Glycerol Trinitrate Acts Downstream of Calcitonin Gene-Related Peptide in Trigeminal Nociception—Evidence from Rodent Experiments with Anti-CGRP Antibody Fremanezumab
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Administration of Monoclonal Antibodies
2.3. Administration of GTN and Dissection
2.4. Preparation and CGRP Determination
2.5. Preparation of Animals for Behavioral Tests
2.6. Sequence of Testing
2.7. Data Processing and Statistics
3. Results
3.1. CGRP Content of Trigeminal Ganglia
3.1.1. General Observations
3.1.2. CGRP Concentration in Trigeminal Ganglia
3.1.3. Comparison of CGRP Concentration with Previous Data from Animals Not Treated with GTN
3.2. Behavioral Experiments
3.2.1. Number of Approaches to Source
3.2.2. Time Staying at the Source
3.2.3. Consumed Volume
3.2.4. Comparison of Behavioral Data with Animals Not Treated with GTN: No Barrier Condition
3.2.5. Comparison of Behavioral Data with Animals Not Treated with GTN: Barrier Condition
4. Discussion
4.1. Impact of GTN on the CGRP Concentration of Trigeminal Ganglia
4.2. Sex-Dependent CGRP Concentration of Trigeminal Ganglia
4.3. No Impact of Fremanezumab on the CGRP Concentration of Trigeminal Ganglia
4.4. Limitations Regarding the Calculation of CGRP Concentrations
4.5. Impact of GTN on Rat Behavior
4.6. Summary of GTN Effects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iyengar, S.; Johnson, K.W.; Ossipov, M.H.; Aurora, S.K. CGRP and the Trigeminal System in Migraine. Headache 2019, 59, 659–681. [Google Scholar] [CrossRef]
- Karsan, N.; Gosalia, H.; Goadsby, P.J. Molecular Mechanisms of Migraine: Nitric Oxide Synthase and Neuropeptides. Int. J. Mol. Sci. 2023, 24, 11993. [Google Scholar] [CrossRef]
- Goadsby, P.J.; Edvinsson, L.; Ekman, R. Vasoactive Peptide Release in the Extracerebral Circulation of Humans during Migraine Headache. Ann. Neurol. 1990, 28, 183–187. [Google Scholar] [CrossRef]
- Edvinsson, L.; Goadsby, P.J. Neuropeptides in Migraine and Cluster Headache. Cephalalgia Int. J. Headache 1994, 14, 320–327. [Google Scholar] [CrossRef]
- Fan, P.-C.; Kuo, P.-H.; Chang, S.-H.; Lee, W.-T.; Wu, R.-M.; Chiou, L.-C. Plasma Calcitonin Gene-Related Peptide in Diagnosing and Predicting Paediatric Migraine. Cephalalgia Int. J. Headache 2009, 29, 883–890. [Google Scholar] [CrossRef]
- Bellamy, J.L.; Cady, R.K.; Durham, P.L. Salivary Levels of CGRP and VIP in Rhinosinusitis and Migraine Patients. Headache 2006, 46, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Alpuente, A.; Gallardo, V.J.; Asskour, L.; Caronna, E.; Torres-Ferrus, M.; Pozo-Rosich, P. Salivary CGRP Can Monitor the Different Migraine Phases: CGRP (in)Dependent Attacks. Cephalalgia Int. J. Headache 2022, 42, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Kamm, K.; Straube, A.; Ruscheweyh, R. Calcitonin Gene-Related Peptide Levels in Tear Fluid Are Elevated in Migraine Patients Compared to Healthy Controls. Cephalalgia Int. J. Headache 2019, 39, 1535–1543. [Google Scholar] [CrossRef]
- Goadsby, P.J.; Holland, P.R.; Martins-Oliveira, M.; Hoffmann, J.; Schankin, C.; Akerman, S. Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol. Rev. 2017, 97, 553–622. [Google Scholar] [CrossRef] [PubMed]
- de Vries, T.; Villalón, C.M.; MaassenVanDenBrink, A. Pharmacological Treatment of Migraine: CGRP and 5-HT beyond the Triptans. Pharmacol. Ther. 2020, 211, 107528. [Google Scholar] [CrossRef] [PubMed]
- Lassen, L.H.; Haderslev, P.A.; Jacobsen, V.B.; Iversen, H.K.; Sperling, B.; Olesen, J. CGRP May Play a Causative Role in Migraine. Cephalalgia Int. J. Headache 2002, 22, 54–61. [Google Scholar] [CrossRef]
- Hansen, J.M.; Hauge, A.W.; Olesen, J.; Ashina, M. Calcitonin Gene-Related Peptide Triggers Migraine-like Attacks in Patients with Migraine with Aura. Cephalalgia Int. J. Headache 2010, 30, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Sarchielli, P.; Alberti, A.; Codini, M.; Floridi, A.; Gallai, V. Nitric Oxide Metabolites, Prostaglandins and Trigeminal Vasoactive Peptides in Internal Jugular Vein Blood during Spontaneous Migraine Attacks. Cephalalgia Int. J. Headache 2000, 20, 907–918. [Google Scholar] [CrossRef] [PubMed]
- Olesen, J.; Thomsen, L.L.; Lassen, L.H.; Olesen, I.J. The Nitric Oxide Hypothesis of Migraine and Other Vascular Headaches. Cephalalgia Int. J. Headache 1995, 15, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Ashina, M.; Bendtsen, L.; Jensen, R.; Olesen, J. Nitric Oxide-Induced Headache in Patients with Chronic Tension-Type Headache. Brain J. Neurol. 2000, 123 Pt 9, 1830–1837. [Google Scholar] [CrossRef]
- Olesen, J. Nitric Oxide-Related Drug Targets in Headache. Neurotherapeutics 2010, 7, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Juhasz, G.; Zsombok, T.; Modos, E.A.; Olajos, S.; Jakab, B.; Nemeth, J.; Szolcsanyi, J.; Vitrai, J.; Bagdy, G. NO-Induced Migraine Attack: Strong Increase in Plasma Calcitonin Gene-Related Peptide (CGRP) Concentration and Negative Correlation with Platelet Serotonin Release. Pain 2003, 106, 461–470. [Google Scholar] [CrossRef]
- Juhasz, G.; Zsombok, T.; Jakab, B.; Nemeth, J.; Szolcsanyi, J.; Bagdy, G. Sumatriptan Causes Parallel Decrease in Plasma Calcitonin Gene-Related Peptide (CGRP) Concentration and Migraine Headache during Nitroglycerin Induced Migraine Attack. Cephalalgia Int. J. Headache 2005, 25, 179–183. [Google Scholar] [CrossRef]
- Vanmolkot, F.; Van der Schueren, B.; de Hoon, J. Sumatriptan Causes Parallel Decrease in Plasma CGRP Concentration and Migraine Headache during Nitroglycerin-Induced Migraine Attack. Cephalalgia Int. J. Headache 2006, 26, 1037–1038. [Google Scholar] [CrossRef]
- Kruuse, C.; Iversen, H.K.; Jansen-Olesen, I.; Edvinsson, L.; Olesen, J. Calcitonin Gene-Related Peptide (CGRP) Levels during Glyceryl Trinitrate (GTN)-Induced Headache in Healthy Volunteers. Cephalalgia Int. J. Headache 2010, 30, 467–474. [Google Scholar] [CrossRef]
- Tvedskov, J.F.; Tfelt-Hansen, P.; Petersen, K.A.; Jensen, L.T.; Olesen, J. CGRP Receptor Antagonist Olcegepant (BIBN4096BS) Does Not Prevent Glyceryl Trinitrate-Induced Migraine. Cephalalgia Int. J. Headache 2010, 30, 1346–1353. [Google Scholar] [CrossRef]
- Tassorelli, C.; Greco, R.; Wang, D.; Sandrini, M.; Sandrini, G.; Nappi, G. Nitroglycerin Induces Hyperalgesia in Rats—A Time-Course Study. Eur. J. Pharmacol. 2003, 464, 159–162. [Google Scholar] [CrossRef]
- Greco, R.; Mangione, A.; Siani, F.; Blandini, F.; Vairetti, M.; Nappi, G.; Sandrini, G.; Buzzi, M.; Tassorelli, C. Effects of CGRP Receptor Antagonism in Nitroglycerin-Induced Hyperalgesia. Cephalalgia Int. J. Headache 2013, 34, 594–604. [Google Scholar] [CrossRef]
- Demartini, C.; Greco, R.; Zanaboni, A.M.; Sances, G.; De Icco, R.; Borsook, D.; Tassorelli, C. Nitroglycerin as a Comparative Experimental Model of Migraine Pain: From Animal to Human and Back. Prog. Neurobiol. 2019, 177, 15–32. [Google Scholar] [CrossRef]
- Sureda-Gibert, P.; Romero-Reyes, M.; Akerman, S. Nitroglycerin as a Model of Migraine: Clinical and Preclinical Review. Neurobiol. Pain 2022, 12, 100105. [Google Scholar] [CrossRef]
- Guo, S.; Ernstsen, C.; Hay-Schmidt, A.; Kristensen, D.M.; Ashina, M.; Olesen, J.; Christensen, S.L. PACAP Signaling Is Not Involved in GTN- and Levcromakalim-Induced Hypersensitivity in Mouse Models of Migraine. J. Headache Pain 2022, 23, 155. [Google Scholar] [CrossRef]
- Dux, M.; Vogler, B.; Kuhn, A.; Mackenzie, K.D.; Stratton, J.; Messlinger, K. The Anti-CGRP Antibody Fremanezumab Lowers CGRP Release from Rat Dura Mater and Meningeal Blood Flow. Cells 2022, 11, 1768. [Google Scholar] [CrossRef]
- Benedicter, N.; Messlinger, K.; Vogler, B.; Mackenzie, K.D.; Stratton, J.; Friedrich, N.; Dux, M. Semi-Automated Recording of Facial Sensitivity in Rat Demonstrates Antinociceptive Effects of the Anti-CGRP Antibody Fremanezumab. Neurol. Int. 2023, 15, 622–637. [Google Scholar] [CrossRef]
- Vogler, B.; Kuhn, A.; Mackenzie, K.D.; Stratton, J.; Dux, M.; Messlinger, K. The Anti-Calcitonin Gene-Related Peptide (Anti-CGRP) Antibody Fremanezumab Reduces Trigeminal Neurons Immunoreactive to CGRP and CGRP Receptor Components in Rats. Int. J. Mol. Sci. 2023, 24, 13471. [Google Scholar] [CrossRef]
- Greco, R.; Demartini, C.; Zanaboni, A.M.; Tassorelli, C. Chronic and Intermittent Administration of Systemic Nitroglycerin in the Rat Induces an Increase in the Gene Expression of CGRP in Central Areas: Potential Contribution to Pain Processing. J. Headache Pain 2018, 19, 51. [Google Scholar] [CrossRef]
- Christensen, S.L.; Ernstsen, C.; Olesen, J.; Kristensen, D.M. No Central Action of CGRP Antagonising Drugs in the GTN Mouse Model of Migraine. Cephalalgia Int. J. Headache 2020, 40, 924–934. [Google Scholar] [CrossRef]
- Andreou, A.P.; Leese, C.; Greco, R.; Demartini, C.; Corrie, E.; Simsek, D.; Zanaboni, A.; Koroleva, K.; Lloyd, J.O.; Lambru, G.; et al. Double-Binding Botulinum Molecule with Reduced Muscle Paralysis: Evaluation in In Vitro and In Vivo Models of Migraine. Neurotherapeutics 2021, 18, 556–568. [Google Scholar] [CrossRef] [PubMed]
- Greco, R.; Demartini, C.; Francavilla, M.; Zanaboni, A.M.; Tassorelli, C. Antagonism of CGRP Receptor: Central and Peripheral Mechanisms and Mediators in an Animal Model of Chronic Migraine. Cells 2022, 11, 3092. [Google Scholar] [CrossRef] [PubMed]
- Dieterle, A.; Fischer, M.J.M.; Link, A.S.; Neuhuber, W.L.; Messlinger, K. Increase in CGRP- and nNOS-Immunoreactive Neurons in the Rat Trigeminal Ganglion after Infusion of an NO Donor. Cephalalgia Int. J. Headache 2011, 31, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Seiler, K.; Nusser, J.I.; Lennerz, J.K.; Neuhuber, W.L.; Messlinger, K. Changes in Calcitonin Gene-Related Peptide (CGRP) Receptor Component and Nitric Oxide Receptor (sGC) Immunoreactivity in Rat Trigeminal Ganglion Following Glyceroltrinitrate Pretreatment. J. Headache Pain 2013, 14, 74. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ozawa, H.; Lu, H.; Yuri, K.; Hayashi, S.; Nihonyanagi, K.; Kawata, M. Immunocytochemical Analysis of Sex Differences in Calcitonin Gene-Related Peptide in the Rat Dorsal Root Ganglion, with Special Reference to Estrogen and Its Receptor. Brain Res. 1998, 791, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Cetinkaya, A.; Kilinc, E.; Camsari, C.; Ogun, M.N. Effects of Estrogen and Progesterone on the Neurogenic Inflammatory Neuropeptides: Implications for Gender Differences in Migraine. Exp. Brain Res. 2020, 238, 2625–2639. [Google Scholar] [CrossRef] [PubMed]
- Raffaelli, B.; Terhart, M.; Fitzek, M.P.; Lange, K.S.; Mecklenburg, J.; Overeem, L.H.; Siebert, A.; Storch, E.; Reuter, U. Change of CGRP Plasma Concentrations in Migraine after Discontinuation of CGRP-(Receptor) Monoclonal Antibodies. Pharmaceutics 2023, 15, 293. [Google Scholar] [CrossRef]
- Iannone, L.F.; De Cesaris, F.; Ferrari, A.; Benemei, S.; Fattori, D.; Chiarugi, A. Effectiveness of Anti-CGRP Monoclonal Antibodies on Central Symptoms of Migraine. Cephalalgia Int. J. Headache 2022, 42, 1323–1330. [Google Scholar] [CrossRef]
- Harris, H.M.; Carpenter, J.M.; Black, J.R.; Smitherman, T.A.; Sufka, K.J. The Effects of Repeated Nitroglycerin Administrations in Rats; Modeling Migraine-Related Endpoints and Chronification. J. Neurosci. Methods 2017, 284, 63–70. [Google Scholar] [CrossRef]
- Akerman, S.; Romero-Reyes, M.; Karsan, N.; Bose, P.; Hoffmann, J.R.; Holland, P.R.; Goadsby, P.J. Therapeutic Targeting of Nitroglycerin-Mediated Trigeminovascular Neuronal Hypersensitivity Predicts Clinical Outcomes of Migraine Abortives. Pain 2021, 162, 1567–1577. [Google Scholar] [CrossRef]
- Barbanti, P.; Egeo, G.; Aurilia, C.; Altamura, C.; d’Onofrio, F.; Finocchi, C.; Albanese, M.; Aguggia, M.; Rao, R.; Zucco, M.; et al. Predictors of Response to Anti-CGRP Monoclonal Antibodies: A 24-Week, Multicenter, Prospective Study on 864 Migraine Patients. J. Headache Pain 2022, 23, 138. [Google Scholar] [CrossRef]
- Ashina, S.; Melo-Carrillo, A.; Szabo, E.; Borsook, D.; Burstein, R. Pre-Treatment Non-Ictal Cephalic Allodynia Identifies Responders to Prophylactic Treatment of Chronic and Episodic Migraine Patients with Galcanezumab: A Prospective Quantitative Sensory Testing Study (NCT04271202). Cephalalgia Int. J. Headache 2023, 43, 3331024221147881. [Google Scholar] [CrossRef]
- Bates, E.A.; Nikai, T.; Brennan, K.C.; Fu, Y.-H.; Charles, A.C.; Basbaum, A.I.; Ptácek, L.J.; Ahn, A.H. Sumatriptan Alleviates Nitroglycerin-Induced Mechanical and Thermal Allodynia in Mice. Cephalalgia Int. J. Headache 2010, 30, 170–178. [Google Scholar] [CrossRef]
- Akerman, S.; Karsan, N.; Bose, P.; Hoffmann, J.R.; Holland, P.R.; Romero-Reyes, M.; Goadsby, P.J. Nitroglycerine Triggers Triptan-Responsive Cranial Allodynia and Trigeminal Neuronal Hypersensitivity. Brain J. Neurol. 2019, 142, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Ernstsen, C.; Christensen, S.L.; Olesen, J.; Kristensen, D.M. No Additive Effect of Combining Sumatriptan and Olcegepant in the GTN Mouse Model of Migraine. Cephalalgia Int. J. Headache 2021, 41, 329–339. [Google Scholar] [CrossRef] [PubMed]
- De Logu, F.; Nassini, R.; Hegron, A.; Landini, L.; Jensen, D.D.; Latorre, R.; Ding, J.; Marini, M.; Souza Monteiro de Araujo, D.; Ramírez-Garcia, P.; et al. Schwann Cell Endosome CGRP Signals Elicit Periorbital Mechanical Allodynia in Mice. Nat. Commun. 2022, 13, 646. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, M.; Dux, M.; Namer, B.; Miljkovic, J.; Cordasic, N.; Will, C.; Kichko, T.I.; de la Roche, J.; Fischer, M.; Suárez, S.A.; et al. H2S and NO Cooperatively Regulate Vascular Tone by Activating a Neuroendocrine HNO-TRPA1-CGRP Signalling Pathway. Nat. Commun. 2014, 5, 4381. [Google Scholar] [CrossRef] [PubMed]
- Dux, M.; Will, C.; Vogler, B.; Filipovic, M.R.; Messlinger, K. Meningeal Blood Flow Is Controlled by H2 S-NO Crosstalk Activating a HNO-TRPA1-CGRP Signalling Pathway. Br. J. Pharmacol. 2015, 173, 431–445. [Google Scholar] [CrossRef] [PubMed]
- Koroleva, K.; Svitko, S.; Ananev, A.; Buglinina, A.; Bogatova, K.; Yakovleva, O.; Nurmieva, D.; Shaidullov, I.; Sitdikova, G. Effects of Nitric Oxide on the Activity of P2X and TRPV1 Receptors in Rat Meningeal Afferents of the Trigeminal Nerve. Int. J. Mol. Sci. 2023, 24, 7519. [Google Scholar] [CrossRef] [PubMed]
- Bryan, N.S.; Bian, K.; Murad, F. Discovery of the Nitric Oxide Signaling Pathway and Targets for Drug Development. Front. Biosci. 2009, 14, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Neeb, L.; Reuter, U. Nitric Oxide in Migraine. CNS Neurol. Disord. Drug Targets 2007, 6, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Spiller, F.; Oliveira Formiga, R.; Fernandes da Silva Coimbra, J.; Alves-Filho, J.C.; Cunha, T.M.; Cunha, F.Q. Targeting Nitric Oxide as a Key Modulator of Sepsis, Arthritis and Pain. Nitric Oxide Biol. Chem. 2019, 89, 32–40. [Google Scholar] [CrossRef] [PubMed]
Samples (n) | Ganglion Mass (mg) | Difference | CGRP Conc. (ng/mg) | Difference | ||
---|---|---|---|---|---|---|
mAb | Fremanezumab | 52 | 14.7 ± 0.7 | n.s. | 1.11 ± 0.12 | n.s. |
Control antibody | 52 | 13.7 ± 0.8 | 1.10 ± 0.90 | |||
Sex | Females | 52 | 15.1 ± 0.9 | p < 0.05 | 0.87 ± 0.56 | p < 0.0001 |
Males | 52 | 13.4 ± 0.6 | 1.34 ± 0.13 | |||
Days after mAb administration | Day 1 | 18 | 17.7 ± 1.1 | p < 0.0001 | 1.22 ± 0.13 | p < 0.0001 |
Day 3 | 16 | 15.7 ± 1.6 | 1.71 ± 0.29 | |||
Day 10 | 26 | 14.7 ± 1.0 | 1.15 ± 0.13 | |||
Day 30 | 20 | 8.9 ± 0.4 | 1.25 ± 0.83 | |||
GTN repetitive | 24 | 14.6 ± 1.0 | 0.44 ± 0.05 |
Baseline | Day 4–6 | Day 11–13 | ||||
---|---|---|---|---|---|---|
No barrier | Fremanezumab | Control mAb | Fremanezumab | Control mAb | Fremanezumab | Control mAb |
Counts (n) | 46.1 ± 4.2 | 54.6 ± 9.2 | 58.3 ± 6.8 | 58.5 ± 10.4 | 67.6 ± 14.4 | 48.9 ± 4.6 |
Time (s) | 269.0 ± 21.0 | 261.7 ± 41.6 | 287.8 ± 41.5 | 263.9 ± 53.3 | 302.1 ± 41.4 | 294.0 ± 29.2 |
Volume (mL) | 8.3 ± 0.9 | 7.7 ± 1.3 | 8.8 ± 1.3 | 7.4 ± 1.1 | 10.3 ± 1.1 | 9.3 ± 1.0 |
Mech. barrier | Fremanezumab | Control mAb | Fremanezumab | Control mAb | Fremanezumab | Control mAb |
Counts (n) | 141.5 ± 55.3 | 44.8 ± 15.1 | 383.7 ± 152.5 | 113.9 ± 56.4 | 553.7 ± 210.6 | 121.5 ± 56.3 |
Time (s) * | 114.5 ± 33.7 | 53.3 ± 19.8 | 162.6 ± 43.8 | 74.7 ± 30.2 | 199.2 ± 41.5 | 106.7 ± 32.6 |
Volume (mL) * | 3.7 ± 1.1 | 1.9 ± 0.6 | 5.4 ± 1.3 | 2.5 ± 1.0 | 6.1 ± 1.4 | 2.8 ± 1.0 |
Therm. barrier | Fremanezumab | Control mAb | Fremanezumab | Control mAb | Fremanezumab | Control mAb |
Counts (n) | 64.8 ± 9.8 | 73.3 ± 12.9 | 66.7 ± 10.3 | 55.7 ± 11.3 | 82.9 ± 10.1 | 62.7 ± 11.5 |
Time (s) | 228.9 ± 38.3 | 195.6 ± 34.0 | 230.2 ± 32.5 | 155.8 ± 41.3 | 220.3 ± 28.5 | 175.5 ± 37.8 |
Volume (mL) | 6.8 ± 1.2 | 5.3 ± 1.0 | 6.8 ± 0.8 | 4.5 ± 1.0 | 6.6 ± 0.8 | 5.9 ± 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benedicter, N.; Vogler, B.; Kuhn, A.; Schramm, J.; Mackenzie, K.D.; Stratton, J.; Dux, M.; Messlinger, K. Glycerol Trinitrate Acts Downstream of Calcitonin Gene-Related Peptide in Trigeminal Nociception—Evidence from Rodent Experiments with Anti-CGRP Antibody Fremanezumab. Cells 2024, 13, 572. https://doi.org/10.3390/cells13070572
Benedicter N, Vogler B, Kuhn A, Schramm J, Mackenzie KD, Stratton J, Dux M, Messlinger K. Glycerol Trinitrate Acts Downstream of Calcitonin Gene-Related Peptide in Trigeminal Nociception—Evidence from Rodent Experiments with Anti-CGRP Antibody Fremanezumab. Cells. 2024; 13(7):572. https://doi.org/10.3390/cells13070572
Chicago/Turabian StyleBenedicter, Nicola, Birgit Vogler, Annette Kuhn, Jana Schramm, Kimberly D. Mackenzie, Jennifer Stratton, Mária Dux, and Karl Messlinger. 2024. "Glycerol Trinitrate Acts Downstream of Calcitonin Gene-Related Peptide in Trigeminal Nociception—Evidence from Rodent Experiments with Anti-CGRP Antibody Fremanezumab" Cells 13, no. 7: 572. https://doi.org/10.3390/cells13070572
APA StyleBenedicter, N., Vogler, B., Kuhn, A., Schramm, J., Mackenzie, K. D., Stratton, J., Dux, M., & Messlinger, K. (2024). Glycerol Trinitrate Acts Downstream of Calcitonin Gene-Related Peptide in Trigeminal Nociception—Evidence from Rodent Experiments with Anti-CGRP Antibody Fremanezumab. Cells, 13(7), 572. https://doi.org/10.3390/cells13070572