Versatile Endogenous Editing of GluRIIA in Drosophila melanogaster
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Fly Stocks
2.2. Transgene Construction
2.3. Fixation, Staining and Immunofluorescence
2.4. Structured Illumination Microscopy (SIM)
2.5. Direct Stochastic Optical Reconstruction Microscopy (dSTORM)
2.6. Analysis of Localization Data
2.7. Electrophysiology
2.8. Statistics
2.9. Code and Data Availability
3. Results
3.1. Creation of a Genomic Editing Platform at the GluRIIA Locus
3.2. Expression of the GluRIIA Subunit at Larval Drosophila NMJs
3.3. Induction of Presynaptic Homeostasis at GluRIIA Mutant NMJs and Normal Function in Endogenously Tagged Constructs
3.4. Determining the Size of Postsynaptic Receptor Fields Using Single-Molecule Localization Microscopy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bliss, T.V.; Gardner-Medwin, A.R. Long-Lasting Potentiation of Synaptic Transmission in the Dentate Area of the Unanaestetized Rabbit Following Stimulation of the Perforant Path. J. Physiol. 1973, 25, 103. [Google Scholar] [CrossRef]
- Ito, M.; Sakurai, M.; Tongroach, P. Climbing Fibre Induced Depression of Both Mossy Fibre Responsiveness and Glutamate Sensitivity of Cerebellar Purkinje Cells. J. Physiol. 1982, 324, 113–134. [Google Scholar] [CrossRef] [PubMed]
- Turrigiano, G.G. The Dialectic of Hebb and Homeostasis. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 4–6. [Google Scholar] [CrossRef] [PubMed]
- Ljaschenko, D.; Ehmann, N.; Kittel, R.J. Hebbian Plasticity Guides Maturation of Glutamate Receptor Fields In Vivo. Cell Rep. 2013, 3, 1407–1413. [Google Scholar] [CrossRef] [PubMed]
- Davis, G.W.; Müller, M. Homeostatic Control of Presynaptic Neurotransmitter Release. Annu. Rev. Physiol. 2015, 77, 251–270. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.D.; Gao, F.; Liu, M.J.; Fan, Q.L.; Chen, D.K.; Ma, W.T. Methods for Enhancing Clustered Regularly Interspaced Short Palindromic Repeats/Cas9-Mediated Homology-Directed Repair Efficiency. Front. Genet. 2019, 10, 551. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Hong, H.; Zhao, L.; Huang, S.; Gao, Y.; Metwally, E.; Jiang, Y.; Sigrist, S.J.; Zhang, Y.Q. Postsynaptic CAMP Signalling Regulates the Antagonistic Balance of Drosophila Glutamate Receptor Subtypes. Development 2020, 147, dev191874. [Google Scholar] [CrossRef] [PubMed]
- Petersen, S.A.; Fetter, R.D.; Noordermeer, J.N.; Goodman, C.S.; DiAntonio, A. Genetic Analysis of Glutamate Receptors in Drosophila Reveals a Retrograde Signal Regulating Presynaptic Transmitter Release. Neuron 1997, 19, 1237–1248. [Google Scholar] [CrossRef]
- Davis, G.W.; DiAntonio, A.; Petersen, S.A.; Goodman, C.S. And Reveals a Retrograde Signal That Regulates Presynaptic Transmitter Release in Drosophila. Cell 1998, 20, 305–315. [Google Scholar]
- DiAntonio, A.; Petersen, S.A.; Heckmann, M.; Goodman, C.S. Glutamate Receptor Expression Regulates Quantal Size and Quantal Content at the Drosophila Neuromuscular Junction. J. Neurosci. 1999, 19, 3023–3032. [Google Scholar] [CrossRef]
- Goel, P.; Bergeron, D.D.; Mathias, A.B.; Nunnelly, L.; Lehmann, M.; Buser, C.; Walter, A.M.; Sigrist, S.J.; Dickman, D. Homeostatic Scaling of Active Zone Scaffolds Maintains Global Synaptic Strength. J. Cell Biol. 2019, 218, 1706–1724. [Google Scholar] [CrossRef]
- Goel, P.; Dickman, D. Distinct Homeostatic Modulations Stabilize Reduced Postsynaptic Receptivity in Response to Presynaptic DLK Signaling. Nat. Commun. 2018, 9, 1856. [Google Scholar] [CrossRef] [PubMed]
- Davis, G.W.; Goodman, C.S. Synapse Specific Control of Synaptic Efficacy in Single Neuron. Nature 1998, 392, 655–657. [Google Scholar] [CrossRef] [PubMed]
- Rasse, T.M.; Fouquet, W.; Schmid, A.; Kittel, R.J.; Mertel, S.; Sigrist, C.B.; Schmidt, M.; Guzman, A.; Merino, C.; Qin, G.; et al. Glutamate Receptor Dynamics Organizing Synapse Formation in Vivo. Nat. Neurosci. 2005, 8, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Akbergenova, Y.; Cunningham, K.L.; Zhang, Y.V.; Weiss, S.; Littleton, J.T. Characterization of Developmental and Molecular Factors Underlying Release Heterogeneity at Drosophila Synapses. Elife 2018, 7, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Goel, P.; Wondolowski, J.; Paluch, J.; Dickman, D. A Glutamate Homeostat Controls the Presynaptic Inhibition of Neurotransmitter Release. Cell Rep. 2018, 23, 1716–1727. [Google Scholar] [CrossRef] [PubMed]
- Marrus, S.B.; Portman, S.L.; Allen, M.J.; Moffat, K.G.; DiAntonio, A. Differential Localization of Glutamate Receptor Subunits at the Drosophila Neuromuscular Junction. J. Neurosci. 2004, 24, 1406–1415. [Google Scholar] [CrossRef] [PubMed]
- Gratz, S.J.; Ukken, F.P.; Rubinstein, C.D.; Thiede, G.; Donohue, L.K.; Cummings, A.M.; Oconnor-Giles, K.M. Highly Specific and Efficient CRISPR/Cas9-Catalyzed Homology-Directed Repair in Drosophila. Genetics 2014, 196, 961–971. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, W.; Dong, W.; Watson, A.M.; Hong, Y. Directed, Efficient, and Versatile Modifications of the Drosophila Genome by Genomic Engineering. Proc. Natl. Acad. Sci. USA 2009, 106, 8284–8289. [Google Scholar] [CrossRef]
- Götzke, H.; Kilisch, M.; Martínez-Carranza, M.; Sograte-Idrissi, S.; Rajavel, A.; Schlichthaerle, T.; Engels, N.; Jungmann, R.; Stenmark, P.; Opazo, F.; et al. The ALFA-Tag Is a Highly Versatile Tool for Nanobody-Based Bioscience Applications. Nat. Commun. 2019, 10, 4403. [Google Scholar] [CrossRef]
- Gratz, S.J.; Wildonger, J.; Harrison, M.M.; O’Connor-Giles, K.M. CRISPR/Cas9-Mediated Genome Engineering and the Promise of Designer Flies on Demand. Fly 2013, 7, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.M.; Dannhäuser, S.; Morris, L.; Mrestani, A.; Hübsch, M.; Gehring, J.; Hatzopoulos, G.N.; Pauli, M.; Auger, G.M.; Bornschein, G.; et al. The Human Cognition-Enhancing CORD7 Mutation Increases Active Zone Number and Synaptic Release. Brain 2022, 145, 3787–3802. [Google Scholar] [CrossRef] [PubMed]
- Dannhäuser, S.; Mrestani, A.; Gundelach, F.; Pauli, M.; Komma, F.; Kollmannsberger, P.; Sauer, M.; Heckmann, M.; Paul, M.M. Endogenous Tagging of Unc-13 Reveals Nanoscale Reorganization at Active Zones during Presynaptic Homeostatic Potentiation. Front. Cell. Neurosci. 2022, 16, 1074304. [Google Scholar] [CrossRef] [PubMed]
- Mrestani, A.; Dannhäuser, S.; Pauli, M.; Kollmannsberger, P.; Hübsch, M.; Morris, L.; Langenhan, T.; Heckmann, M.; Paul, M.M. Nanoscaled RIM Clustering at Presynaptic Active Zones Revealed by Endogenous Tagging. Life Sci. Alliance 2023, 6, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Stewart, B.A.; Atwood, H.L.; Renger, J.J.; Wang, J.; Wu, C.F. Improved Stability of Drosophila Larval Neuromuscular Preparations in Haemolymph-like Physiological Solutions. J. Comp. Physiol. A 1994, 175, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Van De Linde, S.; Löschberger, A.; Klein, T.; Heidbreder, M.; Wolter, S.; Heilemann, M.; Sauer, M. Direct Stochastic Optical Reconstruction Microscopy with Standard Fluorescent Probes. Nat. Protoc. 2011, 6, 991–1009. [Google Scholar] [CrossRef] [PubMed]
- Mrestani, A.; Pauli, M.; Kollmannsberger, P.; Repp, F.; Kittel, R.J.; Eilers, J.; Doose, S.; Sauer, M.; Sirén, A.L.; Heckmann, M.; et al. Active Zone Compaction Correlates with Presynaptic Homeostatic Potentiation. Cell Rep. 2021, 37, 109770. [Google Scholar] [CrossRef] [PubMed]
- Wolter, S.; Löschberger, A.; Holm, T.; Aufmkolk, S.; Dabauvalle, M.; Van De Linde, S.; Sauer, M. CorrespondEnce Rapi d STORM: Accurate, Fast Open-Source Software for Localization Microscopy ORCAE: Online Resource for Community Annotation of Eukaryotes. Nat. Methods 2012, 9, 1040–1041. [Google Scholar] [CrossRef]
- Kluyver, T.; Ragan-Kelley, B.; Pérez, F.; Granger, B.; Bussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J.; Grout, J.; Corlay, S.; et al. Jupyter Notebooks—A Publishing Format for Reproducible Computational Workflows. In Proceedings of the Positioning and Power in Academic Publishing: Players, Agents and Agendas, 20th International Conference on Electronic Publishing, Göttingen, Germany, 7–9 June 2016; pp. 87–90. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- McInnes, L.; Healy, J.; Astels, S. Hdbscan: Hierarchical Density Based Clustering. J. Open Source Softw. 2017, 2, 205. [Google Scholar] [CrossRef]
- Hallermann, S.; Heckmann, M.; Kittel, R.J. Mechanisms of Short-Term Plasticity at Neuromuscular Active Zones of Drosophila. HFSP J. 2010, 4, 72–84. [Google Scholar] [CrossRef]
- Weyhersmüller, A.; Hallermann, S.; Wagner, N.; Eilers, J. Rapid Active Zone Remodeling during Synaptic Plasticity. J. Neurosci. 2011, 31, 6041–6052. [Google Scholar] [CrossRef] [PubMed]
- Ehmann, N.; Van De Linde, S.; Alon, A.; Ljaschenko, D.; Keung, X.Z.; Holm, T.; Rings, A.; DiAntonio, A.; Hallermann, S.; Ashery, U.; et al. Quantitative Super-Resolution Imaging of Bruchpilot Distinguishes Active Zone States. Nat. Commun. 2014, 5, 4650. [Google Scholar] [CrossRef] [PubMed]
- Hansen, K.B.; Wollmuth, L.P.; Bowie, D.; Furukawa, H.; Menniti, F.S.; Sobolevsky, A.I.; Swanson, G.T.; Swanger, S.A.; Greger, I.H.; Nakagawa, T.; et al. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol. Rev. 2021, 73, 1469–1658. [Google Scholar] [CrossRef] [PubMed]
- Bukke, V.N.; Archana, M.; Villani, R.; Romano, A.D.; Wawrzyniak, A.; Balawender, K.; Orkisz, S.; Beggiato, S.; Serviddio, G.; Cassano, T. The Dual Role of Glutamatergic Neurotransmission in Alzheimer’s Disease: From Pathophysiology to Pharmacotherapy. Int. J. Mol. Sci. 2020, 21, 7452. [Google Scholar] [CrossRef] [PubMed]
- Christensen, I.; Lu, B.; Yang, N.; Huang, K.; Wang, P.; Tian, N. The Susceptibility of Retinal Ganglion Cells to Glutamatergic Excitotoxicity Is Type-Specific. Front. Neurosci. 2019, 13, 219. [Google Scholar] [CrossRef] [PubMed]
- DiAntonio, A. Glutamate Receptors At The Drosophila Neuromuscular Junction. Int. Rev. Neurobiol. 2006, 75, 165–179. [Google Scholar] [CrossRef] [PubMed]
- Beumer, K.J.; Carroll, D. Targeted Genome Engineering Techniques in Drosophila. Methods 2014, 68, 29–37. [Google Scholar] [CrossRef]
- Heckmann, M.; Dudel, J. Recordings of Glutamate-Gated Ion Channels in Outside-out Patches from Drosophila Larval Muscle. Neurosci. Lett. 1995, 196, 53–56. [Google Scholar] [CrossRef]
- Heckmann, M.; Dudel, J. Desensitization and Resensitization Kinetics of Glutamate Receptor Channels from Drosophila Larval Muscle. Biophys. J. 1997, 72, 2160–2169. [Google Scholar] [CrossRef]
- Heckmann, M.; Parzefall, F.; Dudel, J. Activation Kinetics of Glutamate Receptor Channels from Wild-Type Drosophila Muscle. Pflugers Arch. Eur. J. Physiol. 1996, 432, 1023–1029. [Google Scholar] [CrossRef] [PubMed]
- Mallik, B.; Brusich, D.J.; Heyrman, G.; Frank, C.A. Precise Mapping of One Classic and Three Novel GluRIIA Mutants in Drosophila Melanogaster. Micropubl. Biol. 2023. [Google Scholar] [CrossRef]
- Arbabi-Ghahroudi, M. Camelid Single-Domain Antibodies: Historical Perspective and Future Outlook. Front. Immunol. 2017, 8, 1589. [Google Scholar] [CrossRef] [PubMed]
- Ries, J.; Kaplan, C.; Platonova, E.; Eghlidi, H.; Ewers, H. A Simple, Versatile Method for GFP-Based Super-Resolution Microscopy via Nanobodies. Nat. Methods 2012, 9, 582–584. [Google Scholar] [CrossRef] [PubMed]
- Fornasiero, E.F.; Opazo, F. Super-Resolution Imaging for Cell Biologists: Concepts, Applications, Current Challenges and Developments Prospects & Overviews E. F. Fornasiero and F. Opazo. BioEssays 2015, 37, 436–451. [Google Scholar] [CrossRef] [PubMed]
- Carrington, G.; Tomlinson, D.; Peckham, M. Exploiting Nanobodies and Affimers for Superresolution Imaging in Light Microscopy. Mol. Biol. Cell 2019, 30, 2737–2740. [Google Scholar] [CrossRef] [PubMed]
- Petzoldt, A.G.; Lee, Y.H.; Khorramshahi, O.; Reynolds, E.; Plested, A.J.R.; Herzel, H.; Sigrist, S.J. Gating Characteristics Control Glutamate Receptor Distribution and Trafficking in Vivo. Curr. Biol. 2014, 24, 2059–2065. [Google Scholar] [CrossRef] [PubMed]
- Böhme, M.A.; McCarthy, A.W.; Grasskamp, A.T.; Beuschel, C.B.; Goel, P.; Jusyte, M.; Laber, D.; Huang, S.; Rey, U.; Petzoldt, A.G.; et al. Rapid Active Zone Remodeling Consolidates Presynaptic Potentiation. Nat. Commun. 2019, 10, 1085. [Google Scholar] [CrossRef]
- James, T.D.; Zwiefelhofer, D.J.; Frank, C.A. Maintenance of Homeostatic Plasticity at the Drosophila Neuromuscular Synapse Requires Continuous IP3-Directed Signaling. Elife 2019, 8, e39643. [Google Scholar] [CrossRef]
- Armstrong, N.S.; Frank, C.A. The Calcineurin Regulator Sarah Enables Distinct Forms of Homeostatic Plasticity at the Drosophila Neuromuscular Junction. Front. Synaptic Neurosci. 2023, 14, 1033743. [Google Scholar] [CrossRef]
- Perry, S.; Han, Y.; Qiu, C.; Chien, C.; Goel, P.; Nishimura, S.; Sajnani, M.; Schmid, A.; Sigrist, S.J.; Dickman, D. A Glutamate Receptor C-Tail Recruits CaMKII to Suppress Retrograde Homeostatic Signaling. Nat. Commun. 2022, 13, 7656. [Google Scholar] [CrossRef] [PubMed]
- Frank, C.A.; Kennedy, M.J.; Goold, C.P.P.; Marek, K.W.; Davis, G.W.W. Mechanisms Underlying the Rapid Induction and Sustained Expression of Synaptic Homeostasis. Neuron 2006, 52, 663–677. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Cao, R.; Qin, L.; Chen, L.Y.; Tang, A.H.; Südhof, T.C.; Zhang, B. Neuroligin-3 Confines AMPA Receptors into Nanoclusters, Thereby Controlling Synaptic Strength at the Calyx of Held Synapses. Sci. Adv. 2022, 8, eabo4173. [Google Scholar] [CrossRef] [PubMed]
- Muttathukunnel, P.; Frei, P.; Perry, S.; Dickman, D.; Müller, M. Rapid Homeostatic Modulation of Transsynaptic Nanocolumn Rings. Proc. Natl. Acad. Sci. USA 2022, 119, e2119044119. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beckers, C.J.; Mrestani, A.; Komma, F.; Dannhäuser, S. Versatile Endogenous Editing of GluRIIA in Drosophila melanogaster. Cells 2024, 13, 323. https://doi.org/10.3390/cells13040323
Beckers CJ, Mrestani A, Komma F, Dannhäuser S. Versatile Endogenous Editing of GluRIIA in Drosophila melanogaster. Cells. 2024; 13(4):323. https://doi.org/10.3390/cells13040323
Chicago/Turabian StyleBeckers, Constantin J., Achmed Mrestani, Fabian Komma, and Sven Dannhäuser. 2024. "Versatile Endogenous Editing of GluRIIA in Drosophila melanogaster" Cells 13, no. 4: 323. https://doi.org/10.3390/cells13040323
APA StyleBeckers, C. J., Mrestani, A., Komma, F., & Dannhäuser, S. (2024). Versatile Endogenous Editing of GluRIIA in Drosophila melanogaster. Cells, 13(4), 323. https://doi.org/10.3390/cells13040323