Changes Induced by P2X7 Receptor Stimulation of Human Glioblastoma Stem Cells in the Proteome of Extracellular Vesicles Isolated from Their Secretome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. EV Isolation from Cultured GSCs by Sequential Centrifugal Ultra-Filtration
2.3. Two-Dimensional Gel Electrophoresis (2DE) Analysis
2.4. Mass Spectrometry Analysis
2.5. Bioinformatic Analysis
2.6. Data Analysis
3. Results
3.1. Bidimensional (2D) Electrophoretic Analysis of the Protein Cargo of MVs and EXOs Isolated from the Culture Medium of Control- and BzATP-Treated GSCs
3.2. Influence of the P2X7R Stimulation in Cultured GSCs on the Expression of TOP Proteins in MVs
3.3. Influence of P2X7R Stimulation of GSCs on the Expression of TOP Proteins in EXOs
3.4. Validation of Protein Sequence Identification by MS/MS
3.5. Influence of GSC Exposure to the Stimulation of P2X7Rs on the Functional and Biological Activities of the Proteins Isolated from EXO and MV Fractions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Molinaro, A.M.; Taylor, J.W.; Wiencke, J.K.; Wrensch, M.R. Genetic and Molecular Epidemiology of Adult Diffuse Glioma. Nat. Rev. Neurol. 2019, 15, 405–417. [Google Scholar] [CrossRef] [PubMed]
- Biserova, K.; Jakovlevs, A.; Uljanovs, R.; Strumfa, I. Cancer Stem Cells, Significance in Origin, Pathogenesis and Treatment of Glioblastoma. Cells 2021, 10, 621. [Google Scholar] [CrossRef] [PubMed]
- Yekula, A.; Yekula, A.; Muralidharan, K.; Kang, K.; Carter, B.S.; Balaj, L. Extracellular Vesicles in Glioblastoma Tumor Microenvironment. Front. Immunol. 2020, 10, 3137. [Google Scholar] [CrossRef]
- Liu, Y.J.; Wang, C. A review of the regulatory mechanisms of extracellular vesicles-mediated intercellular communication. Cell Commun. Signal 2023, 21, 77. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, R.; McAndrews, K.M. The role of extracellular vesicles in cancer. Cell 2023, 186, 1610–1626. [Google Scholar] [CrossRef]
- Burko, P.; D’Amico, G.; Miltykh, I.; Scalia, F.; Conway de Macario, E.; Macario, A.J.L.; Giglia, G.; Cappello, F.; Caruso Bavisotto, C. Molecular Pathways Implicated in Radioresistance of Glioblastoma Multiforme: What Is the Role of Extracellular Vesicles? Int. J. Mol. Sci. 2023, 24, 4883. [Google Scholar] [CrossRef]
- Araujo-Abad, S.; Manresa-Manresa, A.; Rodríguez-Cañas, E.; Fuentes-Baile, M.; García-Morales, P.; Mallavia, R.; Saceda, M.; de Juan Romero, C. Glioblastoma-Derived Small Extracellular Vesicles: Nanoparticles for Glioma Treatment. Int. J. Mol. Sci. 2023, 24, 5910. [Google Scholar] [CrossRef]
- Ricklefs, F.; Mineo, M.; Rooj, A.K.; Nakano, I.; Charest, A.; Weissleder, R.; Breakefield, X.O.; Chiocca, E.A.; Godlewski, J.; Bronisz, A. Extracellular Vesicles from High-Grade Glioma Exchange Diverse Pro-oncogenic Signals That Maintain Intratumoral Heterogeneity. Cancer Res. 2016, 76, 2876–2881. [Google Scholar] [CrossRef]
- Di Giuseppe, F.; Carluccio, M.; Zuccarini, M.; Giuliani, P.; Ricci-Vitiani, L.; Pallini, R.; De Sanctis, P.; Di Pietro, R.; Ciccarelli, R.; Angelucci, S. Proteomic Characterization of Two Extracellular Vesicle Subtypes Isolated from Human Glioblastoma Stem Cell Secretome by Sequential Centrifugal Ultrafiltration. Biomedicines 2021, 9, 146. [Google Scholar] [CrossRef]
- Wink, M.R.; Lenz, G.; Braganhol, E.; Tamajusuku, A.S.; Schwartsmann, G.; Sarkis, J.J.; Battastini, A.M. Altered extracellular ATP, ADP and AMP catabolism in glioma cell lines. Cancer Lett. 2003, 198, 211–218. [Google Scholar] [CrossRef]
- Braganhol, E.; Wink, M.R.; Lenz, G.; Battastini, A.M.O. Purinergic Signaling in Glioma Progression. Adv. Exp. Med. Biol. 2020, 1202, 87–108. [Google Scholar] [CrossRef] [PubMed]
- Bergamin, L.S.; Capece, M.; Salaro, E.; Sarti, A.C.; Falzoni, S.; Pereira, M.S.L.; De Bastiani, M.A.; Scholl, J.N.; Battastini, A.M.O.; Di Virgilio, F. Role of the P2X7 receptor in in vitro and in vivo glioma tumor growth. Oncotarget 2019, 10, 4840–4856. [Google Scholar] [CrossRef]
- D’Alimonte, I.; Nargi, E.; Zuccarini, M.; Lanuti, P.; Di Iorio, P.; Giuliani, P.; Ricci-Vitiani, L.; Pallini, R.; Caciagli, F.; Ciccarelli, R. Potentiation of temozolomide antitumor effect by purine receptor ligands able to restrain the in vitro growth of human glioblastoma stem cells. Purinergic Signal 2015, 11, 331–346. [Google Scholar] [CrossRef]
- Ziberi, S.; Zuccarini, M.; Carluccio, M.; Giuliani, P.; Ricci-Vitiani, L.; Pallini, R.; Caciagli, F.; Di Iorio, P.; Ciccarelli, R. Upregulation of Epithelial-To-Mesenchymal Transition Markers and P2X7 Receptors Is Associated to Increased Invasiveness Caused by P2X7 Receptor Stimulation in Human Glioblastoma Stem Cells. Cells 2019, 9, 85. [Google Scholar] [CrossRef]
- Marziali, G.; Signore, M.; Buccarelli, M.; Grande, S.; Palma, A.; Biffoni, M.; Rosi, A.; D’Alessandris, Q.G.; Martini, M.; Larocca, L.M.; et al. Metabolic/Proteomic Signature Defines Two Glioblastoma Subtypes With Different Clinical Outcome. Sci. Rep. 2016, 6, 21557. [Google Scholar] [CrossRef]
- D’Alessandris, Q.G.; Biffoni, M.; Martini, M.; Runci, D.; Buccarelli, M.; Cenci, T.; Signore, M.; Stancato, L.; Olivi, A.; De Maria, R.; et al. The clinical value of patient-derived glioblastoma tumorspheres in predicting treatment response. Neuro Oncol. 2017, 19, 1097–1108. [Google Scholar] [CrossRef] [PubMed]
- Pallini, R.; Ricci-Vitiani, L.; Banna, G.L.; Signore, M.; Lombardi, D.; Todaro, M.; Stassi, G.; Martini, M.; Maira, G.; Larocca, L.M.; et al. Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme. Clin. Cancer Res. 2008, 14, 8205–8212. [Google Scholar] [CrossRef]
- Brown, R.E.; Jarvis, K.L.; Hyland, K.J. Protein measurement using bicinchoninic acid: Elimination of interfering substances. Anal. Biochem. 1989, 180, 136–139. [Google Scholar] [CrossRef] [PubMed]
- Angelucci, S.; Marchisio, M.; Di Giuseppe, F.; Pierdomenico, L.; Sulpizio, M.; Eleuterio, E.; Lanuti, P.; Sabatino, G.; Miscia, S.; Di Ilio, C. Proteome analysis of human Wharton’s jelly cells during in vitro expansion. Proteome Sci. 2010, 8, 18. [Google Scholar] [CrossRef]
- Burke, B.; Stewart, C.L. The nuclear lamins: Flexibility in function. Nat. Rev. Mol. Cell Biol. 2013, 14, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Priyanka; Seth, P. Insights into the Role of Mortalin in Alzheimer’s Disease, Parkinson’s Disease, and HIV-1-Associated Neurocognitive Disorders. Front. Cell Dev. Biol. 2022, 10, 903031. [Google Scholar] [CrossRef]
- Ridge, K.M.; Eriksson, J.E.; Pekny, M.; Goldman, R.D. Roles of vimentin in health and disease. Genes Dev. 2022, 36, 391–407. [Google Scholar] [CrossRef]
- Bendix, P.M.; Simonsen, A.C.; Florentsen, C.D.; Häger, S.C.; Mularski, A.; Zanjani, A.A.H.; Moreno-Pescador, G.; Klenow, M.B.; Sønder, S.L.; Danielsen, H.M.; et al. Interdisciplinary Synergy to Reveal Mechanisms of Annexin-Mediated Plasma Membrane Shaping and Repair. Cells 2020, 9, 1029. [Google Scholar] [CrossRef]
- Stefano, L.; Racchetti, G.; Bianco, F.; Passini, N.; Gupta, R.S.; Bordignon, P.P.; Meldolesi, J. The surface-exposed chaperone Hsp60 is an agonist of the microglial TREM2 receptor. J. Neurochem. 2009, 110, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Neupert, W.; Tzagoloff, A. The metalloprotease encoded by ATP23 has a dual function in processing and assembly of subunit 6 of mitochondrial ATPase. Mol. Biol. Cell 2007, 18, 617–626. [Google Scholar] [CrossRef]
- Wood, Z.A.; Schroder, E.; Robin Harris, J.; Poole, L.B. Structure.; mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 2003, 28, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Arora, A.S.; Huang, H.L.; Singh, R.; Narui, Y.; Suchenko, A.; Hatano, T.; Heissler, S.M.; Balasubramanian, M.K.; Chinthalapudi, K. Structural insights into actin isoforms. eLife 2023, 12, e82015. [Google Scholar] [CrossRef]
- Dugina, V.B.; Shagieva, G.S.; Kopnin, P.B. Cytoplasmic Beta and Gamma Actin Isoforms Reorganization and Regulation in Tumor Cells in Culture and Tissue. Front. Pharmacol. 2022, 13, 895703. [Google Scholar] [CrossRef]
- Singh, Y.; Hocky, G.M.; Nolen, B.J. Molecular dynamics simulations support a multistep pathway for activation of branched actin filament nucleation by Arp2/3 complex. J. Biol. Chem. 2023, 299, 105169. [Google Scholar] [CrossRef]
- Rechsteiner, M.; Hill, C.P. Mobilizing the proteolytic machine: Cell biological roles of proteasome activators and inhibitors. Trends Cell Biol. 2005, 15, 27–33. [Google Scholar] [CrossRef]
- Goldberg, A.L.; Kim, H.T.; Lee, D.; Collins, G.A. Mechanisms That Activate 26S Proteasomes and Enhance Protein Degradation. Biomolecules 2021, 11, 779. [Google Scholar] [CrossRef]
- Scheel, H.; Hofmann, K. Prediction of a common structural scaffold for proteasome lid, COP9-signalosome and eIF3 complexes. BMC Bioinform. 2005, 6, 71. [Google Scholar] [CrossRef] [PubMed]
- Perestenko, P.V.; Pooler, A.M.; Noorbakhshnia, M.; Gray, A.; Bauccio, C.; Jeffrey McIlhinney, R.A. Copines-1−2−3−6 and −7 show different calcium-dependent intracellular membrane translocation and targeting. FEBS J. 2010, 277, 5174–5189. [Google Scholar] [CrossRef]
- Silva, S.T.N.; Brito, J.A.; Arranz, R.; Sorzano, C.Ó.S.; Ebel, C.; Doutch, J.; Tully, M.D.; Carazo, J.M.; Carrascosa, J.L.; Matias, P.M.; et al. X-ray structure of full-length human RuvB-Like 2—Mechanistic insights into coupling between ATP binding and mechanical action. Sci. Rep. 2018, 8, 13726. [Google Scholar] [CrossRef] [PubMed]
- Retzlaff, M.; Stahl, M.; Eberl, H.C.; Lagleder, S.; Beck, J.; Kessler, H.; Buchner, J. Hsp90 is regulated by a switch point in the C-terminal domain. EMBO Rep. 2009, 10, 1147–1153. [Google Scholar] [CrossRef]
- Enríquez-Flores, S.; De la Mora-De la Mora, I.; García-Torres, I.; Flores-López, L.A.; Martínez-Pérez, Y.; López-Velázquez, G. Human Triosephosphate Isomerase Is a Potential Target in Cancer Due to Commonly Occurring Post-Translational Modifications. Molecules 2023, 28, 6163. [Google Scholar] [CrossRef] [PubMed]
- Yanatori, I.; Kishi, F.; Toyokuni, S. New iron export pathways acting via holo-ferritin secretion. Arch. Biochem. Biophys. 2023, 746, 109737. [Google Scholar] [CrossRef]
- Argenzio, E.; Moolenaar, W.H. Emerging biological roles of Cl- intracellular channel proteins. J. Cell Sci. 2016, 129, 4165–4174. [Google Scholar] [CrossRef] [PubMed]
- Abi Habib, J.; Lesenfants, J.; Vigneron, N.; Van den Eynde, B.J. Functional Differences between Proteasome Subtypes. Cells 2022, 11, 421. [Google Scholar] [CrossRef]
- Ejiri, S. Moonlighting functions of polypeptide elongation factor 1: From actin bundling to zinc finger protein R1-associated nuclear localization. Biosci. Biotechnol. Biochem. 2002, 66, 1–21. [Google Scholar] [CrossRef]
- Couteau, F.; Mallette, F.A. Chromatin Signaling in Aging and Cellular Senescence. In Chromatin Signaling and Diseases; Binda, O., Fernandez-Zapico, M.E., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 287–309. [Google Scholar] [CrossRef]
- Jeruzalska, E.; Mazur, A.J. The Role of non-muscle actin paralogs in cell cycle progression and proliferation. Eur. J. Cell Biol. 2023, 102, 151315. [Google Scholar] [CrossRef]
- Manstein, D.J.; Meiring, J.C.M.; Hardeman, E.C.; Gunning, P.W. Actin-tropomyosin distribution in non-muscle cells. J. Muscle Res. Cell Motil. 2020, 41, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.S.; Yang, W.S.; Kim, C.H. Physiological Properties, Functions, and Trends in the Matrix Metalloproteinase Inhibitors in Inflammation-Mediated Human Diseases. Curr. Med. Chem. 2023, 30, 2075–2112. [Google Scholar] [CrossRef]
- Greenspan, D.S. Biosynthetic Processing of Collagen Molecules. In Collagen. Topics in Current Chemistry; Brinckmann, J., Notbohm, H., Müller, P.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 247, pp. 149–183. [Google Scholar]
- Stetler-Stevenson, W.G.; Krutzsch, H.C.; Liotta, L.A. Tissue inhibitor of metalloproteinase (TIMP-2). A new member of the metalloproteinase inhibitor family. J. Biol. Chem. 1989, 264, 17374–17378. [Google Scholar] [CrossRef] [PubMed]
- Villa, N.; Fraser, C.S. Human eukaryotic initiation factor 4G directly binds the 40S ribosomal subunit to promote efficient translation. bioRxiv 2023. bioRxiv:2023.09.29.560218. [Google Scholar] [CrossRef]
- Parakh, S.; Jagaraj, C.J.; Vidal, M.; Ragagnin, A.M.G.; Perri, E.R.; Konopka, A.; Toth, R.P.; Galper, J.; Blair, I.P.; Thomas, C.J.; et al. ERp57 is protective against mutant SOD1-induced cellular pathology in amyotrophic lateral sclerosis. Hum. Mol. Genet. 2018, 27, 1311–1331. [Google Scholar] [CrossRef]
- Chichiarelli, S.; Altieri, F.; Paglia, G.; Rubini, E.; Minacori, M.; Eufemi, M. ERp57/PDIA3: New Insight. Cell Mol. Biol. Lett. 2022, 27, 12. [Google Scholar] [CrossRef]
- Cassano, T.; Giamogante, F.; Calcagnini, S.; Romano, A.; Lavecchia, A.M.; Inglese, F.; Paglia, G.; Bukke, V.N.; Romano, A.D.; Friuli, M.; et al. PDIA3 Expression Is Altered in the Limbic Brain Regions of Triple-Transgenic Mouse Model of Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 3005. [Google Scholar] [CrossRef]
- Piast, M.; Kustrzeba-Wojcicka, I.; Matusiewicz, M.; Banas, T. Molecular evolution of enolase. Acta Biochim. Pol. 2005, 52, 507–513. [Google Scholar] [CrossRef]
- Jang, M.; Hara, S.; Kim, G.H.; Kim, S.M.; Son, S.; Kwon, M.; Ryoo, I.J.; Seo, H.; Kim, M.J.; Kim, N.D.; et al. Dutomycin Induces Autophagy and Apoptosis by Targeting the Serine Protease Inhibitor SERPINB6. ACS Chem. Biol. 2021, 16, 360–370. [Google Scholar] [CrossRef]
- Fricker, L.D. Carboxypeptidase E. Annu. Rev. Physiol. 1988, 50, 309–321. [Google Scholar] [CrossRef]
- Xiao, L.; Loh, Y.P. Neurotrophic Factor-α1/Carboxypeptidase E Functions in Neuroprotection and Alleviates Depression. Front. Mol. Neurosci. 2022, 15, 918852. [Google Scholar] [CrossRef]
- Lin, Y.; Zheng, Y. Approaches of targeting Rho GTPases in cancer drug discovery. Expert Opin. Drug Discov. 2015, 10, 991–1010. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Fang, J.; Wei, S.; He, G.; Liu, J.; Li, X.; Peng, X.; Li, D.; Yang, S.; Li, X.; et al. Extracellular vesicle-cell adhesion molecules in tumours: Biofunctions and clinical applications. Cell Commun. Signal 2023, 21, 246. [Google Scholar] [CrossRef] [PubMed]
- Haymour, L.; Jean, M.; Smulski, C.; Legembre, P. CD95 (Fas) and CD95L (FasL)-mediated non-canonical signaling pathways. Biochim. Biophys. Acta Rev. Cancer 2023, 1878, 189004. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Huang, J.; Yan, W.; Liu, Z.; Liu, S.; Fang, W. FGFR families: Biological functions and therapeutic interventions in tumors. MedComm 2023, 4, e367. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Furth, E.E.; Rustgi, A.K.; Klein, P.S. When You Come to a Fork in the Road, Take It: Wnt Signaling Activates Multiple Pathways through the APC/Axin/GSK-3 Complex. Cells 2023, 12, 2256. [Google Scholar] [CrossRef] [PubMed]
- Adinolfi, E.; De Marchi, E.; Grignolo, M.; Szymczak, B.; Pegoraro, A. The P2X7 Receptor in Oncogenesis and Metastatic Dissemination: New Insights on Vesicular Release and Adenosinergic Crosstalk. Int. J. Mol. Sci. 2023, 24, 13906. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, M.; Gabrielli, M.; Adinolfi, E.; Verderio, C. Role of ATP in Extracellular Vesicle Biogenesis and Dynamics. Front. Pharmacol. 2021, 12, 654023. [Google Scholar] [CrossRef] [PubMed]
- Lauko, A.; Lo, A.; Ahluwalia, M.S.; Lathia, J.D. Cancer cell heterogeneity & plasticity in glioblastoma and brain tumors. Semin. Cancer Biol. 2022, 82, 162–175. [Google Scholar] [CrossRef]
- Lee, Y.J.; Seo, C.W.; Lee, D.; Choi, D. Proteomics of Extracellular Vesicle in Glioblastoma. Brain Tumor Res. Treat. 2022, 10, 207–214. [Google Scholar] [CrossRef]
- Mallawaaratchy, D.M.; Hallal, S.; Russell, B.; Ly, L.; Ebrahimkhani, S.; Wei, H.; Christopherson, R.I.; Buckland, M.E.; Kaufman, K.L. Comprehensive proteome profiling of glioblastoma-derived extracellular vesicles identifies markers for more aggressive disease. J. Neurooncol. 2017, 131, 233–244. [Google Scholar] [CrossRef]
- Choi, D.; Montermini, L.; Kim, D.K.; Meehan, B.; Roth, F.P.; Rak, J. The Impact of Oncogenic EGFRvIII on the Proteome of Extracellular Vesicles Released from Glioblastoma Cells. Mol. Cell Proteom. 2018, 17, 1948–1964. [Google Scholar] [CrossRef] [PubMed]
- Reilly, L.; Seddighi, S.; Singleton, A.B.; Cookson, M.R.; Ward, M.E.; Qi, Y.A. Variant biomarker discovery using mass spectrometry-based proteogenomics. Front. Aging 2023, 4, 1191993. [Google Scholar] [CrossRef]
- Evangelisti, C.; Rusciano, I.; Mongiorgi, S.; Ramazzotti, G.; Lattanzi, G.; Manzoli, L.; Cocco, L.; Ratti, S. The wide and growing range of lamin B-related diseases: From laminopathies to cancer. Cell Mol. Life Sci. 2022, 79, 126. [Google Scholar] [CrossRef] [PubMed]
- Pei, S.; Wang, X.; Wang, X.; Huang, H.; Tao, H.; Xie, B.; Yang, A.; Qiu, M.; Tan, Z. Aberrant nuclear lamina contributes to the malignancy of human gliomas. J. Genet. Genom. 2022, 49, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Yung, W.K.A.; Luna, M.; Borit, A. Vimentin and glial fibrillary acidic protein in human brain tumors. J. Neuro-Oncol. 1985, 3, 35–38. [Google Scholar] [CrossRef]
- Nguemgo Kouam, P.; Rezniczek, G.A.; Kochanneck, A.; Priesch-Grzeszkowiak, B.; Hero, T.; Adamietz, I.A.; Bühler, H. Robo1 and vimentin regulate radiation-induced motility of human glioblastoma cells. PLoS ONE 2018, 13, e0198508. [Google Scholar] [CrossRef] [PubMed]
- Jovčevska, I.; Zupanec, N.; Urlep, Ž.; Vranič, A.; Matos, B.; Stokin, C.L.; Muyldermans, S.; Myers, M.P.; Buzdin, A.A.; Petrov, I.; et al. Differentially expressed proteins in glioblastoma multiforme identified with a nanobody-based anti-proteome approach and confirmed by OncoFinder as possible tumor-class predictive biomarker candidates. Oncotarget 2017, 8, 44141–44158. [Google Scholar] [CrossRef]
- Hohmann, T.; Dehghani, F. The Cytoskeleton-A Complex Interacting Meshwork. Cells 2019, 8, 362. [Google Scholar] [CrossRef]
- Zheng, S.; Qin, F.; Yin, J.; Li, D.; Huang, Y.; Hu, L.; He, L.; Lv, C.; Li, X.; Li, S.; et al. Role and mechanism of actin-related protein 2/3 complex signaling in cancer invasion and metastasis: A review. Medicine 2023, 102, e33158. [Google Scholar] [CrossRef]
- Lee, H.K.; Finniss, S.; Cazacu, S.; Xiang, C.; Poisson, L.M.; Blumberg, P.M.; Brodie, C. RasGRP3 regulates the migration of glioma cells via interaction with Arp3. Oncotarget 2015, 6, 1850–1864. [Google Scholar] [CrossRef]
- hang, C.; Hai, L.; Zhu, M.; Yu, S.P.; Li, T.; Lin, Y.; Liu, B.; Zhou, X.C.; Chen, L.; Zhao, P.; et al. Actin cytoskeleton regulator Arp2/3 complex is required for DLL1 activating Notch1 signaling to maintain the stem cell phenotype of glioma initiating cells. Oncotarget 2017, 8, 33353–33364. [Google Scholar] [CrossRef]
- Liu, B.; Shen, H.; He, J.; Jin, B.; Tian, Y.; Li, W.; Hou, L.; Zhao, W.; Nan, J.; Zhao, J.; et al. Cytoskeleton remodeling mediated by circRNA-YBX1 phase separation suppresses the metastasis of liver cancer. Proc. Natl. Acad. Sci. USA 2023, 120, e2220296120. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Y.; Wu, Z.; Sun, P. Overexpression of TPM4 is associated with worse prognosis and immune infiltration in patients with glioma. BMC Neurol. 2023, 23, 17. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.X.; Li, X.; Nie, S.D.; Hu, Z.X.; Zhou, D.; Sun, D.Y.; Zhou, G.Y.; Wang, Y.; Liu, J.J.; Song, T.; et al. Extracellular vesicles released by glioma cells are decorated by Annexin A2 allowing for cellular uptake via heparan sulfate. Cancer Gene Ther. 2023, 30, 1156–1166. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Li, B.; Zhao, R.; Pan, Z.; Zhang, S.; Qiu, W.; Guo, Q.; Qi, Y.; Gao, Z.; Fan, Y.; et al. Hypoxia-induced circADAMTS6 in a TDP43-dependent manner accelerates glioblastoma progression via ANXA2/ NF-κB pathway. Oncogene 2023, 42, 138–153. [Google Scholar] [CrossRef]
- Herrera-López, E.E.; Guerrero-Escalera, D.; Aguirre-Maldonado, I.; López-Hernández, A.; Montero, H.; Gutiérrez-Nava, M.A.; Del Pozo-Yauner, L.; Arellanes-Robledo, J.; Camacho, J.; Pérez-Carreón, J.I. Annexins A2 and A5 are potential early biomarkers of hepatocarcinogenesis. Sci. Rep. 2023, 13, 6948. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Guo, C.; Guan, H.; Liu, S.; Sun, M.Z. Annexin A5 as a potential marker in tumors. Clin. Chim. Acta 2014, 427, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Mukaihara, K.; Suehara, Y.; Kohsaka, S.; Kubota, D.; Toda-Ishii, M.; Akaike, K.; Fujimura, T.; Kobayashi, E.; Yao, T.; Ladanyi, M.; et al. Expression of F-actin-capping protein subunit beta, CAPZB, is associated with cell growth and motility in epithelioid sarcoma. BMC Cancer 2016, 16, 206. [Google Scholar] [CrossRef]
- Huang, D.; Cao, L.; Xiao, L.; Song, J.X.; Zhang, Y.J.; Zheng, P.; Zheng, S.-G. Hypoxia induces actin cytoskeleton remodeling by regulating the binding of CAPZA1 to f-actin via PIP2 to drive EMT in hepatocellular carcinoma. Cancer Lett. 2019, 448, 117–127. [Google Scholar] [CrossRef]
- Lee, Y.J.; Jeong, S.H.; Hong, S.C.; Cho, B.I.; Ha, W.S.; Park, S.T.; Choi, S.K.; Jung, E.J.; Ju, Y.T.; Jeong, C.Y.; et al. Prognostic value of CAPZA1 overexpression in gastric cancer. Int. J. Oncol. 2013, 42, 1569–1577. [Google Scholar] [CrossRef]
- Qin, T.; Xiang, W.; Mao, Y.; Zhai, H.; Yang, Z.; Zhang, H. NcRNA-regulated CAPZA1 associated with prognostic and immunological effects across lung adenocarcinoma. Front. Oncol. 2023, 12, 1025192. [Google Scholar] [CrossRef]
- Nguyen, L.T.S.; Jacob, M.A.C.; Parajón, E.; Robinson, D.N. Cancer as a biophysical disease: Targeting the mechanical-adaptability program. Biophys. J. 2022, 121, 3573–3585. [Google Scholar] [CrossRef] [PubMed]
- Thapa, P.; Jiang, H.; Ding, N.; Hao, Y.; Alshahrani, A.; Wei, Q. The Role of Peroxiredoxins in Cancer Development. Biology 2023, 12, 666. [Google Scholar] [CrossRef]
- Lv, C.; Huang, Y.; Wang, Q.; Wang, C.; Hu, H.; Zhang, H.; Lu, D.; Jiang, H.; Shen, R.; Zhang, W.; et al. Ainsliadimer A induces ROS-mediated apoptosis in colorectal cancer cells via directly targeting peroxiredoxin 1 and 2. Cell Chem. Biol. 2023, 30, 295–307.e5. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, Y.; Luo, W.; Chen, S.; Lin, F.; Zhang, X.; Fan, S.; Shen, X.; Wang, Y.; Liang, G. Celastrol induces ROS-mediated apoptosis via directly targeting peroxiredoxin-2 in gastric cancer cells. Theranostics 2020, 10, 10290–10308. [Google Scholar] [CrossRef]
- Jia, W.; Chen, P.; Cheng, Y. PRDX4 and Its Roles in Various Cancers. Technol. Cancer Res. Treat. 2019, 18, 1533033819864313. [Google Scholar] [CrossRef]
- Szeliga, M. Comprehensive analysis of the expression levels and prognostic values of PRDX family genes in glioma. Neurochem. Int. 2022, 153, 105256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, K.; Zhang, J.; Liu, S.S.; Dai, L.; Zhang, J.Y. Using proteomic approach to identify tumor-associated proteins as biomarkers in human esophageal squamous cell carcinoma. J. Proteome Res. 2011, 10, 2863–2872. [Google Scholar] [CrossRef] [PubMed]
- El Ayed, M.; Bonnel, D.; Longuespée, R.; Castelier, C.; Franck, J.; Vergara, D.; Desmons, A.; Tasiemski, A.; Kenani, A.; Vinatier, D.; et al. MALDI imaging mass spectrometry in ovarian cancer for tracking, identifying, and validating biomarkers. Med. Sci. Monit. 2010, 16, BR233–BR245. [Google Scholar] [PubMed]
- Sánchez-Martín, D.; Martínez-Torrecuadrada, J.; Teesalu, T.; Sugahara, K.N.; Alvarez-Cienfuegos, A.; Ximénez-Embún, P.; Fernández-Periáñez, R.; Martín, M.T.; Molina-Privado, I.; Ruppen-Cañás, I.; et al. Proteasome activator complex PA28 identified as an accessible target in prostate cancer by in vivo selection of human antibodies. Proc. Natl. Acad. Sci. USA 2013, 110, 13791–13796. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huang, J.; Sun, J.; Xiang, S.; Yang, D.; Ying, X.; Lu, M.; Li, H.; Ren, G. The transcription levels and prognostic values of seven proteasome alpha subunits in human cancers. Oncotarget 2017, 8, 4501–4519. [Google Scholar] [CrossRef]
- Liu, J.; Yang, X.; Ji, Q.; Yang, L.; Li, J.; Long, X.; Ye, M.; Huang, K.; Zhu, X. Immune Characteristics and Prognosis Analysis of the Proteasome 20S Subunit Beta 9 in Lower-Grade Gliomas. Front. Oncol. 2022, 12, 875131. [Google Scholar] [CrossRef]
- Wang, J.; Xiang, Y.; Fan, M.; Fang, S.; Hua, Q. The Ubiquitin-Proteasome System in Tumor Metabolism. Cancers 2023, 15, 2385. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, J.; Chai, Y.; Qin, C.; Cai, Y.; Xu, D.; Lei, Y.; Mei, Z.; Li, M.; Shen, L.; et al. Novel prognostic features and personalized treatment strategies for mitochondria-related genes in glioma patients. Front. Endocrinol. 2023, 14, 1172182. [Google Scholar] [CrossRef] [PubMed]
- Amari, L.; Germain, M. Mitochondrial Extracellular Vesicles—Origins and Roles. Front. Mol. Neurosci. 2021, 14, 767219. [Google Scholar] [CrossRef]
- Miller, C.E.; Xu, F.; Zhao, Y.; Luo, W.; Zhong, W.; Meyer, K.; Jayswal, R.; Weiss, H.L.; St Clair, W.H.; St Clair, D.K.; et al. Hydrogen Peroxide Promotes the Production of Radiation-Derived EVs Containing Mitochondrial Proteins. Antioxidants 2022, 11, 2119. [Google Scholar] [CrossRef]
- Babi, A.; Menlibayeva, K.; Bex, T.; Doskaliev, A.; Akshulakov, S.; Shevtsov, M. Targeting Heat Shock Proteins in Malignant Brain Tumors: From Basic Research to Clinical Trials. Cancers 2022, 14, 5435. [Google Scholar] [CrossRef]
- Esfahanian, N.; Knoblich, C.D.; Bowman, G.A.; Rezvani, K. Mortalin: Protein partners, biological impacts, pathological roles, and therapeutic opportunities. Front. Cell Dev. Biol. 2023, 11, 1028519. [Google Scholar] [CrossRef]
- Willers, I.M.; Cuezva, J.M. Post-transcriptional regulation of the mitochondrial H(+)-ATP synthase.; a key regulator of the metabolic phenotype in cancer. Biochim. Biophys. Acta 2011, 1807, 543–551. [Google Scholar] [CrossRef]
- Lozinski, M.; Bowden, N.A.; Graves, M.C.; Fay, M.; Day, B.W.; Stringer, B.W.; Tooney, P.A. Transcriptomic Profiling of DNA Damage Response in Patient-Derived Glioblastoma Cells before and after Radiation and Temozolomide Treatment. Cells 2022, 11, 1215. [Google Scholar] [CrossRef]
- Kong, W.; Gao, Y.; Zhao, S.; Yang, H. Cancer stem cells: Advances in the glucose, lipid and amino acid metabolism. Mol. Cell Biochem. 2023. [Google Scholar] [CrossRef] [PubMed]
- Nokin, M.J.; Durieux, F.; Bellier, J.; Peulen, O.; Uchida, K.; Spiegel, D.A.; Cochrane, J.R.; Hutton, C.A.; Castronovo, V.; Bellahcène, A. Hormetic potential of methylglyoxal, a side-product of glycolysis, in switching tumors from growth to death. Sci. Rep. 2017, 7, 11722. [Google Scholar] [CrossRef] [PubMed]
- Chinopoulos, C.; Seyfried, T.N. Mitochondrial Substrate-Level Phosphorylation as Energy Source for Glioblastoma: Review and Hypothesis. ASN Neuro 2018, 10, 1759091418818261. [Google Scholar] [CrossRef] [PubMed]
- Dedobbeleer, M.; Willems, E.; Freeman, S.; Lombard, A.; Goffart, N.; Rogister, B. Phosphatases and solid tumors. Focus on glioblastoma initiation, progression and recurrences. Biochem. J. 2017, 474, 2903–2924. [Google Scholar] [CrossRef] [PubMed]
- Cianci, F.; Verduci, I. Transmembrane Chloride Intracellular Channel 1 (tmCLIC1) as a Potential Biomarker for Personalized Medicine. J. Pers. Med. 2021, 11, 635. [Google Scholar] [CrossRef]
- Avgoulas, D.I.; Tasioulis, K.S.; Papi, R.M.; Pantazaki, A.A. Therapeutic and Diagnostic Potential of Exosomes as Drug Delivery Systems in Brain Cancer. Pharmaceutics 2023, 15, 1439. [Google Scholar] [CrossRef]
- Nawarak, J.; Huang-Liu, R.; Kao, S.H.; Liao, H.H.; Sinchaikul, S.; Chen, S.T.; Cheng, S.L. Proteomics analysis of kojic acid treated A375 human malignant melanoma cells. J. Proteome Res. 2008, 7, 3737–3746. [Google Scholar] [CrossRef] [PubMed]
- Pendharkar, N.; Dhali, S.; Abhang, S. A Novel Strategy to Investigate Tissue-Secreted Tumor Microenvironmental Proteins in Serum toward Development of Breast Cancer Early Diagnosis Biomarker Signature. Proteom. Clin. Appl. 2019, 13, e1700119. [Google Scholar] [CrossRef]
- Liu, J.; Gao, L.; Zhan, N.; Xu, P.; Yang, J.; Yuan, F.; Xu, Y.; Cai, Q.; Geng, R.; Chen, Q. Hypoxia induced ferritin light chain (FTL) promoted epithelia mesenchymal transition and chemoresistance of glioma. J. Exp. Clin. Cancer Res. 2020, 39, 137. [Google Scholar] [CrossRef]
- Yang, F.C.; Wang, C.; Zhu, J.; Gai, Q.J.; Mao, M.; He, J.; Qin, Y.; Yao, X.X.; Wang, Y.X.; Lu, H.M.; et al. Inhibitory effects of temozolomide on glioma cells is sensitized by RSL3-induced ferroptosis but negatively correlated with expression of ferritin heavy chain 1 and ferritin light chain. Lab Investig. 2022, 102, 741–752. [Google Scholar] [CrossRef]
- Shao, Z.; Ma, X.; Zhang, Y.; Sun, Y.; Lv, W.; He, K.; Xia, R.; Wang, P.; Gao, X. CPNE1 predicts poor prognosis and promotes tumorigenesis and radioresistance via the AKT singling pathway in triple-negative breast cancer. Mol. Carcinog. 2020, 59, 533–544. [Google Scholar] [CrossRef]
- Su, J.; Huang, Y.; Wang, Y.; Li, R.; Deng, W.; Zhang, H.; Xiong, H. CPNE1 is a potential prognostic biomarker, associated with immune infiltrates and promotes progression of hepatocellular carcinoma. Cancer Cell Int. 2022, 22, 67. [Google Scholar] [CrossRef]
- Osaki, H.; Walf-Vorderwülbecke, V.; Mangolini, M.; Zhao, L.; Horton, S.J.; Morrone, G.; Schuringa, J.J.; de Boer, J.; Williams, O. The AAA+ ATPase RUVBL2 is a critical mediator of MLL-AF9 oncogenesis. Leukemia 2013, 27, 1461–1468. [Google Scholar] [CrossRef] [PubMed]
- Karno, B.; Edwards, D.N.; Chen, J. Metabolic control of cancer metastasis: Role of amino acids at secondary organ sites. Oncogene 2023, 42, 3447–3456. [Google Scholar] [CrossRef] [PubMed]
- Negrutskii, B. Non-translational Connections of eEF1B in the Cytoplasm and Nucleus of Cancer Cells. Front. Mol. Biosci. 2020, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Liu, D.; Zhang, L.; Wang, J.; Ding, Y.; Sun, Z.; Wang, W. 5’-tiRNA-Gln inhibits hepatocellular carcinoma progression by repressing translation through the interaction with eukaryotic initiation factor 4A-I. Front. Med. 2023, 17, 476–492. [Google Scholar] [CrossRef] [PubMed]
- Tu, Z.; Ouyang, Q.; Long, X.; Wu, L.; Li, J.; Zhu, X.; Huang, K. Protein Disulfide-Isomerase A3 Is a Robust Prognostic Biomarker for Cancers and Predicts the Immunotherapy Response Effectively. Front. Immunol. 2022, 13, 837512. [Google Scholar] [CrossRef]
- Paglia, G.; Minacori, M.; Meschiari, G.; Fiorini, S.; Chichiarelli, S.; Eufemi, M.; Altieri, F. Protein Disulfide Isomerase A3 (PDIA3): A Pharmacological Target in Glioblastoma? Int. J. Mol. Sci. 2023, 24, 13279. [Google Scholar] [CrossRef]
- Gao, H.; Li, Q. A pan-cancer analysis of the oncogenic role of procollagen C-endopeptidase enhancer (PCOLCE) in human. Medicine 2022, 101, e32444. [Google Scholar] [CrossRef] [PubMed]
- Hareendran, S.; Albraidy, B.; Yang, X.; Liu, A.; Breggia, A.; Chen, C.C.; Loh, Y.P. Exosomal Carboxypeptidase E (CPE) and CPE-shRNA-Loaded Exosomes Regulate Metastatic Phenotype of Tumor Cells. Int. J. Mol. Sci. 2022, 23, 3113. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.D.; Lv, Z.; Zhu, W.F. RBBP4 promotes colon cancer malignant progression via regulating Wnt/β-catenin pathway. World J. Gastroenterol. 2020, 26, 5328–5342. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.; Xiang, Y.; Hu, C.; Tang, X. Expression and clinical significance of RBBP4 gene in lower-grade glioma.; An integrative analysis. Biochem. Biophys. Rep. 2023, 35, 101533. [Google Scholar] [CrossRef] [PubMed]
- Barzegar Behrooz, A.; Latifi-Navid, H.; da Silva Rosa, S.C.; Swiat, M.; Wiechec, E.; Vitorino, C.; Vitorino, R.; Jamalpoor, Z.; Ghavami, S. Integrating Multi-Omics Analysis for Enhanced Diagnosis and Treatment of Glioblastoma: A Comprehensive Data-Driven Approach. Cancers 2023, 15, 3158. [Google Scholar] [CrossRef] [PubMed]
- Di, Z.; Zhou, S.; Xu, G.; Ren, L.; Li, C.; Ding, Z.; Huang, K.; Liang, L.; Yuan, Y. Single-cell and WGCNA uncover a prognostic model and potential oncogenes in colorectal cancer. Biol. Proced. Online 2022, 24, 13. [Google Scholar] [CrossRef]
- Jacob, A.; Prekeris, R. The regulation of MMP targeting to invadopodia during cancer metastasis. Front. Cell Dev. Biol. 2015, 3, 4. [Google Scholar] [CrossRef]
- Kannan, S.; Murugan, A.K.; Balasubramanian, S.; Munirajan, A.K.; Alzahrani, A.S. Gliomas: Genetic alterations, mechanisms of metastasis, recurrence, drug resistance, and recent trends in molecular therapeutic options. Biochem. Pharmacol. 2022, 201, 115090. [Google Scholar] [CrossRef]
- Stetler-Stevenson, W.G. The Continuing Saga of Tissue Inhibitor of Metalloproteinase 2: Emerging Roles in Tissue Homeostasis and Cancer Progression. Am. J. Pathol. 2023, 193, 1336–1352. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Lu, X.F.; Chen, H.; Wang, X.Y.; Cheng, W.; Zhang, Q.W.; Chen, J.N.; Wang, X.Y.; Jin, J.Z.; Yan, F.R.; et al. Single-cell Transcriptomics Reveals Early Molecular and Immune Alterations Underlying the Serrated Neoplasia Pathway Toward Colorectal Cancer. Cell Mol. Gastroenterol. Hepatol. 2023, 15, 393–424. [Google Scholar] [CrossRef]
- Vizin, T.; Kos, J. Gamma-enolase: A well-known tumour marker, with a less-known role in cancer. Radiol. Oncol. 2015, 49, 217. [Google Scholar] [CrossRef]
- Majc, B.; Habič, A.; Novak, M.; Rotter, A.; Porčnik, A.; Mlakar, J.; Župunski, V.; Pečar Fonović, U.; Knez, D.; Zidar, N.; et al. Upregulation of Cathepsin X in Glioblastoma: Interplay with γ-Enolase and the Effects of Selective Cathepsin X Inhibitors. Int. J. Mol. Sci. 2022, 23, 1784. [Google Scholar] [CrossRef]
- Yan, T.; Skaftnesmo, K.O.; Leiss, L.; Sleire, L.; Wang, J.; Li, X.; Enger, P.Ø. Neuronal markers are expressed in human gliomas and NSE knockdown sensitizes glioblastoma cells to radiotherapy and temozolomide. BMC Cancer 2011, 11, 524. [Google Scholar] [CrossRef] [PubMed]
- Duncan, M.; DeMarco, M.L. MALDI-MS: Emerging roles in pathology and laboratory medicine. Clin. Mass Spectrom. 2019, 13, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Yi, J.; Han, G.; Qiao, L. MALDI-TOF Mass Spectrometry in Clinical Analysis and Research. ACS Meas. Sci. Au 2022, 2, 385–404. [Google Scholar] [CrossRef] [PubMed]
- Sluyter, R.; Adriouch, S.; Fuller, S.J.; Nicke, A.; Sophocleous, R.A.; Watson, D. Animal Models for the Investigation of P2X7 Receptors. Int. J. Mol. Sci. 2023, 24, 8225. [Google Scholar] [CrossRef] [PubMed]
- Elhage, A.; Cuthbertson, P.; Sligar, C.; Watson, D.; Sluyter, R. A Species-Specific Anti-Human P2X7 Monoclonal Antibody Reduces Graft-versus-Host Disease in Humanised Mice. Pharmaceutics 2023, 15, 2263. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Isaak, A.; Junker, A. Spotlight on P2X7 Receptor PET Imaging: A Bright Target or a Failing Star? Int. J. Mol. Sci. 2023, 24, 1374. [Google Scholar] [CrossRef] [PubMed]
- Di Virgilio, F.; Vultaggio-Poma, V.; Falzoni, S.; Giuliani, A.L. The Coming of Age of the P2X7 Receptor in Diagnostic Medicine. Int. J. Mol. Sci. 2023, 24, 9465. [Google Scholar] [CrossRef]
(a) Ex-Novo Induced Proteins by P2X7R Stimulation of GSCs | ||||||||||
SPOT ID | Abbr. Name | AC a Swiss/NCBI | Protein Description | Score b | Peptide Matched | SC c % | Theoretical (pI/Mr) | Experimental (pI/Mr) | p-Value | |
UM2 | LMNB1 | P20700 | Laminin B1 | 87 | 26 | 38 | 5.11–66.65 | 5.09–69.01 | 0.0004 | |
UM10 | VIME | P08670 | Vimentin | 174 | 58 | 72 | 5.06–53.67 | 5.12–54.04 | 0.0011 | |
UM20 | ANXA5 | P08758 | Annexin A5 | 64 | 9 | 29 | 4.94–35.97 | 5.00–37.02 | 0.0008 | |
UM28 | DPYL2 | Q16555 | Dihydropyrimidinase-related protein 2 | 85 | 23 | 54 | 5.95–62.71 | 5.98–63.92 | 0.0002 | |
UM31 | DPYL2 | Q16555 | Dihydropyrimidinase-related protein 2 | 82 | 23 | 49 | 5.95–62.71 | 6.08–58.75 | 0.0004 | |
UM33 | CH60 | P10809 | 60 kDa heat shock protein, mitochondrial | 91 | 26 | 53 | 5.70–61.18 | 5.58–60.01 | 0.0013 | |
UM34 | ATPB | P06576 | ATP synthase subunit beta, mitochondrial | 125 | 19 | 50 | 5.26–56.52 | 5.28–54.13 | 0.0003 | |
UM37 | ANXA2 | P07355 | Annexin A2 | 154 | 32 | 41 | 7.57–38.80 | 7.63–39.06 | 0.0024 | |
UM47 | VIME | P08670 | Vimentin | 104 | 26 | 45 | 5.06–53.67 | 5.34–58.02 | 0.0008 | |
(b) Changes in Top Protein Levels Caused by P2X7R Stimulation of GSCs | ||||||||||
SPOT ID | Abbr. Name | AC a Swiss/NCBI | Protein Description | Score b | Peptide Matched | SC c % | Theoretical (pI/Mr) | Experimental (pI/Mr) | p-Value | Variation |
M1 | DPYL2 | Q16555 | Dihydropyrimidinase-related protein 2 | 112 | 25 | 58 | 7.26–49.85 | 7.42–49.33 | 0.0037 | UP |
M1bis | HS90B | P08238 | Heat shock protein HSP 90-beta | 140 | 36 | 45 | 4.97–83.55 | 4.88–84.02 | 0.0006 | UP |
M2 | QCR1 | P31930 | Cytochrome b-c1 complex subunit 1, mitochondrial | 84 | 24 | 48 | 5.94–53.29 | 6.01–57.03 | 0.0018 | DW |
M4 | ACTB | P60709 | Actin, cytoplasmic 1 | 80 | 10 | 27 | 5.29–42.05 | 5.41–40.11 | 0.0008 | UP |
M5 | CAZA1 | P52907 | F-actin-capping subunit alpha-1 | 76 | 9 | 38 | 5.45–33.03 | 5.95–33.74 | 0.0019 | UP |
M5bis | RUVB2 | Q9Y230 | RuvB-like 2 | 116 | 34 | 69 | 5.49–51.29 | 5.49–51.29 | 0.0024 | UP |
M8 | CAPZB | P48637 | F-actin-capping subunit beta | 56 | 21 | 58 | 5.69–30.95 | 5.43–31.03 | 0.0005 | UP |
M9 | CPNE1 | Q99829 | Copine-1 | 68 | 20 | 24 | 5.52–59.64 | 5.73–59.15 | 0.0001 | UP |
M10 | PSME1 | Q06323 | Proteasome activator complex subunit 1 | 46 | 11 | 34 | 5.78–28.87 | 5.92–29.94 | 0.0041 | UP |
M11 | PRDX4 | Q13162 | Peroxiredoxin-4 | 82 | 15 | 64 | 5.86–30.74 | 5.96–31.06 | 0.0007 | UP |
M16 | GRP75 | P38646 | Stress-70 protein | 26 | 7 | 17 | 5.87–73.92 | 5.88–77.11 | 0.0029 | UP |
M17 | CPNE1 | Q99829 | Copine-1 | 103 | 18 | 24 | 5.52–59.64 | 5.68–60.01 | 0.0003 | UP |
M17b | 2AAA | P30153 | Serine/Threonine-protein phoshatase 2, 65 kDa regulatory subunit A alpha | 91 | 23 | 38 | 5.00–66.06 | 5.11–65.91 | 0.0008 | DW |
M23 | VIME | P08670 | Vimentin | 175 | 35 | 61 | 5.06–53.67 | 5.12–55.07 | 0.0022 | DW |
M42 | CPNE1 | Q99829 | Copine-1 | 116 | 25 | 34 | 5.52–59.64 | 5.63–58.32 | 0.0012 | UP |
M319b | TPIS | Q02790 | Triosephoshate isomerase | 62 | 11 | 44 | 6.45–26.93 | 6.80–27.42 | 0.0015 | DW |
SPOT ID | Abbr. Name | AC a Swiss/NCBI | Protein Description | Score b | Peptide Matched | SC c % | Theoretical (pI/Mr) | p-Value | Variation |
---|---|---|---|---|---|---|---|---|---|
L7b | CSN4 | Q9BT78 | COP9 signalosome complex subunit 4 | 76 | 27 | 63 | 5.57–46.52 | 0.0001 | UP |
L14 | PRDX2 | P32119 | Peroxiredoxin-2 | 74 | 8 | 42 | 5.29–42.05 | 0.0004 | UP |
L13 | PRDX4 | Q13162 | Peroxiredoxin-4 | 63 | 11 | 43 | 5.86–30.74 | 0.0005 | UP |
L15 | FRIL | P02792 | Ferritin light chain | 120 | 10 | 51 | 5.51–20.06 | 0.0021 | UP |
L22 | PSA6 | P60900 | Proteasome subunit alpha type-6 | 59 | 11 | 44 | 5.06–53.67 | 0.0017 | UP |
L23 | ATP23 | Q9Y6H3 | Mitochondrial inner membrane protease ATP homolog | 56 | 5 | 23 | 5.11–66.65 | 0.0011 | UP |
L25 | ARP3 | P61158 | Actin-related protein 3 | 88 | 17 | 33 | 5.61–47.79 | 0.0009 | UP |
L27 | CLC1 | P35523 | Chloride intracellular channel protein 1 | 57 | 5 | 21 | 5.09–27.24 | 0.0024 | DW |
(a) Ex-Novo Induced Proteins by P2X7R Stimulation of GSCs | ||||||||||
SPOT ID | Abbr. Name | AC a Swiss/NCBI | Protein Description | Score b | Peptide Matched | SC c % | Theoretical (pI/Mr) | Experimental (pI/Mr) | p-Value | |
UM6 | VIME | B0YJC5 | Vimentin | 45 | 9 | 34 | 4.68–26.95 | 4.89–27.12 | 0.0004 | |
UM9 | PSB9 | P38646 | Proteasome subunit beta type-9 | 68 | 10 | 39 | 4.93–23.36 | 5.03–23.78 | 0.0011 | |
UM15 | PSA6 | P60900 | Proteasome subunit alpha type-6 | 66 | 11 | 42 | 6.34–27.83 | 6.44–28.03 | 0.0008 | |
UM21 | PSA5 | P28066 | Proteasome subunit alpha type-5 | 57 | 9 | 38 | 4.74–26.56 | 4.55–26.71 | 0.0002 | |
UM92 | PSA2 | P25787 | Proteasome subunit alpha type-2 | 58 | 6 | 29 | 6.92–25.99 | 6.98–26.11 | 0.0004 | |
UM105 | EF1G | P26641 | Elongation factor 1-gamma | 78 | 10 | 24 | 6.25–50.42 | 6.25–52.01 | 0.0013 | |
UM110 | RBBP4 | Q09028 | Histone binding protein RBBP4 | 57 | 13 | 31 | 5.03–53.51 | 5.13–53.89 | 0.0003 | |
(b) Changes in Top Protein Levels Caused by P2X7R Stimulation of GSCs | ||||||||||
SPOT ID | Abbr. Name | AC a Swiss/NCBI | Protein Description | Score b | Peptide Matched | SC c % | Theoretical (pI/Mr) | Experimental (pI/Mr) | p-Value | Variation |
M7d | TIMP2 | P16035 | Metalloproteinase inhibitor 2 | 112 | 36 | 45 | 4.97–83.55 | 4.98–79.89 | 0.0006 | UP |
M38 | MMP2 | P08253 | 72KDa type IV collagenase | 189 | 35 | 54 | 5.23–74.91 | 5.23–76.99 | 0.0015 | UP |
M41 | MPP2+ GPSM2 | Q14168 P81274 | MAGUK p55 subfamily member 2; G-protein signaling modulator 2 | 47 66 | 7 23 | 13 29 | 6.32–64.82 5.97–76.61 | 6.32–65.12 6.10–77.11 | 0.0007 | UP |
M50 | PDIA3 | P30101 | Protein disulfide-isomerase A3 | 72 | 12 | 38 | 5.98–57.14 | 5.96–56.78 | 0.0008 | UP |
M52 | IF4A1 | P60842 | Eukaryotic initiation factor 4A | 59 | 17 | 40 | 5.32–46.35 | 5.17–44.03 | 0.0005 | UP |
M54 | ATPB | P06576 | ATP synthase subunit beta, mitochondrial | 87 | 12 | 31 | 5.26–56.52 | 5.32–56.90 | 0.0019 | DW |
M55 | ENOG | P08670 | Gamma enolase | 57 | 9 | 38 | 4.91–47.58 | 4.91–49.01 | 0.0041 | UP |
M56 | ARP3 | P61158 | Actin-related protein 3 | 84 | 19 | 38 | 5.61–47.79 | 5.46–49.15 | 0.0029 | UP |
M63 | VIME | P08670 | Vimentin | 213 | 46 | 67 | 5.06–53.67 | 5.40–58.13 | 0.0008 | DW |
M63B | VIME | P08670 | Vimentin | 288 | 41 | 69 | 5.06–53.67 | 5.36–59.66 | 0.0004 | UP |
M65 | VIME | P08670 | Vimentin | 115 | 31 | 54 | 5.06–53676 | 5.11–53.18 | 0.0022 | UP |
M69 | SPB6 | P35237 | Serpin B6 | 74 | 14 | 50 | 5.18–42.93 | 4.79–44.03 | 0.0012 | UP |
M75 | ACTB | P60709 | Actin, cytoplasmic 1 | 46 | 6 | 15 | 5.29–42.05 | 5.46–47.12 | 0.0029 | DW |
M77 | TPM4 | P67936 | Tropomyosin alpha-4 chain | 60 | 18 | 64 | 4.67–28.61 | 4.80–30.11 | 0.0003 | UP |
M78 | POC1 | Q8NBT0 | Procollagen C-endopeptidase enhancer 1 | 109 | 13 | 37 | 7.41–48.79 | 7.80–50.06 | 0.0008 | UP |
M92 | TIMP2 | P16035 | Metalloproteinase inhibitor 2 | 98 | 12 | 44 | 7.45–25.06 | 7.48–25.34 | 0.0004 | UP |
M126 | CBPE | P16870 | Carboxypeptidase E | 57 | 13 | 31 | 5.03–53.51 | 4.99–55.07 | 0.0022 | UP |
M138 | ACTG | P63261 | Actin, cytoplasmic 2 | 60 | 8 | 20 | 5.31–42.10 | 5.42–40.77 | 0.0012 | UP |
Label | ABBR. Name | Mw/pI Theor. | PMF Score a | Peptide Matched/ Peptide Searched | SC b % | Lift (MS2) Ion Parent Masses (m/z) | Score c Tof-Tof | Peptide Sequence |
---|---|---|---|---|---|---|---|---|
M54 | ATPB | 5.26/ 56.52 | 87 | 12 | 31 | 2266.084 1815.869 1088.635 | 176 | IPSAVGYQPTLATDMGTMQE R R.EVAFHGGIPDTGFYR.F VVDLLAPYAK |
M92 | TIMP2 | 7.45/ 25.06 | 98 | 12 | 44 | 1676.823 949.546 884.481 | 118 | EVDSGNDIYGNPIKR RIQYEIK FFACIKR |
M56 | ARP3 | 5.61/ 47.79 | 84 | 19 | 38 | 2135.1205 1094.584 1041.5437 | 221 | LGYAGNTEPQFIIPSCIAIK QYTGINAISK FMEQVIFK |
M2 | QCR1 | 5.94/ 53.29 | 84 | 24 | 48 | 1996.975 971.526 | 106 | NALVSHLDGTTPVCEDIGR NRPGSALEK |
M4 | ACTB | 5.29/ 42.05 | 80 | 10 | 27 | 2215.0699 1516.7026 | 189 | DLYANTVLSGGTTMYPGIAD R QEYDESGPSIVHR |
M8 | CAPZB | 5.69/ 30.95 | 56 | 21 | 58 | 1534.8298 1507.6879 901.4989 | 287 | LTSTVMLWLQTNK SDQQLDCALDLMR NDLVEALK |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Giuseppe, F.; Ricci-Vitiani, L.; Pallini, R.; Di Pietro, R.; Di Iorio, P.; Ascani, G.; Ciccarelli, R.; Angelucci, S. Changes Induced by P2X7 Receptor Stimulation of Human Glioblastoma Stem Cells in the Proteome of Extracellular Vesicles Isolated from Their Secretome. Cells 2024, 13, 571. https://doi.org/10.3390/cells13070571
Di Giuseppe F, Ricci-Vitiani L, Pallini R, Di Pietro R, Di Iorio P, Ascani G, Ciccarelli R, Angelucci S. Changes Induced by P2X7 Receptor Stimulation of Human Glioblastoma Stem Cells in the Proteome of Extracellular Vesicles Isolated from Their Secretome. Cells. 2024; 13(7):571. https://doi.org/10.3390/cells13070571
Chicago/Turabian StyleDi Giuseppe, Fabrizio, Lucia Ricci-Vitiani, Roberto Pallini, Roberta Di Pietro, Patrizia Di Iorio, Giuliano Ascani, Renata Ciccarelli, and Stefania Angelucci. 2024. "Changes Induced by P2X7 Receptor Stimulation of Human Glioblastoma Stem Cells in the Proteome of Extracellular Vesicles Isolated from Their Secretome" Cells 13, no. 7: 571. https://doi.org/10.3390/cells13070571
APA StyleDi Giuseppe, F., Ricci-Vitiani, L., Pallini, R., Di Pietro, R., Di Iorio, P., Ascani, G., Ciccarelli, R., & Angelucci, S. (2024). Changes Induced by P2X7 Receptor Stimulation of Human Glioblastoma Stem Cells in the Proteome of Extracellular Vesicles Isolated from Their Secretome. Cells, 13(7), 571. https://doi.org/10.3390/cells13070571