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Abstract: The clinical spectrum of Alzheimer’s disease (AD) ranges dynamically from asymptomatic
and mild cognitive impairment (MCI) to mild, moderate, or severe AD. Although a few disease-
modifying treatments, such as lecanemab and donanemab, have been developed, current therapies
can only delay disease progression rather than halt it entirely. Therefore, the early detection of
MCI and the identification of MCI patients at high risk of progression to AD remain urgent unmet
needs in the super-aged era. This study utilized transcriptomics data from cognitively unimpaired
(CU) individuals, MCI, and AD patients in the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
cohort and leveraged machine learning models to identify biomarkers that differentiate MCI from
CU and also distinguish AD from MCI individuals. Furthermore, Cox proportional hazards analysis
was conducted to identify biomarkers predictive of the progression from MCI to AD. Our machine
learning models identified a unique set of gene expression profiles capable of achieving an area
under the curve (AUC) of 0.98 in distinguishing those with MCI from CU individuals. A subset
of these biomarkers was also found to be significantly associated with the risk of progression from
MCI to AD. A linear mixed model demonstrated that plasma tau phosphorylated at threonine 181
(pTau181) and neurofilament light chain (NFL) exhibit the prognostic value in predicting cognitive
decline longitudinally. These findings underscore the potential of integrating machine learning
(ML) with transcriptomic profiling in the early detection and prognostication of AD. This integrated
approach could facilitate the development of novel diagnostic tools and therapeutic strategies aimed
at delaying or preventing the onset of AD in at-risk individuals. Future studies should focus on
validating these biomarkers in larger, independent cohorts and further investigating their roles in
AD pathogenesis.

Keywords: transcriptomics; machine learning; mild cognitive impairment (MCI); Alzheimer’s disease
(AD); MCI-to-AD conversion; gene expression; RNA sequencing; biomarkers

1. Introduction

As of 2023, more than 55 million people worldwide are estimated to suffer from
Alzheimer’s disease (AD), the most common cause of dementia. This number is projected
to increase to 82 million by 2030 and 150 million by 2050, with nearly 10 million new cases

Cells 2024, 13, 1920. https://doi.org/10.3390/cells13221920 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells13221920
https://doi.org/10.3390/cells13221920
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-2331-004X
https://orcid.org/0000-0003-3047-0380
https://doi.org/10.3390/cells13221920
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells13221920?type=check_update&version=2


Cells 2024, 13, 1920 2 of 24

each year [1–3]. The clinical spectrum of AD encompasses a range from asymptomatic
stages to mild cognitive impairment (MCI) and, eventually, to mild, moderate, or severe AD.
MCI is characterized by cognitive decline that does not significantly impair an individual’s
daily life activities [4]. The risk of progression from MCI to AD dementia increases over
time, with approximately 10% of individuals progressing within one year and 80% within
six years following an MCI diagnosis [5–7]. Identifying MCI and predicting which patients
will progress to AD dementia is the most crucial point in initiating timely interventions
aimed at slowing or halting disease progression. However, this remains one of the most
challenging tasks in the field of AD research.

Primary clinical measures for assessing progression from MCI to AD include neuropsy-
chological tests, such as the Mini-Mental State Examination (MMSE), and neuroimaging
biomarkers, such as magnetic resonance imaging (MRI). However, the MMSE is inherently
complex and can be somewhat circular, as it diagnoses cognitive impairment based on
the severity of decline, which can vary widely in MCI [8]. MRI is limited not only by its
high cost but also by the requirement for serial measurements over time to accurately track
cognitive changes. Additionally, MRI findings may be confounded by factors unrelated to
cognitive decline, such as age-related atrophy [9]. Some plasma biomarkers have demon-
strated high diagnostic performance in differentiating MCI and/or AD from cognitively
unimpaired (CU) individuals [10–12]. Despite substantial research efforts, few studies
have conclusively demonstrated biomarkers with the capacity for MCI-specific discrimi-
nation, predictive accuracy for MCI-to-AD conversion, or suitability for cognitive decline
assessment [13–15]. Cognitive changes during the prodromal stage of AD are often subtler
than those observed in more advanced stages, making it challenging to longitudinally
capture dynamic changes in cognitive and functional abilities. Moreover, the invasive and
costly nature of these biomarkers limits accessibility and necessitates specialized settings or
equipment. This study proposes that an ML-based approach integrating gene expression
data and demographic features can effectively discriminate MCI from CU individuals and
predict MCI-to-AD conversion.

Monoclonal antibody drugs targeting amyloid beta (Aβ) bind with high affinity to
Aβ fibrils and have been shown to reduce cognitive decline in individuals with MCI or
early-stage AD. For instance, lecanemab has been demonstrated to clear Aβ in two-thirds
of patients and slow cognitive and functional decline in individuals with MCI or early
AD over an 18-month double-blind, placebo-controlled trial [16]. And the anti-Aβ drug
donanemab has been reported to slow cognitive decline by up to 60% in individuals
who begin treatment in the early stage, such as MCI [17]. Despite their efficacy, these
therapies are associated with high costs and significant risks, including amyloid-related
imaging abnormalities that can lead to severe side effects, such as a brain hemorrhage and
seizures. Therefore, it is imperative to accurately distinguish MCI from CU individuals
and identify MCI patients at high risk of progression to AD. This study suggests that RNA
and demographic features can effectively identify individuals with early symptoms who
are likely to develop AD, thereby optimizing candidate selection for anti-Aβ therapy. This
could enable the timely intervention for cognitive decline before the onset of symptomatic
AD, potentially reducing the prevalence of AD.

The aim of this study was to investigate whether multimodal data, comprising RNA
sequencing, protein immunoassays, demographics, and neuropsychological measures,
combined with machine learning (ML) algorithms could effectively discriminate MCI and
predict the risk of MCI-to-AD progression. The use of simple, more accessible, and less
invasive RNA biomarkers combined with key demographics facilitates this diagnostic
approach. While single-modality RNA sequencing is preferred due to cost considerations
and the reduced burden of multiple testing, this ML-based approach shows great promise
in distinguishing MCI patients from CU individuals, enhancing the therapeutic efficacy
of anti-Aβ therapy, and, consequently, reducing the prevalence of AD dementia. Our
transcriptomics-based model, which achieved an AUC of 0.97 for discriminating MCI
from CU individuals and 0.93 for discriminating AD from MCI in the Alzheimer’s Disease
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Neuroimaging Initiative (ADNI) cohort, outperformed conventional models that used
only neuropsychological scores and demographic data, which yielded AUCs of 0.55 and
0.81, respectively.

2. Materials and Methods
2.1. Datasets and Participants

All datasets were acquired from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) GO/2 phases (https://ida.loni.usc.edu/, accessed 21 June 2023). The ADNI is
regarded as a landmark study in the field of Alzheimer’s disease (AD) research, primarily
aimed at evaluating whether neuroimaging and other biological markers can be integrated
with clinical and neuropsychological assessments to diagnose and monitor mild cognitive
impairment (MCI) and early AD. The diagnosis of Alzheimer’s dementia was determined
in accordance with the criteria of the National Institute of Neurological and Communicative
Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association [18].
MCI was diagnosed based on the presence of objective memory impairment that did not
meet the criteria for dementia. For this study, 349 participants were categorized into three
different AD continuum statuses: cognitively unimpaired (CU), MCI (non-converters),
and AD (converters from MCI to AD). The following variables were extracted for analysis:
baseline demographics (age, gender, years of education, and ApoE ε4 genotype), baseline
neuropsychological test scores, protein immunoassay data, and RNA biomarkers. Descrip-
tive statistics were conducted for each variable, and the associations between variables, as
well as the relationship between each variable and outcome, were analyzed using appro-
priate statistical methods (Tables 1 and 2). The ADNI study received approval from the
institutional review boards of all 57 participating centers, and written informed consent,
including permission for analysis and data sharing, was obtained from all participants at
the time of enrollment.

Table 1. Baseline characteristics stratified by “diagnosis”.

CU MCI
(Non-Converters)

MCI
(AD Converters) p-Value *

(n = 78) (n = 211) (n = 60)

Age 72.6 [68.0; 77.9] 69.9 [64.8; 75.6] 72.3 [68.3; 76.5] 0.007
Gender 0.406
- Female 41 (52.6%) 96 (45.5%) 25 (41.7%)
- Male 37 (47.4%) 115 (54.5%) 35 (58.3%)
Edu. Years 16.0 [15.0; 18.0] 17.0 [14.0; 18.0] 16.0 [14.5; 18.0] 0.315
ApoE ε4 <0.001
- 0 59 (75.6%) 126 (59.7%) 18 (30.0%)
- 1 18 (23.1%) 70 (33.2%) 28 (46.7%)
- 2 1 (1.3%) 15 (7.1%) 14 (23.3%)
pTau181
(pg/mL) 13.1 [9.4; 19.0] 13.6 [9.2; 19.1] 22.1 [15.3; 28.5] <0.001

NFL (pg/mL) 30.9 [24.4; 40.4] 30.7 [24.0; 39.8] 39.8 [28.9; 53.7] 0.001
MMSE 29.0 [29.0; 30.0] 29.0 [28.0; 30.0] 27.0 [26.0; 29.0] <0.001
MEM 1.2 [0.7; 1.5] 0.5 [0.1; 1.0] −0.2 [−0.6; 0.1] <0.001
EF 0.9 [0.4; 1.6] 0.7 [0.0; 1.2] −0.0 [−0.6; 0.5] <0.001
LAN 1.1 [0.6; 1.4] 0.6 [0.1; 1.0] 0.1 [−0.3; 0.5] <0.001
VS 0.7 [−0.1; 0.7] −0.1 [−0.1; 0.7] −0.1 [−0.8; 0.7] 0.003

* Pearson’s Chi-squared test for “gender” and “ApoE”; one-way ANOVA for the rest of variables. Values represent
either the median [interquartile range] or number (% of total). Abbreviations: CU (cognitively unimpaired), MCI
(mild cognitive impairment), AD (Alzheimer’s disease), pTau181 (plasma tau phosphorylated at threonine 181),
NFL (neurofilament light chain), MMSE (Mini-Mental State Exam), MEM (memory), EF (executive functioning).
LAN (language), and VS (visuospatial functioning).

https://ida.loni.usc.edu/
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Table 2. Baseline characteristics stratified by “conversion”.

Non-Converters * Converters Total
p-Value **

(n = 287) (n = 62) (n = 349)

Age 70.8 [65.8; 76.2] 72.3 [68.3; 76.6] 71.2 [66.0; 76.2] 0.290
Gender 0.719
- Female 135 (47.5%) 27 (43.5%) 162 (46.4%)
- Male 152 (53.0%) 35 (56.5%) 187 (53.6%)
Edu. Years 17.0 [14.5; 18.0] 16.0 [14.0; 18.0] 16.0 [15.0; 18.0] 0.107
ApoE ε4 <0.001
- 0 184 (64.1%) 19 (30.6%) 203 (58.2%)
- 1 87 (30.3%) 29 (46.8%) 116 (33.2%)
- 2 16 (5.6%) 14 (22.6%) 30 (8.6%)
pTau181
(pg/mL) 13.5 [9.4; 19.1] 21.7 [14.9; 28.4] 14.1 [10.2; 21.3] <0.001

NFL (pg/mL) 30.7 [24.0; 40.4] 39.8 [28.0; 54.9] 31.7 [24.7; 42.1] <0.001
MMSE 29.0 [28.0; 30.0] 27.0 [26.0; 29.0] 29.0 [27.0; 30.0] <0.001
MEM 0.7 [0.3; 1.2] −0.2 [−0.6; 0.1] 0.5 [0.1; 1.1] <0.001
EF 0.7 [0.1; 1.3] 0.0 [−0.6; 0.6] 0.6 [−0.0; 1.2] <0.001
LAN 0.7 [0.1; 1.2] 0.2 [−0.3; 0.5] 0.6 [0.0; 1.1] <0.001
VS 0.3 [−0.1; 0.7] −0.1 [−0.8; 0.7] −0.1 [−0.3; 0.7] 0.003

* Non-converters comprise stable CU and stable MCI subjects. ** Pearson’s Chi-squared test for “gender” and
“ApoE”; one-way ANOVA for the rest of variables. Values represent either the median [interquartile range] or
number (% of total). Abbreviations: pTau181 (plasma tau phosphorylated at threonine 181), NFL (neurofilament
light chain), MMSE (Mini-Mental State Exam), MEM (memory), EF (executive functioning). LAN (language), and
VS (visuospatial functioning).

2.2. Neuropsychological Assessment

Composite scores for executive functioning (ADNI-EF), memory (ADNI-MEM), lan-
guage (ADNI-Lan), and visuospatial functioning (ADNI-VS) were derived from the ADNI
neuropsychological battery using item response theory (IRT) methods [19,20]. Baseline
and follow-up data to 48 months were applied to develop each composite score. The
ADNI-EF included the category fluency tests for animals and vegetables, the trail-making
test (parts A and B), the digit span backwards, the Wechsler adult intelligence scale-revised
digit symbol substitution, and five clock drawing items (circle, symbol, numbers, hands,
and time). The ADNI-MEM score was constructed using various word lists from the
Rey auditory verbal learning test and the Alzheimer’s disease assessment scale-cognitive
subscale (ADAS-Cog), the three-word recall items from the MMSE (ball, flag, and tree),
and logical memory scores (immediate and delayed) [21]. The ADNI-Lan score was cal-
culated based on a neuropsychological battery that included three language-related tests,
six language tasks from the MMSE, three different language tasks from the ADAS-Cog,
and three language items from the Montreal cognitive assessment. The ADNI-VS was
calculated based on a neuropsychological battery including five tests related to clock copy-
ing, the constructional praxis test from the ADAS-Cog, and the copy design test in the
MMSE [21]. Multiple validation analyses comparing each composite score to individual
tests and global scores were conducted among participants who were CU or had MCI or
AD. The MMSE is a 30-item assessment of global cognitive status that covers domains such
as orientation, concentration, attention, verbal learning (without delayed recall), naming,
and visuoconstruction.

2.3. Imputation of Missing Values

Prior to the imputation process, three participants were excluded due to the unavail-
ability of fluorodeoxyglucose positron emission tomography data. Among the remain-
ing 346 participants, 17 missing values from 15 participants were identified, resulting in
1507 available values out of a possible 1524 data points. To address these missing values,
a regression-based imputation method was employed using the scikit-learn package in
Python, following previously reported procedures [22]. This method utilizes existing data
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to predict and fill in the missing values. A regressor model was trained on the avail-
able feature values (predictors) to predict the target feature with missing values. Once
trained, the model was used to estimate the missing values, which were then imputed
into the dataset. All default parameters were applied except for “max_iter”, which was
set to 100 to limit the number of iterations. This approach leverages the relationships
between features to accurately estimate and replace missing values, thereby preserving the
dataset’s integrity and completeness for subsequent analyses. By employing this method,
we maximized the use of available data, enhancing the reliability of the results derived from
the dataset.

2.4. Formulation of the Training Dataset

During the screening visit, potential participants were evaluated based on planned
assessments, including neuropsychological testing and imaging. Participants who met
the inclusion/exclusion criteria proceeded to the baseline assessment, which included
additional neuropsychological testing, imaging, and fluid sampling. The Clinical Core of
the ADNI recommends making the diagnosis at baseline, as this time point provides the
most comprehensive information for an accurate clinical assessment. Clinical assessments
may change over time; for example, a participant classified as CU at baseline and month 12
(m12) might be reclassified as MCI at month 24 (m24) and revert to CU at month 36
(m36) and month 48 (m48). In such cases, the participant was allocated to the CU group.
Participants were classified as maintaining an MCI diagnosis if they were diagnosed as
MCI at baseline and at least three out of five time points.

For the CU group, RNA sequencing data were available for 65 participants. For
the MCI group and AD converters, RNA sequencing data were available for 142 and
39 participants, respectively. A total of 207 participants were qualified for training the
first classifier (CU vs. MCI), and 181 participants were selected for training the second
classifier (MCI vs. AD). All data, including demographics, neuropsychological measures,
and transcriptomics, were merged for analysis.

2.5. Merging Variables from Different Visits

Analyzing longitudinal data requires appropriate preprocessing to ensure the data’s
integrity. The dataset includes variables such as demographics, neuropsychological as-
sessment scores, and RNA expression levels, which were collected at five time points
(baseline, m12, m24, m36, and m48). Each variable consists of five data points per par-
ticipant, which need to be transformed into a single representative value for effective
machine learning analysis. Several methodologies were considered for this transforma-
tion: “Averaging or median calculation” provides a measure of central tendency, with
the median being robust to outliers and skewed distributions. “First observation car-
ried forward” utilizes the baseline value, assuming it is the most representative. “Last
observation carried forward” uses the most recent time-point value (m48), assuming it
is the most relevant. “Slope of linear regression” fits a regression line to the five time
points and uses the slope as the representative value. After comparing these method-
ologies, the delta averaging ratio was selected. For instance, if a participant’s diagno-
sis changed from MCI to AD at m24, the delta averaging ratio calculates two propor-
tional increase/decrease ratios: one between baseline and m12 and another between m12
and m24. This approach consolidates multiple time points into a single value and cap-
tures the trend or progression of the variable over time, which is particularly relevant for
longitudinal studies.

2.6. Transcriptomics Data

In the ADNI GO/2 study, whole blood samples from participants were collected in
three PAXgene Blood RNA tubes. These tubes were gently mixed via inversion 8–10 times
and centrifuged at room temperature within one hour of collection. The centrifugation was
conducted at 3000 rpm for 15 min to separate the plasma fraction. Then, the buffy coat was
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aliquoted into two 2 mL cryogenic vials and shipped to the National Cell Repository for
AD within 24 h of collection. Total RNA was purified from whole blood using the PAXgene
Blood RNA Kit (Qiagen Inc., Valencia, CA, USA). Detailed protocols are available at the
ADNI Methods: https://adni.loni.usc.edu/data-samples/adni-data/biofluid-biomarker/
(accessed on 21 June 2023).

RNA sequencing was performed using the Human Genome U219 Array (Affymetrix,
Santa Clara, CA, USA). Raw gene expression data were processed following the standard
quality control (QC) procedures established by the ADNI Genetics Core. These proce-
dures included the assessment of RNA quality, overall array assay QC, sex verification,
and sample identity checks [23,24]. Raw expression values were preprocessed with the
robust multi-chip average normalization method [25]. All probe sets were mapped and
annotated to the reference human genome (hg19). Following QC, the RNA expression
profiles containing 21,150 probes were adjusted for covariates, including age, gender, and
RNA integrity number values.

2.7. Machine Learning (ML)

Four ML algorithms, along with linear regression, were employed to identify genes
associated with MCI or AD and to differentiate them from those associated with CU or
MCI participants: Ridge, Lasso, Support Vector Machine (SVM), and Random Forest.
Ridge and Lasso regressions are extensions of linear regression that incorporate regular-
ization techniques to mitigate overfitting. Conventional linear regression can be prone
to overfitting, particularly when certain coefficients assume to take on very large values,
which can result in poor generalizability to new datasets. Ridge regression uses L2 reg-
ularization to penalize the sum of squared coefficients, while Lasso regression applies
L1 regularization to penalize the absolute values of the coefficients. Both approaches
reduce the likelihood of overfitting by shrinking large coefficients, thereby enhancing
the model’s ability to generalize to unseen data. SVM is designed to find an optimal
hyperplane that best separates the different classes in the dataset. It can also employ
kernel functions to enable non-linear classification, which increases the flexibility and
applicability of the model to complex data structures. Random Forest, on the other hand,
constructs an ensemble of decision trees, with each tree built on a random subset of features
and data. The final classification decision is made by aggregating the outputs from all
individual trees, which enhances the robustness and accuracy of the model through a
voting mechanism.

The dataset, comprising CU, MCI, and AD participants, was randomly divided into
a training set (80%) and a testing set (20%). To assess model robustness, five-fold cross-
validation was employed. The ML algorithms were used to build models on the training
set, and their performances were evaluated on the testing set. The model with the highest
AUC was selected as the best model for distinguishing MCI from CU participants. The
best model was further validated using the testing data, with AUC serving as the primary
performance metric.

2.8. Gene Set Enrichment Analysis (GSEA)

GSEA was performed to identify differentially expressed genes (DEGs) and enriched
biological processes across different cognitive states [26,27]. The first dataset included
gene expression data from CU and MCI individuals, while the second dataset comprised
data from MCI and AD individuals. The GSEA were conducted using version 4.3.3 for
Windows, available from the GSEA website (gsea-msigdb.org). The annotated gene set
c5.go.bp.v2023.2.Hs.symbols.gmt from the MSigDB was selected as a reference, categorizing
biological processes (BPs) by listing the genes involved in each process. The number of
permutations was set to 1000 (default), and the permutation type was set to gene_set,
rearranging the gene sets of the BPs for statistical testing. Default settings were used for
the metrics for ranking genes and the enrichment statistic. The maximum gene set size was
capped at 200 to exclude larger sets, and the minimum size was set at 5 to exclude smaller

https://adni.loni.usc.edu/data-samples/adni-data/biofluid-biomarker/


Cells 2024, 13, 1920 7 of 24

sets, focusing on biologically significant processes. The significance level was set at p < 0.05
or <0.01. A chip file created by converting GPL13667-15572 from the gene expression
omnibus was used for collapsing probes to gene symbols. All other conditions followed the
default settings of the GSEA, and GO analysis was conducted. Gene expression levels and
enrichment scores for each pathway, based on expression changes between two groups,
were converted into normalized enrichment score values.

2.9. GO and Functional Annotation

To further elucidate the biological functions of DEGs, functional enrichment analysis
was conducted, focusing on BPs. Additionally, Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis was utilized to identify the pathways involved in biological
molecular interactions. GO and KEGG pathway analyses were performed using DAVID
6.8 or analyzed using Cytoscape 3.10.1, which employs the Benjamini–Hochberg p-value
correction algorithm to identify significantly enriched terms.

The enrichment library used for GO_BP terms was “GO_BiologicalProcess-EBI-UniProt-
GOA-ACAP-ARAP_25.05.2022_00h00”. Selection criteria for representative pathways in-
cluded GO levels three to eight, a minimum of three genes per term, and mapped genes
representing at least 4% of the total associated genes. The Kappa score was used to define
term–term interactions and associate terms and pathways with functional groups based
on shared genes. Ensemble gene IDs were used as gene identifiers for all analyses. False
discovery rate and Bonferroni-corrected p-values less than 0.05 were considered significant,
indicating that genes within a particular BP were significantly enriched in either the MCI
or AD clusters, rather than by random chance.

2.10. Protein Immunoassays

The quantification of plasma protein biomarkers was performed using single-molecule
array (SIMOA) technology, a highly sensitive, paramagnetic microbead-based sandwich
enzyme-linked immunosorbent assay. Samples and controls were transferred to 96-well
Quanterix® plates and measured in duplicate on an HD-X platform (Quanterix, Billerica,
MA, USA) using a 2-step neat assay. This process involved combining target antibody-
coated paramagnetic beads with the sample and a biotinylated detector antibody during
the same incubation. Target molecules in the sample were captured by the antibody-
coated beads and simultaneously bound by the biotinylated detector antibody. These
capture antibody-coated beads were conjugated to streptavidin-β-galactosidase, which
labeled the captured protein. The substrate solution enabled β-galactosidase to hydrolyze
the substrate into a fluorescent product, providing the measurement signal. The protein
concentration was then interpolated from a standard curve obtained via four-parameter
logistic regression fitting.

Plasma p-Tau181 was analyzed by the clinical neurochemistry laboratory at the Uni-
versity of Gothenburg, following previously reported procedures [10]. Biotinylated anti-
pTau181 was used as the capture antibody (AT270, Thermo Fisher Scientific, Waltham, MA,
USA), and Tau12 antibody was utilized as the detector (BioLegend, San Diego, CA, USA).
Plasma neurofilament light chain (NFL) protein was also analyzed using the NF-light kit
on the SIMOA HD-X analyzer, as previously reported [28]. Plasma samples were mea-
sured at 1:4 dilution and in a blinded manner. The analytical lower limits of quantification
were 0.4 pg/mL for NFL and 1.0 pg/mL for p-tau181. The mean intra-assay coefficient of
variation was less than 5%.

2.11. Cox Proportional Hazards Analysis

To identify the genes associated with the conversion of MCI to AD dementia, Cox
proportional hazards analysis was performed on the 96 genes selected through GSEA. This
analysis evaluates the association between multiple independent variables and survival
rates, considering RNA expression levels as a treatment variable due to the absence of
treatment data. Each gene was mapped to one or more probes using the chip platform,
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and probe expression values were converted into tertiles (low, intermediate, or high). Ter-
tile cut-offs were determined independently for each probe. The analysis was conducted
for 353 models (one for each probe). Demographic information (age, sex, years of edu-
cation, and ApoE ε4 status) was also included, resulting in 2 × 353 models (with and
without covariates).

2.12. Sensitivity Analysis for SVM Model Outcomes

To validate the significance of the identified RNA biomarkers, a generalized re-
gression model was employed, chosen for its flexibility in handling high-dimensional
data. From the comparison of CU and MCI participants, four types of ML techniques
identified 353 RNA biomarkers with statistically significant associations (Bonferroni-
corrected p < 0.05). Elastic net regression and the corrected Akaike information crite-
rion (AICc) were used for estimation and validation, respectively. The statistical signifi-
cance of RNA biomarkers was evaluated through p-values obtained from the regression
coefficients in the generalized regression model. Key performance metrics (precision,
accuracy, and F1 score) were compared with those of the SVM model. A correlation
heatmap was plotted using JMP Pro 17 to visualize the matrix of correlations between
parameter estimates.

2.13. Linear Mixed-Effects Model (LMM)

To evaluate the predictive power of baseline pTau181 and NFL protein biomark-
ers in relation to cognitive decline over a four-year follow-up period, an LMM was em-
ployed, as detailed previously [29]. The LMM incorporated both fixed and random ef-
fects. Fixed effects included baseline plasma protein biomarker levels (categorized into
tertiles), time (years from baseline), and the interaction between biomarker levels and
time. Random intercepts accounted for inter-individual variability in baseline cogni-
tive performance, while random slopes for time-captured individual differences in cog-
nitive trajectories. The dependent variable was the neuropsychological measure (MMSE,
ADNI-MEM, -EF, -LAN, or -VS), with the plasma biomarker levels, time, and their in-
teraction as predictors. The covariates included the age, sex, years of education, and
ApoE ε4 status.

2.14. Statistical Analysis

Demographic differences among groups were assessed using analysis of variance with
Tukey’s multiple comparisons test for continuous variables and Pearson’s Chi-squared test
for categorical variables. In the sensitivity analysis of SVM model outcomes, a binomial
generalized regression analysis was conducted using JMP Pro 17 to identify significant
RNA biomarkers for discriminating MCI from CU individuals. Cox proportional hazards
analysis was employed to evaluate the associations between these biomarkers and the risk
of conversion from MCI to AD dementia. All statistical analyses were performed using R
software, version 4.3.3 (R Foundation for Statistical Computing), JMP Pro 17 (SAS Institute
Inc., Cary, NC, USA), IBM SPSS version 27.0 (IBM, Inc., New York, NY, USA), and MedCalc
version 22.009 (MedCalc software, Belgium). Statistical significance was set at a two-tailed
p-value of less than 0.05.

3. Results

The study design and workflow for identifying RNA biomarkers predictive of MCI or
AD are summarized in a flowchart, which illustrates the methods and procedures utilized
in this research (Figure 1).
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Figure 1. Study design and workflow for identifying RNA biomarkers predictive of MCI or AD. 
Methods for biomarker identification and functional annotation are depicted in grey round squares. 
The numbers in parentheses at the bottom indicate the RNA probes that met the selection criteria 
and were subsequently identified using ML algorithms. Abbreviations: CU (cognitively unim-
paired), MCI (mild cognitive impairment), AD (Alzheimer’s disease), DEG (differentially expressed 
gene), and GSEA (gene set enrichment analysis). 
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Figure 1. Study design and workflow for identifying RNA biomarkers predictive of MCI or AD.
Methods for biomarker identification and functional annotation are depicted in grey round squares.
The numbers in parentheses at the bottom indicate the RNA probes that met the selection criteria
and were subsequently identified using ML algorithms. Abbreviations: CU (cognitively unimpaired),
MCI (mild cognitive impairment), AD (Alzheimer’s disease), DEG (differentially expressed gene),
and GSEA (gene set enrichment analysis).

3.1. Baseline Characteristics

Baseline characteristics were analyzed by stratifying the participants into three groups:
CU, MCI (non-converters), and MCI (converters to AD). Age was found to be significantly
different among these groups (p = 0.007, Table 1); however, when stratified by conversion
status, age did not display a significant difference (Table 2). ApoE ε4 status and neuropsy-
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chological measures, including MMSE, ADNI-MEM, ADNI-EF, ADNI-LAN, and ADNI-VS,
exhibited statistically significant differences across both diagnosis and conversion stratifica-
tions (p < 0.01), as detailed in Tables 1 and 2. In contrast, gender and years of education
did not present significant differences in either stratification. An analysis using a scatter
plot matrix did not reveal significant associations between demographic variables (age,
sex, ApoE ε4 status, and years of education) and MCI classification, suggesting that these
variables alone are inadequate for reliably classifying disease status (Figure S1a).

We further investigated the predictive utility of neuropsychological measures for
classifying disease status (Figure S1b). The correlation matrix for various combinations of
baseline neuropsychological scores indicated that while many red dots were concentrated
on the left and lower sides of some plots—indicating potential associations—red dots were
also scattered across other regions of the plots. This distribution suggests that neuropsy-
chological measures alone may not be sufficient to reliably predict conversion from MCI
to AD.

3.2. Transcriptomics-Based RNA Biomarkers and Accuracy Comparisons

The participants were stratified along the AD continuum into three groups: CU, MCI,
and AD. The baseline gene expression profiling dataset included 735 participants and
49,386 RNA probes. To identify DEGs relevant for discriminating MCI or AD, we employed
DESeq2, a comprehensive tool for the gene-level analysis of RNA sequencing data, as
previously described [30]. Four AD continuum status combinations were examined: CU
vs. MCI (CU_MCI), MCI vs. AD (MCI_AD), CU vs. MCI vs. AD (CU_MCI_AD), and a
combined CU and MCI vs. AD (CUMCI_AD), using p-value thresholds of <0.01 and <0.05.
The CU_MCI combination indicates RNA probes that can significantly differentiate MCI
from CU patients.

To evaluate the classification performance of the RNA probe sets, we employed four
ML algorithms: Ridge, Lasso, SVM, and Random Forest (RF) (Table 3). Five-fold cross-
validation was performed, and the mean accuracy across the five tests was calculated.
As detailed in Table 3, for the CU vs. MCI comparison, the CU_MCI and CU_MCI_AD
combinations achieved accuracies of 0.83 or higher. In contrast, the CUMCI_AD and
MCI_AD combinations exhibited accuracies of 0.81 or less. Conversely, for the MCI vs. AD
comparison, the CUMCI_AD and MCI_AD combinations outperformed the CU_MCI and
CU_MCI_AD combinations. The mean accuracy for predicting AD presence compared to
MCI (MCI vs. AD) was around 0.6, suggesting that gene expression profiling alone does
not provide sufficiently robust performance for distinguishing AD from MCI. This finding
underscores the need for incorporating additional variables, such as neuropsychological
measures or demographic data, to enhance classification accuracy.

Table 3. Accuracy metrics across different AD continuum status combinations.

CU_MCI CU_MCI_AD CUMCI_AD MCI_AD
Cut-off p-value 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05
No. of probes 213 1299 223 1325 402 2227 350 1957

CU vs. MCI

Lasso 0.91 0.89 0.89 0.88 0.81 0.81 0.81 0.81
RF 0.85 0.83 0.85 0.83 0.81 0.81 0.81 0.80

Ridge 0.93 0.97 0.96 0.97 0.65 0.69 0.66 0.73
SVM 0.94 0.97 0.97 0.97 0.81 0.81 0.81 0.81

MCI vs. AD

Lasso 0.15 0.2 0.3 0.21 0.63 0.47 0.54 0.44
RF 0.00 0.00 0.00 0.00 0.21 0.04 0.24 0.05

Ridge 0.34 0.26 0.42 0.24 0.82 0.79 0.79 0.84
SVM 0.34 0.3 0.32 0.25 0.74 0.76 0.74 0.82

This basic model represents the accuracy metrics derived from RNA datasets alone. The heatmap color visually
represent the accuracy performance of each ML algorithm, categorized by RNA probe selection conditions.
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3.3. Discriminating Performances of Multivariate Models

While gene expression array data demonstrate potential in distinguishing MCI from
CU individuals, its utility in discriminating AD from MCI remains limited. This limitation
underscores the necessity for a multifaceted approach that integrates additional clinical
and demographic variables to enhance discriminative performance. To address this, we
investigated the discriminatory power for MCI or AD when RNA probes were combined
with demographic variables (age, sex, ApoE ε4, and years of education) alone or together
with neuropsychological measures. Two multivariate models were developed: one incor-
porating gene expression array data with demographics alone and the other extending
to include neuropsychological measures as well. As outlined in Section 2.5, the delta
averaging ratio strategy was applied consistently to integrate variables from different visits.

The AUC was calculated to assess the overall discriminative capacity of these models.
For distinguishing MCI from CU individuals, the SVM and Ridge algorithms consistently
showed superior performances across all models, including the basic RNA probe model
and multivariate models that incorporated RNA probes, demographic variables, or a com-
bination of RNA probes, demographics, and neuropsychological measures. Among these,
the SVM algorithm exhibited the highest AUC (0.97 ± 0.02, Table 3 and Figure 2) across all
models at the cut-off p-value of 0.05. While the Ridge algorithm performed optimally in
the basic RNA probe model, it showed a slight reduction in the AUC for the multivariate
models (0.96 ± 0.02, Figure 2). In contrast, the AUC for RF and Lasso algorithms improved
in the multivariate models compared to the basic RNA probe model (Table 3; Figure 2).
Overall, the SVM model based on the basic RNA probe model is preferred as the parsi-
monious approach for classifying MCI from CU patients. For differentiating AD from
MCI, the multivariate models outperformed the basic RNA probe model, with AUC values
for all four ML algorithms falling below 0.84 in the basic RNA probe model. However,
when using composite models that integrated RNA probes, demographic variables, and
neuropsychological measures, the SVM and Ridge algorithms demonstrated significantly
improved discriminative performance. The multivariate models, which included all three
variable types, further increased the AUC to 0.94 and 0.96 for the SVM and Ridge algo-
rithms, respectively (Table 3; Figure 2). Thus, for optimal AD classification, the inclusion of
demographics and neuropsychological measures was essential.
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Figure 2. Comparison of the discriminating performances of multivariate models. (a) Receiver op-
erating characteristic (ROC) curves for RNA biomarkers combined with demographic variables in 
the CU vs. MCI comparison. (b) ROC curves for RNA biomarkers in combination with de-
mographics and neuropsychological measures in the CU vs. MCI comparison. (c) ROC curves for 
RNA biomarkers combined with demographic variables in the MCI vs. AD comparison. (d) ROC 
curves for RNA biomarkers in combination with demographics and neuropsychological measures 
in the MCI vs. AD comparison. 

From the perspective of algorithms, SVM demonstrated the best performance in dis-
criminating MCI from CU individuals. In contrast, Ridge outperformed the other ML al-
gorithms in distinguishing AD from MCI, although the difference in performance between 
these two algorithms was negligible. Given the large number of variables involved, col-
linearity is more likely to occur, and Ridge regression is particularly effective at managing 
collinearity between variables. Despite the similar discriminative performances of the 
SVM and Ridge algorithms, the SVM algorithm was preferred due to its superior gener-
alization capacity for binary classification. 
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GOBP_Response to peptide hormone 19 0.470  2.050  0.002  
GOBP_Regulation of defense response 34 0.379  2.014  0.004  
GOBP_Positive regulation of canonical NF-κB signal transduction 12 0.554  1.966  0.004  
GOBP_Regulation of leukocyte differentiation 21 0.428  1.956  0.006  
GOBP_Cytokine production 42 0.342  1.946  0.002  
GOBP_Positive regulation of immune system process 49 0.318  1.894  0.002  
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Figure 2. Comparison of the discriminating performances of multivariate models. (a) Receiver operating
characteristic (ROC) curves for RNA biomarkers combined with demographic variables in the CU vs.
MCI comparison. (b) ROC curves for RNA biomarkers in combination with demographics and neu-
ropsychological measures in the CU vs. MCI comparison. (c) ROC curves for RNA biomarkers combined
with demographic variables in the MCI vs. AD comparison. (d) ROC curves for RNA biomarkers in
combination with demographics and neuropsychological measures in the MCI vs. AD comparison.

From the perspective of algorithms, SVM demonstrated the best performance in
discriminating MCI from CU individuals. In contrast, Ridge outperformed the other
ML algorithms in distinguishing AD from MCI, although the difference in performance
between these two algorithms was negligible. Given the large number of variables involved,
collinearity is more likely to occur, and Ridge regression is particularly effective at managing
collinearity between variables. Despite the similar discriminative performances of the SVM
and Ridge algorithms, the SVM algorithm was preferred due to its superior generalization
capacity for binary classification.

3.4. GSEA, GO, and Functional Annotation

GSEA was performed under two comparative conditions (CU vs. MCI and MCI vs.
AD) to identify relevant gene sets and enriched biological processes across different stages
of the AD continuum. Following the procedure and parameters outlined in Section 2.8, the
GSEA identified significant gene sets and biological processes (Tables 4 and 5). Enrichment
scores (ES) were calculated to determine whether a gene set was positively or negatively
correlated with RNA probe expression levels, while the normalized enrichment score (NES)
was used as the standard metric for gene set size variability. GO terms enriched from the
comparisons were considered significant with a nominal p-value < 0.01.

To further investigate the role of hub genes in discriminating MCI from CU individuals,
as well as AD from MCI, gene network analysis was conducted using Cytoscape. Node
and edge data linking GO BP terms to genes were created based on the tsv file information
obtained from the GSEA results. In the CU vs. MCI comparison, GO BP terms were grouped
into four major ontology clusters based on the hierarchical relationships: (1) regulation of
the immune system and defense responses (e.g., “positive regulation of canonical NF-κB
signal transduction”), (2) regulation and activation of signal transduction (e.g., “regulation
of intracellular signal transduction”), (3) development and cell activation processes (e.g.,
“positive regulation of hemopoiesis”), and (4) cellular and biological responses (e.g., “cellular
response to reactive oxygen species”). Genes associated with two of these clusters were
represented by large intermediate circles, while genes such as FER, ERBB2, CTNNB1, EREG,
ANXA1, FGF2, NF1, MAP2K5, and TGFBR1, which are involved in three clusters, were
depicted as smaller circles within the large ones. The gene CASP8, which is involved in
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all four clusters, was positioned centrally in the network (Figure 3). Representative GO BP
terms negatively associated with RNA probes in the CU vs. MCI comparison included those
involved in DNA repair, fat cell differentiation, and response to insulin (Table 4).

Table 4. Representative enriched GO terms for DEGs discriminating MCI from CU patients.

GO Description Size ES NES NOM p-Val

GOBP_Cellular response to reactive oxygen species 9 0.633 2.050 0.008
GOBP_Response to peptide hormone 19 0.470 2.050 0.002
GOBP_Regulation of defense response 34 0.379 2.014 0.004
GOBP_Positive regulation of canonical NF-κB signal transduction 12 0.554 1.966 0.004
GOBP_Regulation of leukocyte differentiation 21 0.428 1.956 0.006
GOBP_Cytokine production 42 0.342 1.946 0.002
GOBP_Positive regulation of immune system process 49 0.318 1.894 0.002
GOBP_Positive regulation of hemopoiesis 12 0.516 1.878 0.004
GOBP_Cell activation 49 0.322 1.846 0.002
GOBP_Regulation of intracellular signal transduction 82 0.271 1.807 0.006
GOBP_Positive regulation of intracellular signal transduction 53 0.298 1.789 0.008
GOBP_Response to insulin 12 −0.503 −1.807 0.002
GOBP_Fat cell differentiation 16 −0.465 −1.866 0.008
GOBP_Regulation of DNA metabolic process 24 −0.456 −2.096 0.002
GOBP_Double-strand break repair 14 −0.571 −2.181 0.002

Abbreviations: ES, enrichment score; NES, normalized enrichment score; NOM p-val, nominal p-value.

Table 5. Representative enriched GO terms for DEGs discriminating AD from MCI.

GO Description Size ES NES NOM p-Val

GOBP_Regulated exocytosis 23 0.521 2.230 0.000
GOBP_Neurotransmitter secretion 14 0.605 2.207 0.000
GOBP_Regulation of membrane repolarization 6 0.810 2.105 0.000
GOBP_TOR_signaling 11 0.620 2.081 0.002
GOBP_Exocytosis 37 0.397 1.989 0.004
GOBP_Positive regulation of intracellular protein transport 11 0.593 1.984 0.002
GOBP_Regulation of regulated secretory pathway 11 0.600 1.951 0.000
GOBP_Adipose tissue development 9 0.623 1.943 0.002
GOBP_Positive regulation of ROS species metabolic process 8 0.652 1.918 0.004
GOBP_Negative regulation of TOR signaling 8 0.650 1.882 0.004
GOBP_Cellular response to cAMP 6 0.732 1.876 0.004
GOBP_Vesicle docking 8 0.648 1.870 0.006
GOBP_Cellular modified amino acid metabolic process 15 0.486 1.834 0.010
GOBP_Export from cell 94 0.268 1.735 0.002
GOBP_Microtubule cytoskeleton organization 49 −0.332 −1.758 0.009
GOBP_DNA metabolic process 70 −0.329 −1.905 0.000
GOBP_DNA damage response 57 −0.361 −1.978 0.004
GOBP_Negative regulation of cell adhesion 26 −0.457 −2.006 0.000
GOBP_Organelle fission 29 −0.462 −2.049 0.000
GOBP_DNA repair 31 −0.480 −2.213 0.000

Abbreviations: ES, enrichment score; NES, normalized enrichment score; NOM p-val, nominal p-value.

The GSEA results from the MCI vs. AD comparison, along with the top 20 GO BP terms,
are presented in Table 5. The GO BP terms identified in this comparison were grouped into
five major clusters based on the GO BP hierarchy: (1) intracellular and extracellular material
transport and secretion processes (e.g., “regulated exocytosis”), (2) metabolic regulation and
cellular environmental response (e.g., “cellular modified amino acid metabolic process”),
(3) signal transmission and cellular response (e.g., “TOR signaling”), (4) tissue development
and cell differentiation (e.g., “adipose tissue development”), and (5) maintenance and reg-
ulation of physiological conditions (e.g., “regulation of membrane repolarization”). Genes
involved in two of these clusters were represented by large intermediate circles, while genes
such as HIF1A, NPPA, PTGS2, and KCNE1, which are associated with three clusters, were
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depicted as smaller circles within the larger ones. Genes such as LEP, CAV1, and APIPOQ,
which were associated with more than four clusters, were positioned at the center (Figure 4).
Representative GO BP terms negatively associated with RNA probes in the MCI vs. AD
comparison included processes related to DNA repair and damage response, organelle fission,
the negative regulation of cell adhesion, and microtubule cytoskeleton organization (Table 5).
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3.5. Sensitivity Analysis

To identify the RNA biomarkers capable of effectively discriminating MCI from
CU individuals, four ML algorithms were initially employed. Among these algorithms,
the SVM model demonstrated the highest efficacy, enabling the identification of a ro-
bust panel of 353 RNA probes from an initial set of 21,150 probes. To further evaluate
the performance of the RNA probes selected by SVM, a generalized regression analysis
was conducted using a subset of 100 RNA probes as part of a sensitivity analysis. The
elastic net was employed for estimation, and the AICc was used for validation. The
discriminative performance metrics achieved were as follows: AUC, 0.9801; sensitiv-
ity, 0.9689; specificity, 0.9133; precision, 0.9635; accuracy, 0.9524; F1 score, 0.9662; and
Matthew’s correlation coefficient, 0.8857 (Figure 5). These results highlight the potential
of the identified RNA biomarkers in accurately differentiating MCI from CU individu-
als, demonstrating high sensitivity, specificity, and overall accuracy. Additionally, we
performed multivariate correlation analyses and examined the correlation of estimates.
A clustered correlation heatmap confirmed the robustness of the selected RNA biomark-
ers, indicating that these biomarkers share biological significance and are interconnected
(Figure S2).
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3.6. Prediction of MCI-to-AD Conversion

We investigated whether specific hub RNA biomarkers were significantly associated
with the conversion from MCI to AD. A total of 271 participants from the ADNI cohort
were evaluated for AD conversion over a four-year follow-up period. Of these participants,
60 converted to AD dementia. The initial event was defined as a diagnosis of MCI, with
the endpoint being conversion to AD. For those who converted to AD, the survival time
was defined as the interval from baseline assessment to AD diagnosis. For non-converters,
who were right-censored at the last follow-up, the survival time was set to four years. Cox
proportional hazards analysis was conducted using the survival and survminer packages
in R software, incorporating various covariates into the models. This analysis revealed
that the highest tertile of baseline expression levels of 123 RNA probes was significantly
associated with an increased risk of MCI-to-AD conversion (Table 6 and Figure 6; The table
listing all 123 genes is available as Supplementary Table S1). Most MCI participants with
gene expression levels in the lowest or intermediate tertiles remained stable in their MCI
status over the four-year period. In contrast, the participants in the highest tertile exhibited
a faster rate of MCI-to-AD conversion (Figure 6).
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Table 6. Top 30 RNA biomarkers with the highest hazard ratios (HR) for predicting MCI-to-AD
conversion.

Gene Probe β SE z p Value HR (95% CI)

GPD1 11720473_at 1.025 0.121 8.452 2.86 × 10−17 2.79 (2.20–3.54)
HAP1 11731552_a_at 0.922 0.110 8.407 4.20 × 10−17 2.51 (2.03–3.12)

ITGAM 11732481_a_at 0.864 0.119 7.277 3.42 × 10−13 2.37 (1.88–2.99)
CBS 11744287_x_at 0.776 0.110 7.080 1.44 × 10−12 2.17 (1.75–2.69)

DIP2B 11717068_a_at 0.728 0.105 6.924 4.39 × 10−12 2.07 (1.69–2.54)
HRH2 11740951_s_at 0.723 0.109 6.634 3.27 × 10−11 2.06 (1.66–2.55)

LILRB3 11745488_s_at 0.706 0.107 6.610 3.84 × 10−11 2.03 (1.64–2.50)
GPR68 11724423_a_at 0.642 0.109 5.872 4.31 × 10−9 1.90 (1.53–2.36)
FBXL20 11729398_a_at 0.638 0.103 6.170 6.82 × 10−10 1.89 (1.55–2.32)

SLC12A1 11728244_s_at 0.634 0.105 6.007 1.89 × 10−9 1.88 (1.53–2.32)
NPPA 11757468_a_at 0.623 0.105 5.930 3.03 × 10−9 1.86 (1.52–2.29)
TLR6 11737628_a_at 0.621 0.108 5.775 7.71 × 10−9 1.86 (1.51–2.30)
CBS 11744835_s_at 0.618 0.101 6.090 1.13 × 10−9 1.85 (1.52–2.26)

SLC12A1 11752597_a_at 0.615 0.107 5.761 8.37 × 10−9 1.85 (1.50–2.28)
KCNB1 11732588_at 0.591 0.111 5.317 1.06 × 10−7 1.81 (1.45–2.25)
CYP4F2 11727964_x_at 0.591 0.109 5.428 5.71 × 10−8 1.81 (1.46–2.24)

RAB11FIP1 11761457_at 0.590 0.101 5.868 4.40 × 10−9 1.80 (1.48–2.20)
DIO1 11729362_a_at 0.575 0.103 5.591 2.25 × 10−8 1.78 (1.45–2.17)

SPTBN4 11734303_a_at 0.574 0.106 5.432 5.57 × 10−8 1.78 (1.44–2.18)
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Table 6. Cont.

Gene Probe β SE z p Value HR (95% CI)

CBS 11744286_s_at 0.569 0.101 5.619 1.92 × 10−8 1.77 (1.45–2.15)
CSGALNACT1 11732525_a_at 0.563 0.105 5.335 9.55 × 10−8 1.76 (1.43–2.16)

MTM1 11749427_a_at 0.561 0.109 5.161 2.45 × 10−7 1.75 (1.42–2.17)
ACVRL1 11747260_a_at 0.537 0.105 5.133 2.86 × 10−7 1.71 (1.39–2.10)
RNF152 11732769_at 0.537 0.102 5.279 1.30 × 10−7 1.71 (1.40–2.09)

ADIPOQ 11734559_x_at 0.522 0.101 5.178 2.24 × 10−7 1.69 (1.38–2.05)
CAV1 11757013_x_at 0.525 0.108 4.864 1.15 × 10−6 1.69 (1.37–2.09)

DPYSL5 11739423_at 0.518 0.109 4.759 1.95 × 10−6 1.68 (1.36–2.08)
PPY 11730869_s_at 0.512 0.105 4.888 1.02 × 10−6 1.67 (1.36–2.05)

CHDH 11739355_at 0.514 0.104 4.921 8.62 × 10−7 1.67 (1.36–2.05)
WDR1 11745608_a_at 0.500 0.108 4.641 3.47 × 10−6 1.65 (1.34–2.04)

Abbreviations: β, the regression coefficient; SE, standard error of β; z, Wald statistic value (z = β/SE); HR (95% CI),
hazard ratio (95% confidence interval).

3.7. Longitudinal Cognitive Status Predictors: Plasma pTau181 and NFL

An LMM analysis was conducted to evaluate the associations between plasma protein
biomarkers and cognitive decline, as measured via neuropsychological assessments. To deter-
mine the predictive value of plasma biomarkers for cognitive decline, this study compared
the baseline concentrations of pTau181 and NFL with the neuropsychological scores. After
adjusting for covariates such as age, sex, ApoE ε4 allele, and years of education, the LMM
analysis revealed a significant interaction between the highest tertile of pTau181 levels and
time across all neuropsychological measures (Table 7; Figure 7). In contrast, the highest tertile
of NFL exhibited a significant interaction with time for all cognitive measures except for
ADNI-VS. These findings underscore the prognostic value of the plasma pTau181 and NFL
levels in predicting cognitive decline. The significant interaction effects with time suggest that
individuals with higher baseline levels of these proteins are likely to experience more rapid
cognitive deterioration, as evidenced by steeper declines in neuropsychological scores over
time (MMSE, ADNI-MEM, -EF, and -LAN). Additional LMM plots are available in Figure S3.

Table 7. Association of plasma biomarkers with neuropsychological scores.

Cognition Measure Predictors β SE t p Value

MMSE pTau181 × time −0.381 0.059 −6.513 <0.001
pTau181 0.040 0.261 0.153 0.879

NFL × time −0.285 0.059 −4.828 <0.001
NFL 0.554 0.263 2.111 0.036

ADNI-MEM pTau181 × time −0.067 0.010 −6.503 <0.001
pTau181 −0.156 0.088 −1.764 0.080

NFL × time −0.061 0.010 −5.875 <0.001
NFL 0.057 0.087 0.659 0.511

ADNI-EF pTau181 × time −0.058 0.013 −4.516 <0.001
pTau181 −0.052 0.098 −0.529 0.597

NFL × time −0.067 0.013 −5.270 <0.001
NFL 0.082 0.095 0.862 0.390

ADNI-LAN pTau181 × time −0.060 0.013 −4.625 <0.001
pTau181 −0.034 0.084 −0.408 0.684

NFL × time −0.055 0.013 −4.209 <0.001
NFL 0.148 0.082 1.805 0.073

ADNI-VS pTau181 × time −0.029 0.015 −2.007 0.045
pTau181 −0.022 0.069 −0.319 0.750

NFL × time −0.017 0.014 −1.193 0.233
NFL 0.037 0.068 0.546 0.586

Abbreviations: β, the regression coefficient; SE, standard error of β; t, T-statistic value (t = β/SE). The LMM was
adjusted for age, sex, ApoE ε4 alleles, and years of education. Protein × time denotes the time interaction effect of
the protein.
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four follow-up assessments. 
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early AD during phase 3 clinical trials. However, these monoclonal antibody treatments 
have several limitations. Anti-Aβ therapies are expensive, with annual costs exceeding 
USD 26,000, and are cumbersome, requiring biweekly or monthly infusions and regular 
MRI scans to monitor for severe side effects, such as amyloid-related imaging abnormali-
ties. A critical challenge lies in identifying the patients who will derive the most benefit 
from these therapies. Differentiating MCI from CU individuals is essential, as these anti-
Aβ therapies could provide significant clinical benefits by preventing cognitive decline in 
patients with early AD. Early diagnosis of AD, prior to the onset of dementia symptoms, 
is associated with multiple benefits, including prolonged survival, improved psychologi-
cal well-being for patients and caregivers, and reduced healthcare costs. Recent findings 
from clinical trials on disease-modifying therapies suggest that achieving meaningful 
therapeutic success is likely dependent on early intervention [17]. ML and deep-learning 
algorithms are poised to become essential tools in analyzing and integrating vast datasets 
in AD research. These technologies can help identify the pathways involved in disease 
initiation and progression, thereby guiding early diagnosis to mitigate the prevalence of 
AD. While substantial progress has been made in validating plasma proteins as bi-
omarkers for AD and in predicting cognitive decline in individuals with MCI [10,31,32], 
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Figure 7. Prediction of longitudinal neuropsychological score alterations based on baseline plasma
protein levels. Trajectories were derived from the LMM, with the baseline plasma pTau181 and NFL
levels as predictors, being adjusted for age, sex, ApoE ε4, and years of education. MMSE trajectories
were stratified by (a) pTau181 or (b) NFL tertiles, while ADNI-MEM trajectories were stratified by
(c) pTau181 or (d) NFL tertiles. The trajectories depict changes in the MMSE or ADNI-MEM scores
over time influenced by different tertiles of baseline pTau181 or NFL levels. The slope, indicative
of the rate of cognitive decline, appears steeper for individuals with higher protein levels. The
red line represents the highest tertile for each protein, while the blue and green lines represent the
intermediate and lowest tertiles, respectively. Shaded areas indicate the 95% confidence intervals
of the regression lines. This figure displays the mean levels within each covariate (age and years of
education), with females as the reference group. The time span is capped at four years, corresponding
to four follow-up assessments.

4. Discussion

In 2023, the US Food and Drug Administration approved lecanemab, a monoclonal
antibody targeting aggregated Aβ peptides, as the first disease-modifying treatment for
AD [16]. This drug is indicated for patients with MCI or those in the early stages of
AD. Similarly, another anti-Aβ drug, donanemab, was approved in July 2024 [17]. These
treatments have demonstrated efficacy in reducing clinical cognitive decline in subjects with
early AD during phase 3 clinical trials. However, these monoclonal antibody treatments
have several limitations. Anti-Aβ therapies are expensive, with annual costs exceeding
USD 26,000, and are cumbersome, requiring biweekly or monthly infusions and regular
MRI scans to monitor for severe side effects, such as amyloid-related imaging abnormalities.
A critical challenge lies in identifying the patients who will derive the most benefit from
these therapies. Differentiating MCI from CU individuals is essential, as these anti-Aβ

therapies could provide significant clinical benefits by preventing cognitive decline in
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patients with early AD. Early diagnosis of AD, prior to the onset of dementia symptoms, is
associated with multiple benefits, including prolonged survival, improved psychological
well-being for patients and caregivers, and reduced healthcare costs. Recent findings
from clinical trials on disease-modifying therapies suggest that achieving meaningful
therapeutic success is likely dependent on early intervention [17]. ML and deep-learning
algorithms are poised to become essential tools in analyzing and integrating vast datasets
in AD research. These technologies can help identify the pathways involved in disease
initiation and progression, thereby guiding early diagnosis to mitigate the prevalence of
AD. While substantial progress has been made in validating plasma proteins as biomarkers
for AD and in predicting cognitive decline in individuals with MCI [10,31,32], this study
is, to our knowledge, the first to demonstrate the utility of ML in classifying plasma
RNA biomarkers that can discriminate MCI from CU individuals, as well as predict the
progression to AD dementia in patients with cognitive decline symptoms. This study
investigated how RNA biomarkers could be effectively combined with key demographic
variables to differentiate MCI or AD, predict progression from MCI to AD, and assess
therapeutic effects by comparing gene expression profiles. The findings of this study
may enhance the accuracy of blood-based AD diagnostic tests, enabling the more precise
identification of MCI and monitoring the efficacy of disease-modifying therapies. Timely
detection of MCI progression to AD is crucial, as early interventions—such as lifestyle
modifications, medication, and cognitive training—could potentially delay the onset or
slow the progression to AD. For instance, a two-year delay in the onset of AD could reduce
the global prevalence by approximately 22.8 million cases by 2050 [33,34], highlighting
the significant impact that even a modest delay in disease onset could have on the global
burden of AD [35].

Our GSEA identified over one hundred DEGs that distinguish MCI or AD from CU
individuals. Notably, GO terms related to T-cell, lymphocyte, and leukocyte prolifera-
tion or differentiation were significantly enriched in the CU vs. MCI comparison. Key
DEGs, including ANXA1, ERBB2, GLI3, SMAD7, CTNNB1, EGR3, PRDM1, SMARCD1, and
ZFP36L2, were significantly associated with these immunological terms. This enrichment
suggests a link between early cognitive impairment and immunosenescence, aligning
with the hypothesis that immune system alterations precede and potentially contribute
to the early stages of the AD continuum. These findings highlight the importance of im-
mune system dynamics in cognitive health. There is substantial evidence that immune
dysregulation in AD affects both central and peripheral immune responses [36]. Given
that advanced age is a primary risk factor for AD, age-related immune system changes,
termed immunosenescence, are crucial to consider [37,38]. Immunosenescence involves a
decline in immune function, partially explaining the increased susceptibility of older adults
to infections and malignancies. Additionally, “inflammaging,” characterized by elevated
levels of circulating pro-inflammatory molecules such as IL-15, contributes to age-related
immune changes [39]. Further research is needed to elucidate the specific mechanisms
by which immunosenescence and immune dysregulation contribute to cognitive decline.
Emerging evidence indicates that the peripheral immune response, particularly involving
the NF-κB signaling pathway, plays a significant role in the prodromal AD [36,40]. This
association underscores the importance of systemic inflammation in the early pathogenesis
of AD, highlighting the peripheral NF-κB pathway as a potential contributor to disease
progression and a promising target for therapeutic intervention [41–43].

Our GSEA results also revealed that DEGs from the CU vs. MCI comparison were
enriched for GO terms associated with the regulation of blood vessel or vascular epithelial
proliferation/differentiation. Notably, the gene expression levels of consensus DEGs, in-
cluding JAG1, NF1, ACVRL1, FGF2, HIF1A, LEP, PTGS2, TGFBR1, and YAP1, significantly
discriminated MCI from CU individuals. This suggests a critical link between MCI and
vascular-related processes, such as vascular dysfunction and hypoxia. Vascular abnor-
malities are a predominant cause of clinical dementia in the elderly. Early and persistent
changes in cerebral blood flow are prominent in AD, raising the possibility of a direct
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relationship between vascular dysfunctions and AD pathobiology. Transcripts involved in
these vascular processes have been implicated in the pathobiology of both MCI and AD.
For instance, neurofibrillary tau tangles, independent of Aβ deposition, have been shown
to significantly affect cortical microvasculature. These tangles promote the proliferation
of small-diameter blood vessels and increase the expression of hypoxia and angiogenesis-
related genes in vascular epithelial cells [44]. Numerous studies suggest that hypoxia affects
many pathological aspects of AD, including oxidative stress, reactive oxygen species (ROS),
and neuroinflammation, all of which have demonstrated multifaceted impacts on AD
pathogenesis. Hypoxia can induce oxidative stress and disrupt cellular energy metabolism,
leading to neuronal damage and dysfunction [45]. Additionally, hypoxia has been shown to
promote the accumulation of misfolded Aβ and tau [46]. Furthermore, hypoxia can induce
chronic inflammation and impair neurovascular function, exacerbating neurodegenerative
processes [47]. These findings highlight the significance of vascular-related processes in cog-
nitive health. However, further research is warranted to elucidate the specific mechanisms
by which vascular dysfunction and hypoxia contribute to cognitive decline and to explore
potential therapeutic targets for mitigating the onset and progression of neurodegenerative
diseases within the vascular system.

Using GSEA and protein interaction network analysis, we also identified DEGs that
distinguish AD from MCI. Notably, these DEGs were enriched for GO terms related to the
regulation of exocytosis, synaptic vesicle exocytosis, vesicular trafficking, and the regula-
tion of the secretory pathway. This enrichment underscores the importance of synaptic
vesicle exocytosis and the secretory pathway in the diagnosis of AD. GO terms associated
with metabolism (energy, cholesterol, and lipid) and transport pathways were also enriched.
Aβ species are known to drive synaptic pathology throughout the AD continuum. Low
concentrations of monomeric Aβ have been suggested to stimulate neurotransmission by
enhancing vesicle docking and inhibiting neurotransmitter removal from the synaptic cleft.
However, the pathological accumulation of Aβ, resulting from an imbalance between its
production and clearance, predominantly blocks exocytosis, which can lead to neuronal
degeneration [48,49]. Several proteins involved in extracellular vesicle functions were
found to have increased levels in the AD brain. Musunuri et al. hypothesized that these
changes may result in disturbed cellular clearance and perturbed cell-to-cell communica-
tion, contributing to neuronal dysfunction and cell death in AD [50]. Molecular changes
leading to Aβ deposition have focused on the roles of the secretory pathway, which is
crucial for the processing, quality control, and trafficking of key components of amyloido-
genesis. The secretory support of amyloid precursor protein (APP) by β- and γ-secretases
is a critical process involved in Aβ production [51]. Kuo et al. demonstrated that the
genes contributing most to the APP support network within the secretory pathway were
significantly enriched for targets of AD risk genes, suggesting a mechanistic link between
genetic variants associated with AD and dysregulation of the secretory pathway [52]. These
findings highlight the critical role of the secretory pathway in the pathogenesis of AD,
particularly concerning Aβ production and accumulation. Overall, our results suggest
that the dysregulation of exocytosis and the secretory pathway plays a significant role in
the progression from MCI to AD. This finding may reflect the intricate interplay between
synaptic function, vesicular trafficking, and neurodegenerative processes, emphasizing the
need for a comprehensive approach to understanding and addressing the molecular under-
pinnings of AD. Future research should focus on elucidating the specific mechanisms by
which disruptions in exocytosis and the secretory pathway contribute to AD pathogenesis.

Our analysis identified several shared biological processes that were enriched in both
the MCI vs. CU and AD vs. MCI comparisons. Specifically, these included metabolic
processes, such as “cellular response to ROS” and “negative regulation of TOR signaling.”
These processes may reflect cellular metabolic stress and adaptation, which are central
to the progression from early cognitive impairment to advanced AD. In addition, both
comparisons revealed enriched GO BP terms related to cellular and biological responses,
such as “regulation of intracellular signal transduction”, which may highlight the role of
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dysregulated intracellular signaling pathways in the pathogenesis of AD. Furthermore, we
found that GO BP terms negatively associated with MCI-specific and AD-specific RNA
biomarkers were linked to biological processes involving DNA repair and damage response.
This shared involvement in DNA repair mechanisms suggests a common vulnerability in
maintaining genomic stability during the progression from CU to MCI and subsequently
from MCI to AD.

The linear mixed-effects model (LMM) incorporates both fixed and random effects,
making it suitable for analyzing longitudinal repeated measures [29,53]. We employed
LMM to assess the significant associations of baseline plasma proteins pTau181 and NFL
with longitudinal decline in neuropsychological measures (MMSE, ADNI-MEM, ADNI-EF,
ADNI-LAN, and ADNI-VS). After adjusting for potential confounding factors, including
age, gender, APOE ε4, and years of education, our analysis revealed distinct differences
between pTau181 and NFL. Specifically, LMM analysis indicated that individuals in the
highest tertile of pTau181 (≥19.03 pg/mL) demonstrated a significant decline across all neu-
ropsychological measures. Conversely, the highest tertile of NFL (≥37.9 pg/mL) showed
significant interaction with time for all cognitive measures, except for ADNI-VS. The signif-
icant interaction effects with time suggest that elevated baseline levels of both pTau181 and
NFL are associated with steeper cognitive decline.

One of the limitations of this study is the lack of external validation. To establish
the clinical utility of our findings, the validation of this framework in a population-based
clinical trial is essential. A large-scale study would facilitate further validation of the
diagnostic and predictive performance for MCI and MCI-to-AD conversion, respectively.
Moreover, this validation would provide insights into population-level analyses of MCI
and AD patients and the effectiveness of AD drugs in real-world settings. Additionally,
large community-based studies could help establish normal reference ranges and identify
comorbidities and confounders, and adjusting for their effects could reduce disparities.
Another limitation is the use of a retrospective dataset. To determine the effectiveness of ML
in a clinical setting, these biomarkers should be validated using prospective clinical data.

5. Conclusions

This study demonstrates that machine learning-assisted analysis incorporating key
demographic variables and hub RNA profiles can effectively distinguish MCI patients
from CU individuals and predict the conversion of MCI to AD longitudinally. These
findings suggest that these features could serve as an effective triage tool for predicting
MCI-to-AD conversion, thereby optimizing therapeutic efficacy in subsequent anti-Aβ

antibody treatments. Overall, this study provides a transcriptomics-based ML model and a
valuable pre-screening strategy for identifying MCI patients who are ideal candidates for
anti-Aβ therapy.
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