs
targeting distinct pathways is a strategy to spare the toxicity of each individual substance
and increase overall efficiency [104,105]. It is of interest that 666-15. i.e., the inhibitor used
in our study, was in general well-tolerated and effective in vivo [56,57,106–108]; it has also
been considered for cancer therapy [109]. Exploring the activity of this or related com-
pounds against allergic disorders seems to be a plausible strategy for the future. Another
possibility would be to manipulate CREB-regulated targets rather than CREB itself [110].
Considering the potency and versatility of CREB in skin MCs, further knowledge in this
area may not only open new therapeutic considerations in mastocytosis or MC leukemia,
but also in the context of inflammatory skin disorders. Thus, a detailed understanding
the CREB-regulated processes in MCs could advance the treatment of multiple conditions
brought about or assisted by MCs.

5. Conclusions

Our study finds that the ancient TF CREB is critically involved in the regulation of
MC exocytosis through a generic pathway that does not primarily depend on the receptor,
which elicits degranulation. In fact, the expression of MRGPRX2 and FcεRI as two major
degranulation-competent receptors of skin MCs is modestly regulated by CREB, and trends
in opposite directions, while degranulation itself requires CREB in a consistent fashion.

Given the cell type-specific nature of CREB-activated programs [31,35] combined with
robust expression of CREB system components in skin MCs, investigations in these cells
have the potential to unveil novel aspects of this extensively studied TF.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells13201681/s1, Figure S1: MCs from male and female individuals
show comparable expression of CREB. Figure S2: Pharmacological inhibition of CREB does not affect
CREB expression whereas RNAi leads to effective CREB knockdown. Figure S3: CREB is required for
skin MC degranulation, as evidenced by CD107a exteriorization.
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