The Role of the Insular Cortex and Serotonergic System in the Modulation of Long-Lasting Nociception
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
Experimental Design
2.2. Inflammation Induction
2.3. Physiological Experiments
In Vivo Microdialysis
2.4. Biochemical Analysis
2.5. Western Blotting
2.6. Pharmacological Experiments
Cannula Implantation and Microinjection
2.7. Drugs
Nociceptive Tests
2.8. Histological Verification
2.9. Oedema Size Measurement
2.10. Statistical Analysis
3. Results
3.1. Physiological Experiments
3.1.1. Inflammation Increases Concentrations of 5HT and 5HTIAA
3.1.2. Protein Levels of the 5HT1A Receptor Shows a Sustained Increase after Inflammation
3.2. Pharmacological Experiments
3.2.1. Blocking 5HT3R Decreases Mechanical Nociception
3.2.2. Blocking 5HT2AR and 5HT3R Decreases Thermal Nociception
4. Discussion
4.1. Physiological Experiments
4.2. Pharmacological Experiments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brooks, J.C.W.; Tracey, I. The Insula: A Multidimensional Integration Site for Pain. Pain 2007, 128, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Dupont, S.; Bouilleret, V.; Hasboun, D.; Semah, F.; Baulac, M. Functional Anatomy of the Insula: New Insights from Imaging. Surg. Radiol. Anat. 2003, 25, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Jarcho, J.M.; Mayer, E.A.; Jiang, Z.K.; Feier, N.A.; London, E.D. Pain, Affective Symptoms, and Cognitive Deficits in Patients with Cerebral Dopamine Dysfunction. Pain 2012, 153, 744–754. [Google Scholar] [CrossRef] [PubMed]
- Berman, D.E.; Hazvi, S.; Neduva, V.; Dudai, Y. The Role of Identified Neurotransmitter Systems in the Response of Insular Cortex to Unfamiliar Taste: Activation of ERK1-2 and Formation of a Memory Trace. J. Neurosci. 2000, 20, 7017–7023. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.D.B. How Do You Feel–Now? The Anterior Insula and Human Awareness. Nat. Rev. Neurosci. 2009, 10, 59–70. [Google Scholar] [CrossRef]
- Gu, X.; Gao, Z.; Wang, X.; Liu, X.; Knight, R.T.; Hof, P.R.; Fan, J. Anterior Insular Cortex Is Necessary for Empathetic Pain Perception. Brain 2012, 135, 2726–2735. [Google Scholar] [CrossRef]
- Lötsch, J.; Walter, C.; Felden, L.; Nöth, U.; Deichmann, R.; Oertel, B.G. The Human Operculo-Insular Cortex Is Pain-Preferentially but Not Pain-Exclusively Activated by Trigeminal and Olfactory Stimuli. PLoS ONE 2012, 7, e34798. [Google Scholar] [CrossRef]
- Lu, C.; Yang, T.; Zhao, H.; Zhang, M.; Meng, F.; Fu, H.; Xie, Y.; Xu, H. Insular Cortex Is Critical for the Perception, Modulation, and Chronification of Pain. Neurosci. Bull. 2016, 32, 191–201. [Google Scholar] [CrossRef]
- Ochsner, K.N.; Zaki, J.; Hanelin, J.; Ludlow, D.H.; Knierim, K.; Ramachandran, T.; Glover, G.H.; Mackey, S.C. Your Pain or Mine? Common and Distinct Neural Systems Supporting the Perception of Pain in Self and Other. Soc. Cogn. Affect. Neurosci. 2008, 3, 144–160. [Google Scholar] [CrossRef]
- Ramachandran, V.S. Consciousness and Body Image: Lessons from Phantom Limbs, Capgras Syndrome and Pain Asymbolia. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1998, 353, 1851–1859. [Google Scholar] [CrossRef]
- Zhuo, M. Contribution of Synaptic Plasticity in the Insular Cortex to Chronic Pain. Neuroscience 2016, 338, 220–229. [Google Scholar] [CrossRef]
- Stephani, C.; Fernandez-Baca Vaca, G.; Maciunas, R.; Koubeissi, M.; Lüders, H.O. Functional Neuroanatomy of the Insular Lobe. Brain Struct. Funct. 2011, 216, 137–149. [Google Scholar] [CrossRef]
- Evrard, H.C. The Organization of the Primate Insular Cortex. Front. Neuroanat. 2019, 13, 43. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Larrea, L.; Peyron, R. Pain Matrices and Neuropathic Pain Matrices: A Review. Pain 2013, 154 (Suppl 1), S29–S43. [Google Scholar] [CrossRef]
- Jasmin, L.; Burkey, A.R.; Granato, A.; Ohara, P.T. Rostral Agranular Insular Cortex and Pain Areas of the Central Nervous System: A Tract-Tracing Study in the Rat. J. Comp. Neurol. 2004, 468, 425–440. [Google Scholar] [CrossRef]
- Sato, F.; Akhter, F.; Haque, T.; Kato, T.; Takeda, R.; Nagase, Y.; Sessle, B.J.; Yoshida, A. Projections from the Insular Cortex to Pain-Receptive Trigeminal Caudal Subnucleus (Medullary Dorsal Horn) and Other Lower Brainstem Areas in Rats. Neuroscience 2013, 233, 9–27. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.J.; Cassell, M.D. Cortical, Thalamic, and Amygdaloid Connections of the Anterior and Posterior Insular Cortices. J. Comp. Neurol. 1998, 399, 440–468. [Google Scholar] [CrossRef]
- Qiu, S.; Chen, T.; Koga, K.; Guo, Y.; Xu, H.; Song, Q.; Wang, J.; Descalzi, G.; Kaang, B.-K.; Luo, J.; et al. An Increase in Synaptic NMDA Receptors in the Insular Cortex Contributes to Neuropathic Pain. Sci. Signal. 2013, 6, ra34. [Google Scholar] [CrossRef]
- Zhuo, M. Cortical Excitation and Chronic Pain. Trends Neurosci. 2008, 31, 199–207. [Google Scholar] [CrossRef]
- Ortega-Legaspi, J.M.; López-Avila, A.; Coffeen, U.; del Angel, R.; Pellicer, F. Scopolamine into the Anterior Cingulate Cortex Diminishes Nociception in a Neuropathic Pain Model in the Rat: An Interruption of “Nociception-Related Memory Acquisition”? Eur. J. Pain 2003, 7, 425–429. [Google Scholar] [CrossRef]
- Ortega-Legaspi, J.M.; León-Olea, M.; de Gortari, P.; Amaya, M.I.; Coffeen, U.; Simón-Arceo, K.; Pellicer, F. Expression of Muscarinic M1 and M2 Receptors in the Anterior Cingulate Cortex Associated with Neuropathic Pain. Eur. J. Pain 2010, 14, 901–910. [Google Scholar] [CrossRef]
- Finn, D.P.; Haroutounian, S.; Hohmann, A.G.; Krane, E.; Soliman, N.; Rice, A.S.C. Cannabinoids, the Endocannabinoid System, and Pain: A Review of Preclinical Studies. Pain 2021, 162, S5–S25. [Google Scholar] [CrossRef] [PubMed]
- Lamusuo, S.; Hirvonen, J.; Lindholm, P.; Martikainen, I.J.; Hagelberg, N.; Parkkola, R.; Taiminen, T.; Hietala, J.; Helin, S.; Virtanen, A.; et al. Neurotransmitters behind Pain Relief with Transcranial Magnetic Stimulation—Positron Emission Tomography Evidence for Release of Endogenous Opioids. Eur. J. Pain 2017, 21, 1505–1515. [Google Scholar] [CrossRef] [PubMed]
- Sagar, D.R.; Burston, J.J.; Woodhams, S.G.; Chapman, V. Dynamic Changes to the Endocannabinoid System in Models of Chronic Pain. In Philos. Trans. R. Soc. Lond. B Biol. Sci.; 2012; 367, pp. 3300–3311. Available online: https://pubmed.ncbi.nlm.nih.gov/23108548/ (accessed on 3 March 2024). [CrossRef]
- Zugaib, J.; Coutinho, M.R.; Ferreira, M.D.; Menescal-de-Oliveira, L. Glutamate/GABA Balance in ACC Modulates the Nociceptive Responses of Vocalization: An Expression of Affective-Motivational Component of Pain in Guinea Pigs. Physiol. Behav. 2014, 126, 8–14. [Google Scholar] [CrossRef]
- Pellicer, F.; López-Avila, A.; Coffeen, U.; Manuel Ortega-Legaspi, J.; Angel, R.D. Taurine in the Anterior Cingulate Cortex Diminishes Neuropathic Nociception: A Possible Interaction with the Glycine(A) Receptor. Eur. J. Pain 2007, 11, 444–451. [Google Scholar] [CrossRef]
- Coffeen, U.; Canseco-Alba, A.; Simón-Arceo, K.; Almanza, A.; Mercado, F.; León-Olea, M.; Pellicer, F. Salvinorin A Reduces Neuropathic Nociception in the Insular Cortex of the Rat. Eur. J. Pain 2018, 22, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Pellicer, F.; López-Avila, A.; Ortega-Legaspi, J.M.; Coffeen, U.; Jaimes, O. Dopamine Pathways and Receptors in Nociception and Pain. In Pharmacology of Pain; IASP Press: Seattle, WA, USA, 2010; pp. 241–253. [Google Scholar]
- Sommer, C. Serotonin in Pain and Analgesia: Actions in the Periphery. Mol. Neurobiol. 2004, 30, 117–125. [Google Scholar] [CrossRef]
- Bannister, K.; Dickenson, A.H. What Do Monoamines Do in Pain Modulation? Curr. Opin. Support. Palliat. Care 2016, 10, 143–148. [Google Scholar] [CrossRef]
- Viguier, F.; Michot, B.; Hamon, M.; Bourgoin, S. Multiple Roles of Serotonin in Pain Control Mechanisms--Implications of 5-HT₇ and Other 5-HT Receptor Types. Eur. J. Pharmacol. 2013, 716, 8–16. [Google Scholar] [CrossRef]
- Sluka, K.A.; Lisi, T.L.; Westlund, K.N. Increased Release of Serotonin in the Spinal Cord during Low, but Not High, Frequency Transcutaneous Electric Nerve Stimulation in Rats with Joint Inflammation. Arch. Phys. Med. Rehabil. 2006, 87, 1137–1140. [Google Scholar] [CrossRef]
- Oyama, T.; Ueda, M.; Kuraishi, Y.; Akaike, A.; Satoh, M. Dual Effect of Serotonin on Formalin-Induced Nociception in the Rat Spinal Cord. Neurosci. Res. 1996, 25, 129–135. [Google Scholar] [CrossRef]
- Ford, G.K.; Moriarty, O.; McGuire, B.E.; Finn, D.P. Investigating the Effects of Distracting Stimuli on Nociceptive Behaviour and Associated Alterations in Brain Monoamines in Rats. Eur. J. Pain 2008, 12, 970–979. [Google Scholar] [CrossRef] [PubMed]
- Goettl, V.M.; Huang, Y.; Hackshaw, K.V.; Stephens, R.L. Reduced Basal Release of Serotonin from the Ventrobasal Thalamus of the Rat in a Model of Neuropathic Pain. Pain 2002, 99, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Colado, M.I.; Del Rio, J.; Peralta, E. Neonatal Guanethidine Sympathectomy Suppresses Autotomy and Prevents Changes in Spinal and Supraspinal Monoamine Levels Induced by Peripheral Deafferentation in Rats. Pain 1994, 56, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Coffeen, U.; Manuel Ortega-Legaspi, J.; López-Muñoz, F.J.; Simón-Arceo, K.; Jaimes, O.; Pellicer, F. Insular Cortex Lesion Diminishes Neuropathic and Inflammatory Pain-like Behaviours. Eur. J. Pain 2011, 15, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Isnard, J.; Magnin, M.; Jung, J.; Mauguière, F.; Garcia-Larrea, L. Does the Insula Tell Our Brain That We Are in Pain? Pain 2011, 152, 946–951. [Google Scholar] [CrossRef]
- Lorenz, J.; Casey, K.L. Imaging of Acute versus Pathological Pain in Humans. Eur. J. Pain 2005, 9, 163–165. [Google Scholar] [CrossRef]
- Gamal-Eltrabily, M.; Martínez-Lorenzana, G.; González-Hernández, A.; Condés-Lara, M. Cortical Modulation of Nociception. Neuroscience 2021, 458, 256–270. [Google Scholar] [CrossRef]
- Linley, S.B.; Hoover, W.B.; Vertes, R.P. Pattern of Distribution of Serotonergic Fibers to the Orbitomedial and Insular Cortex in the Rat. J. Chem. Neuroanat. 2013, 48–49, 29–45. [Google Scholar] [CrossRef]
- Santana, N.; Bortolozzi, A.; Serrats, J.; Mengod, G.; Artigas, F. Expression of serotonin1A and serotonin2A Receptors in Pyramidal and GABAergic Neurons of the Rat Prefrontal Cortex. Cereb. Cortex 2004, 14, 1100–1109. [Google Scholar] [CrossRef] [PubMed]
- Tuerke, K.J.; Limebeer, C.L.; Fletcher, P.J.; Parker, L.A. Double Dissociation between Regulation of Conditioned Disgust and Taste Avoidance by Serotonin Availability at the 5-HT(3) Receptor in the Posterior and Anterior Insular Cortex. J. Neurosci. 2012, 32, 13709–13717. [Google Scholar] [CrossRef] [PubMed]
- Elmenhorst, D.; Kroll, T.; Matusch, A.; Bauer, A. Sleep Deprivation Increases Cerebral Serotonin 2A Receptor Binding in Humans. Sleep 2012, 35, 1615–1623. [Google Scholar] [CrossRef] [PubMed]
- Santangelo, A.M.; Sawiak, S.J.; Fryer, T.; Hong, Y.; Shiba, Y.; Clarke, H.F.; Riss, P.J.; Ferrari, V.; Tait, R.; Suckling, J.; et al. Insula Serotonin 2A Receptor Binding and Gene Expression Contribute to Serotonin Transporter Polymorphism Anxious Phenotype in Primates. Proc. Natl. Acad. Sci. USA 2019, 116, 14761–14768. [Google Scholar] [CrossRef]
- Alexander, G.M.; Graef, J.D.; Hammarback, J.A.; Nordskog, B.K.; Burnett, E.J.; Daunais, J.B.; Bennett, A.J.; Friedman, D.P.; Suomi, S.J.; Godwin, D.W. Disruptions in Serotonergic Regulation of Cortical Glutamate Release in Primate Insular Cortex in Response to Chronic Ethanol and Nursery Rearing. Neuroscience 2012, 207, 167–181. [Google Scholar] [CrossRef]
- Zimmermann, M. Ethical Guidelines for Investigations of Experimental Pain in Conscious Animals. Pain 1983, 16, 109–110. [Google Scholar] [CrossRef]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 7th ed.; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 978-0-12-391949-6. [Google Scholar]
- Peterson, S.L. Drug microinjection in discrete brain regions. Kopf Carr. 1998, 50, 1–6. [Google Scholar]
- Warbritton, J.D.; Stewart, R.M.; Baldessarini, R.J. Increased Sensitivity to Intracerebroventricular Infusion of Serotonin and Deaminated Indoles after Lesioning Rat with Dihydroxytryptamine. Brain Res. 1980, 183, 355–366. [Google Scholar] [CrossRef]
- Green, R.A.; Gillin, J.C.; Wyatt, R.J. The Inhibitory Effect of Intraventricular Administration of Serotonin on Spontaneous Motor Activity of Rats. Psychopharmacology 1976, 51, 81–84. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Gao, X.; Zhang, L.M.; Wu, G.C. The Release of Serotonin in Rat Spinal Dorsal Horn and Periaqueductal Gray Following Carrageenan Inflammation. Neuroreport 2000, 11, 3539–3543. [Google Scholar] [CrossRef]
- Chen, Y.; Palm, F.; Lesch, K.-P.; Gerlach, M.; Moessner, R.; Sommer, C. 5-Hydroxyindolacetic Acid (5-HIAA), a Main Metabolite of Serotonin, Is Responsible for Complete Freund’s Adjuvant-Induced Thermal Hyperalgesia in Mice. Mol. Pain 2011, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Bulat, M.; Supek, Z. Passage of 5-hydroxytryptamine through the blood-brain barrier, its metabolism in the brain and elimination of 5-hydroxyindoleacetic acid from the brain tissue. J. Neurochem. 1968, 15, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Kayser, V.; Latrémolière, A.; Hamon, M.; Bourgoin, S. N-Methyl-D-Aspartate Receptor-Mediated Modulations of the Anti-Allodynic Effects of 5-HT1B/1D Receptor Stimulation in a Rat Model of Trigeminal Neuropathic Pain. Eur. J. Pain 2011, 15, 451–458. [Google Scholar] [CrossRef]
- Coffeen, U.; Ortega-Legaspi, J.M.; de Gortari, P.; Simón-Arceo, K.; Jaimes, O.; Amaya, M.I.; Pellicer, F. Inflammatory Nociception Diminishes Dopamine Release and Increases Dopamine D2 Receptor mRNA in the Rat’s Insular Cortex. Mol. Pain 2010, 6, 75. [Google Scholar] [CrossRef] [PubMed]
- Munawar, N.; Bitar, M.S.; Masocha, W. Activation of 5-HT1A Receptors Normalizes the Overexpression of Presynaptic 5-HT1A Receptors and Alleviates Diabetic Neuropathic Pain. Int. J. Mol. Sci. 2023, 24, 14334. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Gao, X.; Ji, G.C.; Wu, G.C. Expression of 5-HT2A Receptor mRNA in Rat Spinal Dorsal Horn and Some Nuclei of Brainstem after Peripheral Inflammation. Brain Res. 2001, 900, 146–151. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Gao, X.; Ji, G.C.; Huang, Y.L.; Wu, G.C. Expression of 5-HT2A Receptor mRNA in Rat Nucleus Raphe Magnus Neurons after Peripheral Inflammation. Acta Pharmacol. Sin. 2001, 22, 923–928. [Google Scholar]
- Kato, K.; Kikuchi, S.; Konno, S.; Sekiguchi, M. Participation of 5-Hydroxytryptamine in Pain-Related Behavior Induced by Nucleus Pulposus Applied on the Nerve Root in Rats. Spine 2008, 33, 1330–1336. [Google Scholar] [CrossRef]
- Lv, X.; Wo, C.; Yao, J.; Lu, W.; Yu, Z.; Qin, Y.; Wang, Y.; Zhang, Z.; Wu, Y.; Huang, Y.; et al. Silver Needle Thermal Therapy Relieves Pain, Repairs the Damaged Myofascial Fiber, and Reduces the Expression of 5-HT3 Receptors in the Spinal Cord of Rats with Myofascial Pain Syndrome. Neurol. India 2022, 70, S288–S295. [Google Scholar] [CrossRef]
- Christidis, N.; Kang, I.; Cairns, B.E.; Kumar, U.; Dong, X.; Rosén, A.; Kopp, S.; Ernberg, M. Expression of 5-HT3 Receptors and TTX Resistant Sodium Channels (Na(V)1.8) on Muscle Nerve Fibers in Pain-Free Humans and Patients with Chronic Myofascial Temporomandibular Disorders. J. Headache Pain. 2014, 15, 63. [Google Scholar] [CrossRef]
- Rojas, P.S.; Fiedler, J.L. What Do We Really Know About 5-HT1A Receptor Signaling in Neuronal Cells? Front. Cell Neurosci. 2016, 10, 272. [Google Scholar] [CrossRef]
- Haleem, D.J. Targeting Serotonin1A Receptors for Treating Chronic Pain and Depression. Curr. Neuropharmacol. 2019, 17, 1098–1108. [Google Scholar] [CrossRef]
- Hjorth, S.; Sharp, T. Mixed Agonist/Antagonist Properties of NAN-190 at 5-HT1A Receptors: Behavioural and in Vivo Brain Microdialysis Studies. Life Sci. 1990, 46, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Raote, I.; Bhattacharya, A.; Panicker, M.M. Serotonin 2A (5-HT2A) Receptor Function: Ligand-Dependent Mechanisms and Pathways. In Serotonin Receptors in Neurobiology; Chattopadhyay, A., Ed.; Frontiers in Neuroscience; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2007; ISBN 978-0-8493-3977-6. [Google Scholar]
- Bardin, L. The Complex Role of Serotonin and 5-HT Receptors in Chronic Pain. Behav. Pharmacol. 2011, 22, 390–404. [Google Scholar] [CrossRef] [PubMed]
- Ju, A.; Fernandez-Arroyo, B.; Wu, Y.; Jacky, D.; Beyeler, A. Expression of Serotonin 1A and 2A Receptors in Molecular- and Projection-Defined Neurons of the Mouse Insular Cortex. Mol. Brain 2020, 13, 99. [Google Scholar] [CrossRef]
- Zhang, M.-M.; Geng, A.-Q.; Chen, K.; Wang, J.; Wang, P.; Qiu, X.-T.; Gu, J.-X.; Fan, H.-W.; Zhu, D.-Y.; Yang, S.-M.; et al. Glutamatergic Synapses from the Insular Cortex to the Basolateral Amygdala Encode Observational Pain. Neuron 2022, 110, 1993–2008.e6. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Lummis, S.C.R. 5-HT3 Receptors. Curr. Pharm. Des. 2006, 12, 3615–3630. [Google Scholar] [CrossRef]
- Lummis, S.C.R. 5-HT(3) Receptors. J. Biol. Chem. 2012, 287, 40239–40245. [Google Scholar] [CrossRef]
- Domocos, D.; Selescu, T.; Ceafalan, L.C.; Iodi Carstens, M.; Carstens, E.; Babes, A. Role of 5-HT1A and 5-HT3 Receptors in Serotonergic Activation of Sensory Neurons in Relation to Itch and Pain Behavior in the Rat. J. Neurosci. Res. 2020, 98, 1999–2017. [Google Scholar] [CrossRef]
- Suzuki, R.; Rahman, W.; Hunt, S.P.; Dickenson, A.H. Descending Facilitatory Control of Mechanically Evoked Responses Is Enhanced in Deep Dorsal Horn Neurones Following Peripheral Nerve Injury. Brain Res. 2004, 1019, 68–76. [Google Scholar] [CrossRef]
- Costa-Pereira, J.T.; Serrão, P.; Martins, I.; Tavares, I. Serotoninergic Pain Modulation from the Rostral Ventromedial Medulla (RVM) in Chemotherapy-Induced Neuropathy: The Role of Spinal 5-HT3 Receptors. Eur. J. Neurosci. 2020, 51, 1756–1769. [Google Scholar] [CrossRef] [PubMed]
- Koeppe, C.; Schneider, C.; Thieme, K.; Mense, S.; Stratz, T.; Müller, W.; Flor, H. The Influence of the 5-HT3 Receptor Antagonist Tropisetron on Pain in Fibromyalgia: A Functional Magnetic Resonance Imaging Pilot Study. Scand. J. Rheumatol. Suppl. 2004, 119, 24–27. [Google Scholar] [CrossRef] [PubMed]
Function or Pharmacological Activity | Company | Common Name | Chemical Name |
---|---|---|---|
Neurotransmitter | Sigma-Aldrich, Merck KGaA, Darmstadt, Germany | Serotonin | 3-(2-Aminoethyl)-5-hydroxyindole hydrochloride |
Major serotonin metabolite | Sigma-Aldrich, Merck KGaA, Darmstadt, Germany | 5-HIAA | 5-Hydroxyindole-3-acetic acid |
5-HT1A receptor antagonist | Tocris Bioscience, San Jose, CA, USA | NAN-190 | 1-(2-Methoxyphenyl)-4-(4-phthalimidobutyl)piperazine hydrobromide |
Selective 5HΤ3 receptor antagonist | Sigma-Aldrich, Merck KGaA, Darmstadt, Germany | Ondansetron | 1,2,3,9-Tetrahydro-9-methyl-3-[(2-methyl-1H-imidazol-1-yl)methyl]-4H-carbazol-4-one hydrochloride |
Potent and selective 5-HT2A antagonist; increases the release of dopamine by the medial prefrontal cortex | Sigma-Aldrich, Merck KGaA, Darmstadt, Germany | SR-46349 | 4-((3Z)-3-(2-Dimethylaminoethyl)oxyimino-3-(2-fluorophenyl)propen-1-yl)phenol hemifumarate salt |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coffeen, U.; Ramírez-Rodríguez, G.B.; Simón-Arceo, K.; Mercado, F.; Almanza, A.; Jaimes, O.; Parra-Vitela, D.; Vázquez-Barreto, M.; Pellicer, F. The Role of the Insular Cortex and Serotonergic System in the Modulation of Long-Lasting Nociception. Cells 2024, 13, 1718. https://doi.org/10.3390/cells13201718
Coffeen U, Ramírez-Rodríguez GB, Simón-Arceo K, Mercado F, Almanza A, Jaimes O, Parra-Vitela D, Vázquez-Barreto M, Pellicer F. The Role of the Insular Cortex and Serotonergic System in the Modulation of Long-Lasting Nociception. Cells. 2024; 13(20):1718. https://doi.org/10.3390/cells13201718
Chicago/Turabian StyleCoffeen, Ulises, Gerardo B. Ramírez-Rodríguez, Karina Simón-Arceo, Francisco Mercado, Angélica Almanza, Orlando Jaimes, Doris Parra-Vitela, Mareli Vázquez-Barreto, and Francisco Pellicer. 2024. "The Role of the Insular Cortex and Serotonergic System in the Modulation of Long-Lasting Nociception" Cells 13, no. 20: 1718. https://doi.org/10.3390/cells13201718
APA StyleCoffeen, U., Ramírez-Rodríguez, G. B., Simón-Arceo, K., Mercado, F., Almanza, A., Jaimes, O., Parra-Vitela, D., Vázquez-Barreto, M., & Pellicer, F. (2024). The Role of the Insular Cortex and Serotonergic System in the Modulation of Long-Lasting Nociception. Cells, 13(20), 1718. https://doi.org/10.3390/cells13201718