Fourier Ptychographic Microscopy 10 Years on: A Review
Abstract
:1. Introduction
2. Technology
2.1. Computational Imaging
2.2. Principles of FPM
2.3. Fast FPM
2.4. Full-Color Acquisition
3. Applications
3.1. Digital Pathology
3.2. Drug Screening
3.3. Label Free
3.4. Three-Dimensional Imaging
3.5. Deep Learning
4. Outlook
- Algorithms: New algorithms for FPM have continuously emerged in recent years with better speed of convergence and robustness. Wu et al. proposed an aberration correction method; by applying an adaptive modulation factor in the FPM reconstruction framework, this algorithm performed better in terms of robustness and convergence for eliminating hybrid aberrations [162]. In the quest for higher resolution, FPM algorithms are increasingly employing advanced reconstruction techniques, such as sophisticated phase retrieval algorithms and non-linear optimization approaches. Deep learning methods are also being integrated into FPM algorithms to enhance noise reduction and adapt to challenging imaging conditions.
- Speed and efficiency: Pioneering swifter and more efficient FPM algorithms alongside optimized hardware configurations could render the technique significantly more viable across a spectrum of applications, including real-time imaging. Notably, the development of real-time imaging systems that incorporate deep learning can revolutionize FPM applications. These systems can rapidly analyze acquired data and make real-time decisions based on FPM-generated information, opening up new possibilities in dynamic and time-sensitive scenarios.
- Polarization: The properties of polarization add another dimension to FPM. Polarization-sensitive FPM can provide enhanced contrast and resolution, particularly in biological and materials science applications, where the orientation and anisotropic properties of samples are of critical importance. Although instances can be found within the broader field of ptychography, there has not been a documented instance of polarization imaging utilizing FPM, although instances can be found within the broader field of ptychography.
- 3D imaging: FPM is embarking on a promising journey towards accurate 3D reconstructions of samples without the need for scanning. This approach opens up new horizons for researchers, enabling them to explore complex structures in a non-destructive and time-efficient manner. Although numerous endeavors have already expanded the frontiers of FPM to reconstruct 3D images from thick samples, as previously mentioned, further endeavors are essential to comprehensively grasp and model the intricacies of multiple scattering.
- Multimodal imaging: The fusion of FPM with other imaging techniques, such as fluorescence microscopy or spectroscopy, offers the potential for multimodal imaging. This approach enables the simultaneous capture of multiple types of information from the same sample, providing a holistic view of the specimen under study. By seamlessly integrating complementary techniques, researchers can gain deeper insights into the composition and behavior of complex samples.
- Biomedical applications: FPM can address critical challenges in disease diagnostics, drug development, and cellular analysis by providing comprehensive datasets that facilitate a more nuanced understanding of biological specimens. The growing interest within radiology, pathology, and various medical domains centers on automating image-based diagnostic processes through machine learning techniques. FPM presents numerous advantages compared with conventional imaging methods, including heightened throughput resulting from an enhanced synthetic aperture, coupled with its phase sensitivity, which has the potential to elevate the accuracy of automated diagnostic decisions.
- Extension in EUV regimes: While FPM has made significant strides in visible and near-infrared wavelengths, its extension into extreme ultraviolet regimes offers unprecedented opportunities. The marriage of FPM with EUV sources holds great potential for applications in semiconductor lithography manufacturing by providing nanoscale imaging capabilities critical for quality control and defect detection. FPM can be seamlessly integrated with other EUV spectroscopy techniques, enabling simultaneous imaging and spectral analysis. This approach is invaluable for studying nanoscale materials’ electronic properties, characterization, and chemical composition.
- Miniaturization and accessibility: To unlock the full potential of FPM, it must become more accessible. Future directions include making FPM systems compact, affordable, and readily available for diverse applications and settings. Designing compact and portable FPM systems that can be deployed in resource-limited settings is a critical step toward democratizing this technology. Such systems have the potential to empower researchers, doctors, and technicians in remote locations.
- Automated analysis: Machine learning techniques are increasingly finding their way into microscopy. Leveraging machine learning algorithms for automated image analysis and diagnosis represents a transformative direction for FPM. Particularly in fields like pathology and quality control, FPM combined with AI has the potential to streamline processes and improve accuracy.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Carr, G.B. Microscopes in endodontics. J. Calif. Dent. Assoc. 1992, 20, 55–61. [Google Scholar] [PubMed]
- Hawkes, P.W.; Spence, J.C. Springer Handbook of Microscopy; Springer Nature: New York, NY, USA, 2019. [Google Scholar]
- Jahn, S.W.; Plass, M.; Moinfar, F. Digital pathology: Advantages, limitations and emerging perspectives. J. Clin. Med. 2020, 9, 3697. [Google Scholar] [CrossRef]
- McKinnon, K.M. Flow cytometry: An overview. Curr. Protoc. Immunol. 2018, 120, 5.1.1–5.1.11. [Google Scholar] [CrossRef]
- Bajorath, J. Integration of virtual and high-throughput screening. Nat. Rev. Drug Discov. 2002, 1, 882–894. [Google Scholar] [CrossRef]
- Spence, J.C. Diffractive (lensless) imaging. In Science of Microscopy; Springer: New York, NY, USA, 2007; pp. 1196–1227. [Google Scholar]
- Gurkan, U.A.; Moon, S.; Geckil, H.; Xu, F.; Wang, S.; Lu, T.J.; Demirci, U. Miniaturized lensless imaging systems for cell and microorganism visualization in point-of-care testing. Biotechnol. J. 2011, 6, 138–149. [Google Scholar] [CrossRef]
- Ozcan, A.; McLeod, E. Lensless imaging and sensing. Annu. Rev. Biomed. Eng. 2016, 18, 77–102. [Google Scholar] [CrossRef]
- Roy, M.; Seo, D.; Oh, S.; Yang, J.W.; Seo, S. A review of recent progress in lens-free imaging and sensing. Biosens. Bioelectron. 2017, 88, 130–143. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Q.; Zhang, X.; Sun, J.; Zuo, C. Lens-free on-chip microscopy: Theory, advances, and applications. Infrared Laser Eng. 2019, 48, 0603009. [Google Scholar] [CrossRef]
- Li, C.; Cao, R.; Xu, X.; Li, F.; Zhang, Z.; Xu, F. Application progress of lensless microscopy imaging technology for point-of-care testing. Chin. J. Lasers 2018, 45, 0207018. [Google Scholar] [CrossRef]
- Boominathan, V.; Robinson, J.T.; Waller, L.; Veeraraghavan, A. Recent advances in lensless imaging. Optica 2022, 9, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Abbasi, R.; Wachsmann-Hogiu, S. Microfluidics on lensless, semiconductor optical image sensors: Challenges and opportunities for democratization of biosensing at the micro-and nano-scale. Nanophotonics 2023, 12, 3977–4008. [Google Scholar] [CrossRef]
- Turpin, T.M.; Gesell, L.H.; Lapides, J.; Price, C.H. Theory of the synthetic aperture microscope. In Advanced Imaging Technologies and Commercial Applications; SPIE: Bellingham, WA, USA, 1995; Volume 2566, pp. 230–240. [Google Scholar]
- Holloway, J.; Wu, Y.; Sharma, M.K.; Cossairt, O.; Veeraraghavan, A. SAVI: Synthetic apertures for long-range, subdiffraction-limited visible imaging using Fourier ptychography. Sci. Adv. 2017, 3, e1602564. [Google Scholar] [CrossRef]
- Curlander, J.C.; McDonough, R.N. Synthetic Aperture Radar; Wiley: New York, NY, USA, 1991; Volume 11. [Google Scholar]
- Schwarz, C.J.; Kuznetsova, Y.; Brueck, S. Imaging interferometric microscopy. Opt. Lett. 2003, 28, 1424–1426. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, S.A.; Hillman, T.R.; Gutzler, T.; Sampson, D.D. Synthetic aperture Fourier holographic optical microscopy. Phys. Rev. Lett. 2006, 97, 168102. [Google Scholar] [CrossRef] [PubMed]
- Mico, V.; Zalevsky, Z.; García-Martínez, P.; García, J. Synthetic aperture superresolution with multiple off-axis holograms. JOSA A 2006, 23, 3162–3170. [Google Scholar] [CrossRef] [PubMed]
- Kreis, T.; Schlüter, K. Resolution enhancement by aperture synthesis in digital holography. Opt. Eng. 2007, 46, 055803. [Google Scholar] [CrossRef]
- Di, J.; Zhao, J.; Jiang, H.; Zhang, P.; Fan, Q.; Sun, W. High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning. Appl. Opt. 2008, 47, 5654–5659. [Google Scholar] [CrossRef]
- Hillman, T.R.; Gutzler, T.; Alexandrov, S.A.; Sampson, D.D. High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy. Opt. Express 2009, 17, 7873–7892. [Google Scholar] [CrossRef]
- Tippie, A.E.; Kumar, A.; Fienup, J.R. High-resolution synthetic-aperture digital holography with digital phase and pupil correction. Opt. Express 2011, 19, 12027–12038. [Google Scholar] [CrossRef]
- Micó, V.; Zheng, J.; Garcia, J.; Zalevsky, Z.; Gao, P. Resolution enhancement in quantitative phase microscopy. Adv. Opt. Photonics 2019, 11, 135–214. [Google Scholar] [CrossRef]
- Javidi, B.; Carnicer, A.; Anand, A.; Barbastathis, G.; Chen, W.; Ferraro, P.; Goodman, J.; Horisaki, R.; Khare, K.; Kujawinska, M.; et al. Roadmap on digital holography. Opt. Express 2021, 29, 35078–35118. [Google Scholar] [CrossRef]
- Le Clerc, F.; Gross, M.; Collot, L. Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography. Opt. Lett. 2001, 26, 1550–1552. [Google Scholar] [CrossRef] [PubMed]
- Massig, J.H. Digital off-axis holography with a synthetic aperture. Opt. Lett. 2002, 27, 2179–2181. [Google Scholar] [CrossRef] [PubMed]
- Rosen, J.; Brooker, G. Digital spatially incoherent Fresnel holography. Opt. Lett. 2007, 32, 912–914. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A.; et al. Optical coherence tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef] [PubMed]
- Podoleanu, A.G. Optical coherence tomography. J. Microsc. 2012, 247, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, W. Beugung im inhomogenen primärstrahlwellenfeld. i. prinzip einer phasenmessung von elektronenbeungungsinterferenzen. Acta Crystallogr. Sect. Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1969, 25, 495–501. [Google Scholar] [CrossRef]
- Rodenburg, J.M.; Faulkner, H.M. A phase retrieval algorithm for shifting illumination. Appl. Phys. Lett. 2004, 85, 4795–4797. [Google Scholar] [CrossRef]
- Faulkner, H.M.L.; Rodenburg, J. Movable aperture lensless transmission microscopy: A novel phase retrieval algorithm. Phys. Rev. Lett. 2004, 93, 023903. [Google Scholar] [CrossRef]
- Maiden, A.M.; Rodenburg, J.M. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 2009, 109, 1256–1262. [Google Scholar] [CrossRef]
- Zheng, G.; Horstmeyer, R.; Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics 2013, 7, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Horstmeyer, R.; Yang, C. A phase space model of Fourier ptychographic microscopy. Opt. Express 2014, 22, 338–358. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Shen, C.; Jiang, S.; Song, P.; Yang, C. Concept, implementations and applications of Fourier ptychography. Nat. Rev. Phys. 2021, 3, 207–223. [Google Scholar] [CrossRef]
- Eils, R.; Athale, C. Computational imaging in cell biology. J. Cell Biol. 2003, 161, 477–481. [Google Scholar] [CrossRef]
- Coskun, A.F.; Ozcan, A. Computational imaging, sensing and diagnostics for global health applications. Curr. Opin. Biotechnol. 2014, 25, 8–16. [Google Scholar] [CrossRef]
- Mait, J.N.; Euliss, G.W.; Athale, R.A. Computational imaging. Adv. Opt. Photonics 2018, 10, 409–483. [Google Scholar] [CrossRef]
- Li, J.; Zhou, N.; Sun, J.; Zhou, S.; Bai, Z.; Lu, L.; Chen, Q.; Zuo, C. Transport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopy. Light. Sci. Appl. 2022, 11, 154. [Google Scholar] [CrossRef]
- Xiu, P.; Chen, Y.; Kuang, C.; Fang, Y.; Wang, Y.; Fan, J.; Xu, Y.; Liu, X. Structured illumination fluorescence Fourier ptychographic microscopy. Opt. Commun. 2016, 381, 100–106. [Google Scholar] [CrossRef]
- Gerchberg, R.W. Phase determination from image and diffraction plane pictures in the electron microscope. Optik 1971, 34, 275–284. [Google Scholar]
- Ou, X.; Zheng, G.; Yang, C. Embedded pupil function recovery for Fourier ptychographic microscopy. Opt. Express 2014, 22, 4960–4972. [Google Scholar] [CrossRef]
- Zuo, C.; Sun, J.; Chen, Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy. Opt. Express 2016, 24, 20724–20744. [Google Scholar] [CrossRef]
- Tian, L.; Li, X.; Ramchandran, K.; Waller, L. Multiplexed coded illumination for Fourier Ptychography with an LED array microscope. Biomed. Opt. Express 2014, 5, 2376–2389. [Google Scholar] [CrossRef]
- Yeh, L.H.; Dong, J.; Zhong, J.; Tian, L.; Chen, M.; Tang, G.; Soltanolkotabi, M.; Waller, L. Experimental robustness of Fourier ptychography phase retrieval algorithms. Opt. Express 2015, 23, 33214–33240. [Google Scholar] [CrossRef]
- Bian, L.; Suo, J.; Zheng, G.; Guo, K.; Chen, F.; Dai, Q. Fourier ptychographic reconstruction using Wirtinger flow optimization. Opt. Express 2015, 23, 4856–4866. [Google Scholar] [CrossRef]
- Wang, X.; Piao, Y.; Li, J.; Yu, J. Fourier Ptychographic Microscopy Reconstruction Method Based on Residual Transfer Networks. J. Phys. Conf. Ser. IOP Publ. 2022, 2400, 012015. [Google Scholar] [CrossRef]
- Dong, S.; Bian, Z.; Shiradkar, R.; Zheng, G. Sparsely sampled Fourier ptychography. Opt. Express 2014, 22, 5455–5464. [Google Scholar] [CrossRef]
- Sun, J.; Zuo, C.; Zhang, J.; Fan, Y.; Chen, Q. High-speed Fourier ptychographic microscopy based on programmable annular illuminations. Sci. Rep. 2018, 8, 7669. [Google Scholar] [CrossRef]
- Fan, Y.; Sun, J.; Shu, Y.; Zhang, Z.; Zheng, G.; Chen, W.; Zhang, J.; Gui, K.; Wang, K.; Chen, Q.; et al. Efficient synthetic aperture for phaseless Fourier ptychographic microscopy with hybrid coherent and incoherent illumination. Laser Photonics Rev. 2023, 17, 2200201. [Google Scholar] [CrossRef]
- Tian, L.; Liu, Z.; Yeh, L.H.; Chen, M.; Zhong, J.; Waller, L. Computational illumination for high-speed in vitro Fourier ptychographic microscopy. Optica 2015, 2, 904–911. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, J.; Bian, Z.; Suo, J.; Zheng, G.; Dai, Q. Fourier ptychographic microscopy using wavelength multiplexing. J. Biomed. Opt. 2017, 22, 066006. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Shiradkar, R.; Nanda, P.; Zheng, G. Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging. Biomed. Opt. Express 2014, 5, 1757–1767. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.; Wang, D.; Shi, Y.; Yao, B.; Ma, Z.; Han, Y. Incoherent ptychography in Fresnel domain with simultaneous multi-wavelength illumination. Acta Phys. Sin. 2016, 65, 124201. [Google Scholar] [CrossRef]
- Sun, J.; Chen, Q.; Zhang, Y.; Zuo, C. Sampling criteria for Fourier ptychographic microscopy in object space and frequency space. Opt. Express 2016, 24, 15765–15781. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, Y.; Chen, Q.; Sun, J.; Fan, Y.; Zuo, C. A color-corrected strategy for information multiplexed Fourier ptychographic imaging. Opt. Commun. 2017, 405, 406–411. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Wang, R.; Song, P.; Jiang, S.; Yan, C.; Zhu, J.; Guo, C.; Bian, Z.; Wang, T.; Zheng, G. Virtual brightfield and fluorescence staining for Fourier ptychography via unsupervised deep learning. Opt. Lett. 2020, 45, 5405–5408. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, J.; Wang, A.; Pan, A.; Ma, C.; Yao, B. High-throughput fast full-color digital pathology based on Fourier ptychographic microscopy via color transfer. Sci. China Phys. Mech. Astron. 2021, 64, 114211. [Google Scholar] [CrossRef]
- Chen, J.; Wang, A.; Pan, A.; Zheng, G.; Ma, C.; Yao, B. Rapid full-color Fourier ptychographic microscopy via spatially filtered color transfer. Photonics Res. 2022, 10, 2410–2421. [Google Scholar] [CrossRef]
- Burger, P.C.; Fuller, G.N. Pathology—Trends and pitfalls in histologic diagnosis, immunopathology, and applications of oncogene research. Neurol. Clin. 1991, 9, 249–271. [Google Scholar] [CrossRef]
- Claveau, R.; Manescu, P.; Elmi, M.; Pawar, V.; Shaw, M.; Fernandez-Reyes, D. Digital refocusing and extended depth of field reconstruction in Fourier ptychographic microscopy. Biomed. Opt. Express 2020, 11, 215–226. [Google Scholar] [CrossRef]
- Song, P.; Jiang, S.; Zhang, H.; Huang, X.; Zhang, Y.; Zheng, G. Full-field Fourier ptychography (FFP): Spatially varying pupil modeling and its application for rapid field-dependent aberration metrology. APL Photonics 2019, 4, 050802. [Google Scholar] [CrossRef]
- Williams, A.; Chung, J.; Ou, X.; Zheng, G.; Rawal, S.; Ao, Z.; Datar, R.; Yang, C.; Cote, R. Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis. J. Biomed. Opt. 2014, 19, 066007. [Google Scholar] [CrossRef]
- Liang, M.; Bernadt, C.; Wong, S.B.J.; Choi, C.; Cote, R.; Yang, C. All-in-focus fine needle aspiration biopsy imaging based on Fourier ptychographic microscopy. J. Pathol. Inform. 2022, 13, 100119. [Google Scholar] [CrossRef] [PubMed]
- Horstmeyer, R.; Ou, X.; Zheng, G.; Willems, P.; Yang, C. Digital pathology with Fourier ptychography. Comput. Med. Imaging Graph. 2015, 42, 38–43. [Google Scholar] [CrossRef]
- Valentino, M.; Bianco, V.; Miccio, L.; Memmolo, P.; Brancato, V.; Libretti, P.; Gambacorta, M.; Salvatore, M.; Ferraro, P. Beyond conventional microscopy: Observing kidney tissues by means of fourier ptychography. Front. Physiol. 2023, 14, 206. [Google Scholar] [CrossRef]
- Wakefield, D.L.; Graham, R.; Wong, K.; Wang, S.; Hale, C.; Yu, C.C. Cellular analysis using label-free parallel array microscopy with Fourier ptychography. Biomed. Opt. Express 2022, 13, 1312–1327. [Google Scholar] [CrossRef]
- Bleicher, K.H.; Böhm, H.J.; Müller, K.; Alanine, A.I. Hit and lead generation: Beyond high-throughput screening. Nat. Rev. Drug Discov. 2003, 2, 369–378. [Google Scholar] [CrossRef]
- Mayr, L.M.; Bojanic, D. Novel trends in high-throughput screening. Curr. Opin. Pharmacol. 2009, 9, 580–588. [Google Scholar] [CrossRef]
- Edwards, B.S.; Oprea, T.; Prossnitz, E.R.; Sklar, L.A. Flow cytometry for high-throughput, high-content screening. Curr. Opin. Chem. Biol. 2004, 8, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Zanella, F.; Lorens, J.B.; Link, W. High content screening: Seeing is believing. Trends Biotechnol. 2010, 28, 237–245. [Google Scholar] [CrossRef]
- Boutros, M.; Heigwer, F.; Laufer, C. Microscopy-based high-content screening. Cell 2015, 163, 1314–1325. [Google Scholar] [CrossRef]
- Lang, P.; Yeow, K.; Nichols, A.; Scheer, A. Cellular imaging in drug discovery. Nat. Rev. Drug Discov. 2006, 5, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Du, G.; Fang, Q.; den Toonder, J.M. Microfluidics for cell-based high throughput screening platforms—A review. Anal. Chim. Acta 2016, 903, 36–50. [Google Scholar] [CrossRef] [PubMed]
- An, W.F.; Tolliday, N. Cell-based assays for high-throughput screening. Mol. Biotechnol. 2010, 45, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Blay, V.; Tolani, B.; Ho, S.P.; Arkin, M.R. High-throughput screening: Today’s biochemical and cell-based approaches. Drug Discov. Today 2020, 25, 1807–1821. [Google Scholar] [CrossRef] [PubMed]
- Zang, R.; Li, D.; Tang, I.C.; Wang, J.; Yang, S.T. Cell-based assays in high-throughput screening for drug discovery. Int. J. Biotechnol. Wellness Ind. 2012, 1, 31. [Google Scholar]
- Kim, J.; Henley, B.M.; Kim, C.H.; Lester, H.A.; Yang, C. Incubator embedded cell culture imaging system (EmSight) based on Fourier ptychographic microscopy. Biomed. Opt. Express 2016, 7, 3097–3110. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.C.; Kim, J.; Pan, A.; Xu, H.; Nojima, D.; Hale, C.; Wang, S.; Yang, C. Parallel Fourier ptychographic microscopy for high-throughput screening with 96 cameras (96 Eyes). Sci. Rep. 2019, 9, 11114. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.; Chan, A.; Yao, B.; Yang, C. In situ correction of liquid meniscus in cell culture imaging system based on parallel Fourier ptychographic microscopy (96 Eyes). arXiv 2019, arXiv:1912.00804. [Google Scholar]
- Erfle, H.; Simpson, J.C.; Bastiaens, P.I.; Pepperkok, R. siRNA cell arrays for high-content screening microscopy. Biotechniques 2004, 37, 454–462. [Google Scholar] [CrossRef]
- Wouters, F.S.; Verveer, P.J.; Bastiaens, P.I. Imaging biochemistry inside cells. Trends Cell Biol. 2001, 11, 203–211. [Google Scholar] [CrossRef]
- Lippincott-Schwartz, J.; Snapp, E.; Kenworthy, A. Studying protein dynamics in living cells. Nat. Rev. Mol. Cell Biol. 2001, 2, 444–456. [Google Scholar] [CrossRef]
- Rabut, G.; Doye, V.; Ellenberg, J. Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat. Cell Biol. 2004, 6, 1114–1121. [Google Scholar] [CrossRef]
- Forster, R.; Weiss, M.; Zimmermann, T.; Reynaud, E.G.; Verissimo, F.; Stephens, D.J.; Pepperkok, R. Secretory cargo regulates the turnover of COPII subunits at single ER exit sites. Curr. Biol. 2006, 16, 173–179. [Google Scholar] [CrossRef]
- Starkuviene, V.; Pepperkok, R. The potential of high-content high-throughput microscopy in drug discovery. Br. J. Pharmacol. 2007, 152, 62–71. [Google Scholar] [CrossRef]
- Yarnell, J.; Baker, I.A.; Sweetnam, P.M.; Bainton, D.; O’Brien, J.R.; Whitehead, P.J.; Elwood, P.C. Fibrinogen, viscosity, and white blood cell count are major risk factors for ischemic heart disease. The Caerphilly and Speedwell collaborative heart disease studies. Circulation 1991, 83, 836–844. [Google Scholar] [CrossRef]
- Kannel, W.B.; Anderson, K.; Wilson, P.W. White blood cell count and cardiovascular disease: Insights from the Framingham Study. JAMA 1992, 267, 1253–1256. [Google Scholar] [CrossRef] [PubMed]
- Grimm, R.H.; Neaton, J.D.; Ludwig, W. Prognostic importance of the white blood cell count for coronary, cancer, and all-cause mortality. JAMA 1985, 254, 1932–1937. [Google Scholar] [CrossRef] [PubMed]
- Barron, H.V.; Cannon, C.P.; Murphy, S.A.; Braunwald, E.; Gibson, C.M. Association between white blood cell count, epicardial blood flow, myocardial perfusion, and clinical outcomes in the setting of acute myocardial infarction: A thrombolysis in myocardial infarction 10 substudy. Circulation 2000, 102, 2329–2334. [Google Scholar] [CrossRef]
- Brown, D.W.; Giles, W.H.; Croft, J.B. White blood cell count: An independent predictor of coronary heart disease mortality among a national cohort. J. Clin. Epidemiol. 2001, 54, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Twig, G.; Afek, A.; Shamiss, A.; Derazne, E.; Tzur, D.; Gordon, B.; Tirosh, A. White blood cell count and the risk for coronary artery disease in young adults. PloS ONE 2012, 7, e47183. [Google Scholar] [CrossRef]
- Chung, J.; Ou, X.; Kulkarni, R.P.; Yang, C. Counting white blood cells from a blood smear using Fourier ptychographic microscopy. PLoS ONE 2015, 10, e0133489. [Google Scholar] [CrossRef]
- Akcakır, O.; Celebi, L.K.; Kamil, M.; Aly, A.S. Automated wide-field malaria parasite infection detection using Fourier ptychography on stain-free thin-smears. Biomed. Opt. Express 2022, 13, 3904–3921. [Google Scholar] [CrossRef]
- Boyd, M.R.; Paull, K.D. Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug Dev. Res. 1995, 34, 91–109. [Google Scholar] [CrossRef]
- Costa, M.R.; Ortega, F.; Brill, M.S.; Beckervordersandforth, R.; Petrone, C.; Schroeder, T.; Götz, M.; Berninger, B. Continuous live imaging of adult neural stem cell division and lineage progression in vitro. Development 2011, 138, 1057–1068. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Lee, S.A.; Antebi, Y.; Elowitz, M.B.; Yang, C. The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM). Proc. Natl. Acad. Sci. USA 2011, 108, 16889–16894. [Google Scholar] [CrossRef] [PubMed]
- Greenbaum, A.; Luo, W.; Su, T.W.; Göröcs, Z.; Xue, L.; Isikman, S.O.; Coskun, A.F.; Mudanyali, O.; Ozcan, A. Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy. Nat. Methods 2012, 9, 889–895. [Google Scholar] [CrossRef]
- Greenbaum, A.; Zhang, Y.; Feizi, A.; Chung, P.L.; Luo, W.; Kandukuri, S.R.; Ozcan, A. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Sci. Transl. Med. 2014, 6, 267ra175. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Greenbaum, A.; Zhang, Y.; Ozcan, A. Synthetic aperture-based on-chip microscopy. Light. Sci. Appl. 2015, 4, e261. [Google Scholar] [CrossRef]
- Goda, K.; Tsia, K.; Jalali, B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature 2009, 458, 1145–1149. [Google Scholar] [CrossRef]
- Lukosz, W. Optical systems with resolving powers exceeding the classical limit. JOSA 1966, 56, 1463–1471. [Google Scholar] [CrossRef]
- Candès, E.J.; Wakin, M.B. An introduction to compressive sampling. IEEE Signal Process. Mag. 2008, 25, 21–30. [Google Scholar] [CrossRef]
- Shu, Y.; Sun, J.; Lyu, J.; Fan, Y.; Zhou, N.; Ye, R.; Zheng, G.; Chen, Q.; Zuo, C. Adaptive optical quantitative phase imaging based on annular illumination Fourier ptychographic microscopy. PhotoniX 2022, 3, 24. [Google Scholar] [CrossRef]
- Chung, J.; Kim, J.; Ou, X.; Horstmeyer, R.; Yang, C. Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography. Biomed. Opt. Express 2016, 7, 352–368. [Google Scholar] [CrossRef]
- Kamal, T.; Yang, L.; Lee, W.M. In situ retrieval and correction of aberrations in moldless lenses using Fourier ptychography. Opt. Express 2018, 26, 2708–2719. [Google Scholar] [CrossRef]
- Konda, P.C.; Taylor, J.M.; Harvey, A.R. Multi-aperture Fourier ptychographic microscopy, theory and validation. Opt. Lasers Eng. 2021, 138, 106410. [Google Scholar] [CrossRef]
- Aidukas, T.; Eckert, R.; Harvey, A.R.; Waller, L.; Konda, P.C. Low-cost, sub-micron resolution, wide-field computational microscopy using opensource hardware. Sci. Rep. 2019, 9, 7457. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Chan, A.C.S.; Chung, J.; Williams, D.E.; Hajimiri, A.; Yang, C. Computational aberration correction of VIS-NIR multispectral imaging microscopy based on Fourier ptychography. Opt. Express 2019, 27, 24923–24937. [Google Scholar] [CrossRef] [PubMed]
- Lidke, D.S.; Lidke, K.A. Advances in high-resolution imaging–techniques for three-dimensional imaging of cellular structures. J. Cell Sci. 2012, 125, 2571–2580. [Google Scholar] [CrossRef]
- Delcorte, A. On the road to high-resolution 3D molecular imaging. Appl. Surf. Sci. 2008, 255, 954–958. [Google Scholar] [CrossRef]
- Son, J.Y.; Javidi, B.; Yano, S.; Choi, K.H. Recent developments in 3-D imaging technologies. J. Disp. Technol. 2010, 6, 394–403. [Google Scholar] [CrossRef]
- Pan, A.; Zuo, C.; Yao, B. High-resolution and large field-of-view Fourier ptychographic microscopy and its applications in biomedicine. Rep. Prog. Phys. 2020, 83, 096101. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Shen, C.; Liang, M.; Yang, C. Analysis of postreconstruction digital refocusing in Fourier ptychographic microscopy. Opt. Eng. 2022, 61, 073102. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, G.; Zheng, C.; Li, T.; Hu, Y.; Hao, Q. Fast digital refocusing and depth of field extended Fourier ptychography microscopy. Biomed. Opt. Express 2021, 12, 5544–5558. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Jiang, S.; Yang, L.; Song, P.; Wang, T.; Shao, X.; Zhang, Z.; Murphy, M.; Zheng, G. Deep learning-enabled whole slide imaging (DeepWSI): Oil-immersion quality using dry objectives, longer depth of field, higher system throughput, and better functionality. Opt. Express 2021, 29, 39669–39684. [Google Scholar] [CrossRef]
- Guo, C.; Bian, Z.; Jiang, S.; Murphy, M.; Zhu, J.; Wang, R.; Song, P.; Shao, X.; Zhang, Y.; Zheng, G. OpenWSI: A low-cost, high-throughput whole slide imaging system via single-frame autofocusing and open-source hardware. Opt. Lett. 2020, 45, 260–263. [Google Scholar] [CrossRef]
- Jiang, S.; Guo, C.; Song, P.; Wang, T.; Wang, R.; Zhang, T.; Wu, Q.; Pandey, R.; Zheng, G. High-throughput digital pathology via a handheld, multiplexed, and AI-powered ptychographic whole slide scanner. Lab Chip 2022, 22, 2657–2670. [Google Scholar] [CrossRef]
- Lee, K.; Kim, H.D.; Kim, K.; Kim, Y.; Hillman, T.R.; Min, B.; Park, Y. Synthetic Fourier transform light scattering. Opt. Express 2013, 21, 22453–22463. [Google Scholar] [CrossRef]
- Liu, C.; Walther, T.; Rodenburg, J. Influence of thick crystal effects on ptychographic image reconstruction with moveable illumination. Ultramicroscopy 2009, 109, 1263–1275. [Google Scholar] [CrossRef]
- Song, P.; Jiang, S.; Zhang, H.; Bian, Z.; Guo, C.; Hoshino, K.; Zheng, G. Super-resolution microscopy via ptychographic structured modulation of a diffuser. Opt. Lett. 2019, 44, 3645–3648. [Google Scholar] [CrossRef]
- Dong, S.; Horstmeyer, R.; Shiradkar, R.; Guo, K.; Ou, X.; Bian, Z.; Xin, H.; Zheng, G. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging. Opt. Express 2014, 22, 13586–13599. [Google Scholar] [CrossRef]
- Tian, L.; Waller, L. 3D intensity and phase imaging from light field measurements in an LED array microscope. Optica 2015, 2, 104–111. [Google Scholar] [CrossRef]
- Maiden, A.M.; Humphry, M.J.; Rodenburg, J.M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach. JOSA A 2012, 29, 1606–1614. [Google Scholar] [CrossRef]
- Pan, A.; Zhang, X.; Wang, B.; Zhao, Q.; Shi, Y. Experimental study on three-dimensional ptychography for thick sample. Acta Phys. Sin. 2015, 65, 014204. [Google Scholar] [CrossRef]
- Li, P.; Batey, D.J.; Edo, T.B.; Rodenburg, J.M. Separation of three-dimensional scattering effects in tilt-series Fourier ptychography. Ultramicroscopy 2015, 158, 1–7. [Google Scholar] [CrossRef]
- Horstmeyer, R.; Chung, J.; Ou, X.; Zheng, G.; Yang, C. Diffraction tomography with Fourier ptychography. Optica 2016, 3, 827–835. [Google Scholar] [CrossRef]
- Wolf, E. Three-dimensional structure determination of semi-transparent objects from holographic data. Opt. Commun. 1969, 1, 153–156. [Google Scholar] [CrossRef]
- Chen, M.; Ren, D.; Liu, H.Y.; Chowdhury, S.; Waller, L. Multi-layer Born multiple-scattering model for 3D phase microscopy. Optica 2020, 7, 394–403. [Google Scholar] [CrossRef]
- Zuo, C.; Sun, J.; Li, J.; Asundi, A.; Chen, Q. Wide-field high-resolution 3D microscopy with Fourier ptychographic diffraction tomography. Opt. Lasers Eng. 2020, 128, 106003. [Google Scholar] [CrossRef]
- Zhou, S.; Li, J.; Sun, J.; Zhou, N.; Ullah, H.; Bai, Z.; Chen, Q.; Zuo, C. Transport-of-intensity Fourier ptychographic diffraction tomography: Defying the matched illumination condition. Optica 2022, 9, 1362–1373. [Google Scholar] [CrossRef]
- Ullah, H.; Li, J.; Zhou, S.; Bai, Z.; Ye, R.; Chen, Q.; Zuo, C. Parallel synthetic aperture transport-of-intensity diffraction tomography with annular illumination. Opt. Lett. 2023, 48, 1638–1641. [Google Scholar] [CrossRef]
- Qayyum, A.; Ilahi, I.; Shamshad, F.; Boussaid, F.; Bennamoun, M.; Qadir, J. Untrained neural network priors for inverse imaging problems: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 6511–6536. [Google Scholar] [CrossRef]
- Shamshad, F.; Abbas, F.; Ahmed, A. Deep ptych: Subsampled fourier ptychography using generative priors. In Proceedings of the ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 7720–7724. [Google Scholar]
- Xue, Y.; Cheng, S.; Li, Y.; Tian, L. Reliable deep-learning-based phase imaging with uncertainty quantification. Optica 2019, 6, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Kappeler, A.; Ghosh, S.; Holloway, J.; Cossairt, O.; Katsaggelos, A. Ptychnet: CNN based Fourier ptychography. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 1712–1716. [Google Scholar]
- Boominathan, L.; Maniparambil, M.; Gupta, H.; Baburajan, R.; Mitra, K. Phase retrieval for fourier ptychography under varying amount of measurements. arXiv 2018, arXiv:1805.03593. [Google Scholar]
- Zhang, J.; Xu, T.; Shen, Z.; Qiao, Y.; Zhang, Y. Fourier ptychographic microscopy reconstruction with multiscale deep residual network. Opt. Express 2019, 27, 8612–8625. [Google Scholar] [CrossRef] [PubMed]
- Thanh, N.; Xue, Y.; Li, Y.; Tian, L.; Nehmetallah, G. Deep learning approach to Fourier ptychographic microscopy. Opt. Express 2018, 26, 26470–26484. [Google Scholar]
- Kellman, M.R.; Bostan, E.; Repina, N.A.; Waller, L. Physics-based learned design: Optimized coded-illumination for quantitative phase imaging. IEEE Trans. Comput. Imaging 2019, 5, 344–353. [Google Scholar] [CrossRef]
- Muthumbi, A.; Chaware, A.; Kim, K.; Zhou, K.C.; Konda, P.C.; Chen, R.; Judkewitz, B.; Erdmann, A.; Kappes, B.; Horstmeyer, R. Learned sensing: Jointly optimized microscope hardware for accurate image classification. Biomed. Opt. Express 2019, 10, 6351–6369. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.F.; Strachan, M.; Weiss, Z.; Deb, M.; Carone, D.; Ganapati, V. Illumination pattern design with deep learning for single-shot Fourier ptychographic microscopy. Opt. Express 2019, 27, 644–656. [Google Scholar] [PubMed]
- Kellman, M.; Bostan, E.; Chen, M.; Waller, L. Data-driven design for fourier ptychographic microscopy. In Proceedings of the 2019 IEEE International Conference on Computational Photography (ICCP), Tokyo, Japan, 15–17 May 2019; pp. 1–8. [Google Scholar]
- Horstmeyer, R.; Chen, R.Y.; Kappes, B.; Judkewitz, B. Convolutional neural networks that teach microscopes how to image. arXiv 2017, arXiv:1709.07223. [Google Scholar]
- Jiang, S.; Guo, K.; Liao, J.; Zheng, G. Solving Fourier ptychographic imaging problems via neural network modeling and TensorFlow. Biomed. Opt. Express 2018, 9, 3306–3319. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Li, X.; Jiang, S.; Dixit, K.; Zhang, X.; Ji, X. Pgnn: Physics-guided neural network for fourier ptychographic microscopy. arXiv 2019, arXiv:1909.08869. [Google Scholar]
- Sun, M.; Chen, X.; Zhu, Y.; Li, D.; Mu, Q.; Xuan, L. Neural network model combined with pupil recovery for Fourier ptychographic microscopy. Opt. Express 2019, 27, 24161–24174. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tao, X.; Yang, L.; Wu, R.; Sun, P.; Wang, C.; Zheng, Z. Forward imaging neural network with correction of positional misalignment for Fourier ptychographic microscopy. Opt. Express 2020, 28, 23164–23175. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, T.; Zhang, J.; Chen, Y.; Li, J. Cross-level channel attention network for Fourier ptychographic microscopy reconstruction. IEEE Photonics J. 2021, 14, 1–8. [Google Scholar] [CrossRef]
- Saha, A.; Khan, S.S.; Sehrawat, S.; Prabhu, S.S.; Bhattacharya, S.; Mitra, K. LWGNet-Learned Wirtinger Gradients for Fourier Ptychographic Phase Retrieval. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2022; pp. 522–537. [Google Scholar]
- Sun, M.; Shao, L.; Zhu, Y.; Zhang, Y.; Wang, S.; Wang, Y.; Diao, Z.; Li, D.; Mu, Q.; Xuan, L. Double-flow convolutional neural network for rapid large field of view Fourier ptychographic reconstruction. J. Biophotonics 2021, 14, e202000444. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Huang, D.; Chen, R. Fourier ptychographic microscopy with untrained deep neural network priors. Opt. Express 2022, 30, 39597–39612. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hao, J.; Wang, X.; Wang, Y.; Wang, Y.; Wang, H.; Wang, X. Fourier Ptychographic Microscopic Reconstruction Method Based on Residual Hybrid Attention Network. Sensors 2023, 23, 7301. [Google Scholar] [CrossRef]
- Bouchama, L.; Dorizzi, B.; Klossa, J.; Gottesman, Y. A Physics-Inspired Deep Learning Framework for an Efficient Fourier Ptychographic Microscopy Reconstruction under Low Overlap Conditions. Sensors 2023, 23, 6829. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, T.; Li, J.; Zhang, Y.; Jiang, S.; Chen, Y.; Zhang, J. Physics-based learning with channel attention for Fourier ptychographic microscopy. J. Biophotonics 2022, 15, e202100296. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, X.; Tian, Z.; Liu, S. Neural network model with positional deviation correction for Fourier ptychography. J. Soc. Inf. Disp. 2021, 29, 749–757. [Google Scholar] [CrossRef]
- Guzzi, F.; Kourousias, G.; Billè, F.; Pugliese, R.; Gianoncelli, A.; Carrato, S. A Deep Prior Method for Fourier Ptychography Microscopy. In Proceedings of the 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 27 September–1 October 2021; pp. 1781–1786. [Google Scholar]
- Yang, D.; Zhang, S.; Zheng, C.; Zhou, G.; Cao, L.; Hu, Y.; Hao, Q. Fourier ptychography multi-parameunter neural network with composite physical priori optimization. Biomed. Opt. Express 2022, 13, 2739–2753. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Luo, J.; Li, J.; Chen, H.; Zhen, J.; Zhu, S.; Luo, Z.; Wu, Y. Adaptive correction method of hybrid aberrations in Fourier ptychographic microscopy. J. Biomed. Opt. 2023, 28, 036006. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, F.; Wu, Z.; Tan, C.; Liao, Y.; Wang, Z.; Chen, K.; Pan, A. Fourier Ptychographic Microscopy 10 Years on: A Review. Cells 2024, 13, 324. https://doi.org/10.3390/cells13040324
Xu F, Wu Z, Tan C, Liao Y, Wang Z, Chen K, Pan A. Fourier Ptychographic Microscopy 10 Years on: A Review. Cells. 2024; 13(4):324. https://doi.org/10.3390/cells13040324
Chicago/Turabian StyleXu, Fannuo, Zipei Wu, Chao Tan, Yizheng Liao, Zhiping Wang, Keru Chen, and An Pan. 2024. "Fourier Ptychographic Microscopy 10 Years on: A Review" Cells 13, no. 4: 324. https://doi.org/10.3390/cells13040324
APA StyleXu, F., Wu, Z., Tan, C., Liao, Y., Wang, Z., Chen, K., & Pan, A. (2024). Fourier Ptychographic Microscopy 10 Years on: A Review. Cells, 13(4), 324. https://doi.org/10.3390/cells13040324