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Abstract: Heat shock proteins (HSPs) are essential molecular chaperones that protect cells
by aiding in protein folding and preventing aggregation under stress conditions. Small
heat shock proteins (sHSPs), which include members from HSPB1 to HSPB10, are particu-
larly important for cellular stress responses. These proteins share a conserved α-crystallin
domain (ACD) critical for their chaperone function, with flexible N- and C-terminal ex-
tensions that facilitate oligomer formation. Phosphorylation, a key post-translational
modification (PTM), plays a dynamic role in regulating sHSP structure, oligomeric state,
stability, and chaperone function. Unlike other PTMs such as deamidation, oxidation, and
glycation—which are often linked to protein destabilization—phosphorylation generally
induces structural transitions that enhance sHSP activity. Specifically, phosphorylation pro-
motes the disaggregation of sHSP oligomers into smaller, more active complexes, thereby
increasing their efficiency. This disaggregation mechanism is crucial for protecting cells
from stress-induced damage, including apoptosis, inflammation, and other forms of cellular
dysfunction. This review explores the role of phosphorylation in modulating the function
of sHSPs, particularly HSPB1, HSPB4, and HSPB5, and discusses how these modifications
influence their protective functions in cellular stress responses.

Keywords: sHSP; HSPB1; HSPB4; αA-crystallin; HSPB5; αB-crystallin; phosphorylation;
post-translational modification; PTM

1. Introduction
Heat shock proteins (HSPs) are stress-induced proteins found in various organisms,

including bacteria, plants, and animals [1]. They function as chaperones, preventing
protein misfolding and aiding in protein refolding in stress conditions [2]. Small heat
shock proteins (sHSPs), ranging from 12 to 43 kDa, are a subgroup of HSPs classified
as HSPB1–HSPB10 [3,4]. Among them, HSPB1, HSPB4, and HSPB5 underlie much of
our understanding of sHSPs. HSPB1 was the first bona fide sHSP to be identified [5,6],
while HSPB4 and HSPB5 have been particularly studied due to their essential roles in
maintaining the transparency and refractive properties of the eye lens [7,8]. HSPB6
has also been the subject of investigation due to its roles, along with HSPB1, in muscle
contraction and relaxation (more specific reviews on sHSP phosphorylation in muscle
contraction/relaxation can be found at [9–12]).

sHSPs are characterized by a conserved 80−100 amino acid sequence called the ‘α-
crystallin core’ or ‘α-crystallin domain’ (ACD) [13–19], which is made up of beta strands
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forming an Ig fold [20–22]. This core is flanked by flexible but less well-conserved N- and
C-terminal extensions [23] (see Figure 1 for an overview of these regions and the protein
motifs). sHSPs generally form dimers, which then assemble into tetramers or hexamers,
ultimately leading to the formation of large, heterogenous homo-oligomers [18,24–28],
as well as hetero-oligomers with other sHSPs [29]. Dimerization is mainly mediated by
interactions within the ACD [21,29–44], while further oligomerization from dimers into
tetramers is primarily driven by the C-terminal extension, particularly the well-conserved
I/V-X-I/V motif [1,31,45,46]. The N-terminal domain plays a key role in forming large
oligomeric complexes, with the somewhat conserved WDPF [47] and (S/G)RLFD [48,49]
motifs playing significant roles.

sHSP structure and oligomeric profile are tightly linked to their chaperone func-
tion, with smaller oligomeric species understood to generally have a greater capacity to
chaperone substrate proteins due to increased surface area and exposure of otherwise
buried hydrophobic patches. This illustrates the importance of the typically heterogeneous
oligomeric profile and the necessity of a finely tuned sHSP chaperone system. At the struc-
tural level, the ACD, C-terminal extension, and N-terminal domain are each implicated in
regulating sHSP chaperone and protective function. Within the C-terminal extension, the
I/V-X-I/V motif seems to be involved in regulating the pH- and temperature-dependency
of α-crystallin chaperone function. Mutant forms of both HSPB4 and HSPB5 in which
the hydrophobic isoleucine and valine residues of the I/V-X-I/V motif are mutated into
glycine show improved chaperone function at 25 ◦C when compared to WT proteins [45].
Additionally, in lower pH environments, hydrophobic substrates have less competition
from the I/V-X-I/V motif for binding sites [41]. Within the N-terminal domain, the well-
conserved (S/G)RLFD motif and surrounding residues seem to be critical in maintaining
normal chaperone abilities. Several studies have shown that removal of the (S/G)RLFD
motif impacts sHSP function, generally resulting in defective chaperone and/or protective
capabilities [50–55]. Mutation of this motif can also be detrimental, and several mutations
on R21 of HSPB4, for example, which corresponds to the “R” of the HSPB4 (S/G)RLFD
motif, have been associated with cataracts [56–60]. Interestingly, in the context of their role
in preventing neurodegeneration, it is worth noting that several sHSP mutations have also
been associated with various myopathies and neuropathies [61–63].
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Figure 1. Human sHSP sequence alignment adapted from [64]. The colored bars above sequences
represent the N-terminal domain (blue), the α-crystallin domain (ACD; gray), and the C-terminal
domain (red). Highlighted amino acids represent relatively well-conserved motifs, including the
I/V-X-I/V motifs (light blue), the WDPF motif (purple), the (S/G)RLFD motif (yellow), the β4 and
β8 strands comprising the groove (orange), and the β6 + 7 strand comprising the dimer interface
(green). Sequences were aligned with MUSCLE via SnapGene.
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In addition to the intrinsic regulatory roles of various sHSP regions, extrinsic regula-
tory processes, such as post-translational modifications (PTMs), are also key modulators
of their structure and function. Among the most studied sHSPs, HSPB4 and HSPB5 have
garnered significant attention due to their involvement in cataract formation, providing a
unique opportunity to explore PTMs in the aging lens. Cells of the lens do not turn over
with age and instead migrate toward the center of the lens [65]. Similarly, lens proteins,
especially sHSPs, are long-lived [66], allowing for the investigation of PTM associations
with age. As cataracts also increase with age, they also provide a model for interrogating
PTM associations with disease conditions. HSPB4 and HSPB5 have been shown to undergo
increasing levels but also a broad range of modifications during aging, with different PTMs
having a variety of impacts on their structure and function [67].

Deamidation is among the most reported modifications affecting HSPs and has of-
ten been shown to be detrimental to sHSP function. This type of modification generally
increases molecular mass, resulting in larger oligomers, reduced solubility, and reduced
surface hydrophobicity, which impairs chaperone activity [52,68–70]. Isomerization, which
is less well-studied in part because it is more difficult to detect, has similarly been shown to
have detrimental effects. sHSP isomerization has been associated with reduced solubility,
altered oligomer size and stability, and age-related conditions such as cataracts [71,72].
Oxidation and disulfide bond formation are other PTMs reported as critical for regulat-
ing proper sHSP function [29,50,73]; however, excessive oxidation often leads to larger
oligomers with reduced chaperone capacity, diminishing the protective function of sHSPs
under stress conditions [74–77]. Acetylation and glycation have mixed and combinatorial
effects. On its own, glycation can either increase, decrease, or have no impact on chaperone
function, depending on the source of glycation, substrate, and context [77–83]. Acetyla-
tion alone can disrupt the native oligomeric assembly of α-crystallin [84], can increase or
decrease chaperone function depending on substrate proteins [81,85], and can also mod-
ulate glycation-associated functional changes [83]. In the cataractous lenticular context,
the deleterious impacts of several of these PTMs are evident. Excessive oxidation can
lead to the generation of photosensitizers such as N-formykynurenine (NFK), kynurenine
(KYN), hydroxytryptophans (HTRP), and H2O2 [86–90], and excessive glycation can result
in the formation of advanced glycation end-products (AGEs), which in turn induce protein
crosslinking and exacerbate the protein aggregation typical of a cataract [91].

Phosphorylation, in contrast, stands out as a particularly significant PTM, having a
profound and often beneficial impact on sHSP structure and function. This modification
typically induces a shift in the oligomeric profile of sHSPs, promoting a transition from large
aggregates to smaller, more active complexes with enhanced chaperone activity [92–102].
Phosphorylation at specific serine or threonine residues modulates the protein’s ability to
interact with substrate proteins, thereby increasing its capacity for stress-induced protection,
such as in oxidative stress, ischemia, and thermal stress. Previously identified phosphosites
on human HSPB1, HSPB4, HSPB5, and HSPB6 can be found in Table 1. The intricate
regulation of sHSPs via phosphorylation underscores their critical role in fine-tuning the
cellular response to environmental stressors, thereby contributing to cellular homeostasis
and survival. Due to our current understanding of sHSPs, this review focuses on the role of
HSPB1, HSPB4, and HSPB5 phosphorylation in regulating their structure and function, with
additional information on HSPB6 also presented. While outside of the scope of this review,
sHSP phosphorylation is also highly implicated in cytoskeletal regulation. For reviews more
specific to those functions, see [103,104].
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Table 1. Previously identified phosphosites on the human HSPB1, HSPB4, HSPB5, and HSPB6.

Human sHSP Previously Identified Phosphosite(s)

HSPB1 S15 [105–108]; S78 [105–110]; S82 [105–114]

HSPB4

T13 [112,115,116]; S20 [115]; T43 [115]; S45 [115–117];
Y47 [115]; S51 [115]; T55 [115]; S59 [115]; S62 [115];
S66 [112,115]; S81 [112,115]; T86 [115]; Y118 [115];
S122 [115–119]; S127 [115]; S130 [115]; T140 [116];

T148 [112,115,120]; T153 [112,115]; S162 [115];
T168/S169 [115]; S172 [115]; S173 [115]

HSPB5

S19 [105,108,112,115–117,119,121,122];
S21 [112,115,116,121]; S43 [115,116];

S45 [105,108,115–117,119,122,123]; S53 [115,116];
S59 [105,108,112,115–117,119,121–124]; T63 [115]; S66 [115];

S76 [112,115,116]; S85 [115]; T132 [115]; T134 [115];
S136 [115]; S138 [115]; S139 [112,115]; S153 [115]; T158 [115]

HSPB6 S16 [125,126]

2. Regulation of HSPB1 by Phosphorylation
Human HSPB1 is phosphorylated primarily on S15, S78, and S82. Phosphorylation

on all three of these sites is mediated via two separate regulatory pathways. “Pathway
A” involves activation of p38 MAPK, which leads to phosphorylation of S15, S78, and S82
by MAPKAPK2 [106,127], MAPKAPK3 [128–130], and MAPKAPK5 [131]. “Pathway B”
involves phosphorylation by PKC-δ [132] and to a lesser extent PKC-α [133,134].

Phosphorylation at these sites leads to a significant structural transition in HSPB1,
facilitating the dissociation of larger aggregates into smaller complexes [92–98]. Studies
using phosphomimetic and non-phosphorylatable mutant forms of HSPB1 validate this.
The non-phosphorylatable triple alanine (3A) mutant of HSPB1 forms predominantly large
oligomers, while the phosphomimetic triple aspartic acid (3D) mutant is characterized by
an overrepresentation of small oligomers and dimers [92–95,135,136], as well as increased
sensitivity to pH-induced structural changes [137] and alterations in secondary struc-
ture [136]. Single and double phosphomimetic HSPB1 mutants reveal that these alterations
are amplified upon phosphorylation at multiple sites. Single mutants (S15D, S78D, S82D)
exhibit only slightly altered secondary structure but little to no oligomeric disaggregation,
while double mutants (S15D/S78D, S15D/S82D) exhibit more highly altered secondary
structure and somewhat reduced oligomeric size [136]. This effect culminates in the triple
phosphomimetic mutant (3D), which predominantly exists as dimers. This same addi-
tive disaggregation process is not seen in all other species. For example, hamster HSPB1
(phosphorylatable on S15 and S90) exhibits an oligomeric profile biased towards small
complexes upon double phosphomimetic mutation (S15E/S90E) or S90E single mutation,
but a profile biased towards large complexes upon either double non-phosphorylatable
alanine mutation (S15A/S90A), S90A single mutation, or S15E single mutation [47,138].
S15A hamster HSPB1, while primarily forming large oligomers, also disaggregates upon
S90 phosphorylation in vitro [47]. This suggests that disaggregation of hamster HSPB1
is more specifically dependent on S90 phosphorylation rather than dependent on and
amplified by phosphorylation on multiple sites, as is the case for human HSPB1.

Consistent with smaller sHSP oligomers being more functionally active, phospho-
rylation generally enhances HSPB1 chaperone and protective capabilities. Accordingly,
3D (or triply phosphorylated WT) HSPB1 has been shown to more effectively chaperone
α-lactalbumin [94], BSA [136], κ-casein [136], and insulin [94,136] than WT HSPB1. At least
for insulin, this functional increase appears temperature-dependent, as 3D HSPB1 has been
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shown to have improved chaperone function at either 37 or 45 ◦C [94,136] but separately
to have reduced chaperone function relative to WT HSPB1 at 30 ◦C [93]. As with the
dissociation findings presented above, phosphorylation on multiple sites seems crucial for
the full functional enhancement of HSPB1. Double phosphomimetic mutants (S15D/S78D,
S15D/S82D, S78D/S82D) exhibit similarly enhanced chaperone function for insulin and
BSA relative to WT HSPB1 [136], while single phosphomimetic mutants either exhibit
no improvement (S15D), or improvement relative to WT but reduced function relative to
double/triple mutants. S78D shows a slight improvement in insulin assays, while S82D
shows a slight improvement in both insulin and BSA assays [136]. These trends align with
phosphorylation-induced structural disaggregation enabling better substrate interactions.

The intricacies of phosphorylation-mediated impacts are further illustrated when in-
vestigating HSPB1 chaperone function in protective contexts; 3D, but neither 3A, S15A, nor
S82A HSPB1 has been shown to protect against oxygen and glucose deprivation-induced
cell death [139]. Of note, this study did not investigate the impacts of single phospho-
mimetic mutation or combinatorial double mutants. HSPB1 thermoprotective capabili-
ties are also phosphorylation-dependent. The doubly phosphomimetic S15E/S90E and
S15D/S90D mutant hamster HSPB1 forms provide increased thermoprotection, while the
non-phosphorylatable S15A/S90A mutant shows reduced thermoprotective capacity [138].
Unlike the specifically S90-regulated disaggregation, dual phosphorylation appears neces-
sary for full protection, as even singly phosphomimetic mutants S15E/S90A or S15A/S90E
exhibit reduced thermoprotection [138]. Furthermore, phosphorylation plays a critical
role in the regulation of HSPB1 anti-apoptotic properties. Phosphorylated HSPB1 exerts
cytoprotective effects by targeting key apoptotic signaling pathways. For instance, phos-
phorylated HSPB1 suppresses mitochondrial Bax translocation, mitochondrial cytochrome
c release, and PUMA upregulation, with the 3D phosphomimetic mutant being particularly
effective in these roles, whereas the non-phosphorylatable 3A mutant fails to provide
this protection [139]. However, 3A HSPB1 has previously been shown to be protective
against TNF-α-induced stress, while 3D HSPB1 was not [95]. This reflects a nuanced inter-
play between phosphorylation and stress specificity, though phosphorylation remains the
dominant mechanism for functional activation.

In the context of neuronal ischemia, HSPB1 also demonstrates phosphorylation-
dependent neuroprotective effects. Overexpression of wild-type HSPB1 or phosphomimetic
forms (S15D, S78D, and S82D) inhibits apoptosis signal-regulating kinase 1 (ASK1) sig-
naling pathways, which are crucial for mediating cell death in ischemic stress [139]. In
contrast, non-phosphorylatable mutants (S15A, S78A, S82A) fail to confer neuroprotection
or inhibit ASK1 activation. Phosphorylation at S15 and S82 has been identified as essential
for these protective effects, though of note regulated by PKD in this context (as opposed to
MAPKAP kinases or PKC) [139].

Phosphorylation emerges as a central mechanism governing HSPB1 function. By
inducing disaggregation into smaller, active complexes, phosphorylation enhances chaper-
one activity, thermoprotection, and anti-apoptotic properties. While exceptions exist, the
predominant trend reflects a phosphorylation-mediated activation process tightly linked to
stress-responsive regulation.

3. Regulation of HSPB4 by Phosphorylation
Compared to HSPB1, much less is known about the structural effects of phosphory-

lation on HSPB4. Historically, S122 was identified as the sole bona fide phosphorylation
site on HSPB4. While the specific kinases responsible for phosphorylation at this site have
not been determined, its phosphorylation has been shown to be cAMP-dependent in the
calf, rat, and rabbit [140,141], possibly implicating PKA. Our lab later revealed that S/T148



Cells 2025, 14, 127 6 of 17

(threonine in humans, serine in other mammals) could also be phosphorylated in vivo [120],
though it is unclear by which kinase(s). At least in vitro, T148 phosphorylation appears
to be mediated by several kinases, potentially in a cell-specific manner. We have recently
identified mTORC2 as a T148-phosphorylating kinase, as well as shown evidence of poten-
tial regulation by PIK3C2A (in retinal neurons), PFKP and CDK1 (in Müller glia), PRKD2,
NEK9, MAP2K1, MAP2K2, MAP3K7, MAP4K4, RPS6KA3, and AKT1 [142].

The structural consequences of phosphorylation at these sites remain poorly character-
ized relative to our understanding of HSPB1. For example, following H2O2 exposure, rat
HSPB4 phosphorylated on unspecified residues formed two oligomeric populations: one
resembling the unphosphorylated state (~650 kDa) and another larger (~1300 kDa) [143].
These findings conflict with the trend observed in HSPB1 and in sHSPs more broadly,
where phosphorylation is generally associated with disaggregation. However, the specific
sites involved and other potential modifications were not considered, so confounds cannot
be ruled out. More recently, our lab has explored the structural implications of T148 phos-
phorylation using phosphomimetic (T148D) and non-phosphorylatable (T148A) mutants.
We discovered that T148D forms slightly smaller oligomers, while T148A forms slightly
larger ones compared to WT HSPB4 [99]. These shifts align more closely with trends seen
in HSPB1, where phosphorylation correlates with smaller oligomer sizes. Additionally,
T148D exhibits reduced susceptibility to stress-induced insolubility, whereas T148A shows
increased insolubility [99]. These findings reinforce the hypothesis that phosphorylation
promotes structural alterations favoring stability and function, similar to trends observed
in HSPB1, though more data are needed to generalize this relationship.

Also similar to HSPB1, phosphorylation enhances HSPB4 chaperone function and pro-
tective capacity. For example, in one study, phosphorylated HSPB4 demonstrated enhanced
chaperone function for βL-crystallin [77]. Along with the structural findings presented
above, our lab also demonstrated that phosphomimetic T148D (but not T148A) HSPB4
exhibits improved chaperone function for ADH [99]. Suggestive of potentially additive or
synergistic impacts of multi-site phosphorylation, singly- and doubly-phosphomimetic rat
HSPB4 (S122E, S148E, S122E/S148E) have been shown to be protective of astrocytes against
C2-ceramide or staurosporine-induced astrocyte cell death, whereas the corresponding
non-phosphorylatable mutants (S122A, S148A, S122A/S148A) were not [144]. In this study,
the doubly phosphomimetic and non-phosphorylatable mutants, respectively, exhibited
the greatest increase and decrease in protective capacity [144]. Our lab has also shown
that WT and T148D (but not T148A) human HSPB4 are protective against retinal neuron
cell death, as demonstrated by reduced DNA fragmentation, caspase 3/7 activity, and
ER stress [99,120]. We have also demonstrated T148 phosphorylation-mediated preven-
tion of stress-associated mitochondrial Bax translocation [145]. More recently, another
study has shown that HSPB4-mediated protection of photoreceptors from FasL-induced
cell death is more pronounced in T148D and less pronounced in T148A expressing cells,
also corresponding to increased or decreased interaction with Faim2 [146]. Additionally,
T148 phosphorylation plays a role in inflammation regulation, as WT and T148D—but
not T148A—HSPB4 reduce stress-induced IL−6, IL−1β, MCP−1, and IL−18 levels [147].
These findings position HSPB4 phosphorylation as consistently protective across different
contexts, contrasting the slight variability observed with HSPB1.

4. Regulation of HSPB5 by Phosphorylation
Phosphorylation of HSPB5 has been more extensively studied than HSPB4, revealing

both shared trends with HSPB1 and unique complexities. HSPB5 is phosphorylated on S19,
S45, and S59. S45 phosphorylation is primarily mediated by ERK1/2 (p44/42 MAPK) [148],
while S59 phosphorylation is primarily mediated by MAPKAPK2 [148,149], illustrating



Cells 2025, 14, 127 7 of 17

some level of similarity between its regulation and that of HSPB1. Also similar to HSPB1,
phosphorylation at these sites tends to reduce oligomeric size. Triple phosphorylated
WT HSPB5, as well as phosphomimetic (3D and 3E) mutants, exhibit smaller oligomeric
complexes compared to unphosphorylated WT HSPB5 [100–102]. Evidencing additive or
synergistic impacts as with HSPB1, this disaggregation depends on the phosphorylation
of multiple sites, as S19D and S19D/S45D double mutants exhibit relatively unchanged
oligomeric size but increased polydispersity and disrupted dimeric substructure [150]. The
3E HSPB5 has also been associated with increased susceptibility to trypsin degradation
and reduced heat-induced insolubility [102], while 3D HSPB5 has similarly been associated
with decreased urea stability [101], further indicating their tendency to disaggregate.

The functional consequences of HSPB5 phosphorylation align with trends seen in
HSPB1 and HSPB4 but with notable complexities and substrate-specific effects. In gen-
eral, phosphorylation enhances HSPB5 chaperone activity. For instance, WT and phos-
phorylated HSPB5 exhibit improved aggregation prevention of βL-crystallin compared
to non-phosphorylatable mutants [77,151]. Similarly, triple phosphomimetic 3E HSPB5
demonstrates increased chaperone function for MDH and p53 [102], and 3D HSPB5 exhibits
improved chaperone function for insulin, CS, and α-synuclein [101]. These findings sug-
gest that phosphorylation facilitates structural or functional changes that enhance HSPB5
protective capabilities.

However, HSPB5 exhibits distinct substrate- and site-specific phosphorylation effects.
Exemplary of these intricacies is the HSPB5-FBX4 interaction. HSPB5 has been shown to
interact with FBX4 and to promote FBX4-dependent ubiquitination of insoluble proteins in
a phosphorylation-specific manner. S19D/S45D and 3D HSPB5 show interaction with FBX4,
but neither other phosphomimetic (S19D, S45D, S59D, S45D/S59D, S19D/S59D) nor non-
phosphorylatable mutants (S19A, S45A, S59A, or combinatorial ‘A’ mutants) exhibit this
interaction [152]. This indicates that, at least in this context, S19 and S45 phosphorylation
are both necessary for chaperone function. However, symptomatic of the complexity of
the regulation of sHSP chaperone function, S19D, S45D, S19D/S45D, and 3D HSPB5 all
exhibit an impaired ability to chaperone mutant transmembrane proteins Fz4-FEVR and
ATP7B-H1069Q, while S59D, S19D/S59D, and S45D/S59D HSPB5 maintain the ability
to chaperone them [153]. This suggests that in this context, S59 is the primary regulator
of HSPB5 chaperone activity, while S19 and S45 phosphorylation might even impede
interaction with the substrates.

While infrequent, there are instances where phosphomimetic HSPB5 mutants ex-
hibit deleterious impacts as well. For example, 3E and S59E mutants are associated with
increased vinblastine-induced apoptosis, enhanced interaction with Bcl−2, and greater
mitochondrial translocation of Bcl−2, while non-phosphorylatable mutants exhibit reduced
apoptosis and weaker Bcl−2 interactions [123]. This suggests that there are contexts in
which increased protein–protein interaction through enhancement of the phosphomimetic
form’s chaperone function can actually result in negative consequences. Additionally,
3E HSPB5 is more susceptible to cycloheximide-induced degradation compared to 3A
mutants [154] and fails to protect against TRAIL-induced apoptosis or inhibit caspase−3 ac-
tivation [155,156]. Other studies have found that S19D/S45D HSPB5 rapidly co-aggregates
with α-lactalbumin and promotes precipitation [150], and that 3D HSPB5 exhibits reduced
chaperone ability for LDH [100]. Collectively, these findings suggest that HSPB5 phospho-
rylation, while generally protective, can have context-specific deleterious effects depending
on the signaling pathways and substrates involved.
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5. Regulation of HSPB6 by Phosphorylation
While the structural and functional impacts of phosphorylation on other small heat

shock proteins are less comprehensively studied than those of HSPB1, HSPB4, and
HSPB5, there are notably similar effects worth mentioning, particularly regarding HSPB6.
The primary site of phosphorylation for HSPB6 is S16, mediated by PKA [126,157–163],
PKG [126,164], and PKD [165] (though MAPKAPK2 has also been shown to induce HSPB6
phosphorylation in vitro [158]). S16 phosphorylation similarly leads to the dissociation of
large macromolecular aggregates [157,166], with the non-phosphorylatable S16A HSPB6
having a tendency to form larger oligomers as well [167]. Notably, increased levels of
S16 phosphorylation have been observed in failing human hearts and in mouse models
post-ischemic/reperfusion insult, and in fact hearts of transgenic mice expressing the S16A
mutant HSPB6 have been shown to exhibit impaired recovery and increased necrosis and
apoptosis following I/R, relative to non-TG hearts [167].

As with the other sHSPs, there are contexts in which the phosphomimetic S16D HSPB6
has been found to be functionally enhanced. For example, S16D HSPB6 exhibits increased
interaction with amyloid-β, inhibiting the formation of both globular and fibrillar aggre-
gates and, in turn, enhancing protection against cellular toxicity [168]. The S16D mutant
also protects against β-agonist-induced apoptosis and reduces caspase−3 activity [169,170].
Of note, there are contexts in which the S16D mutant does not exactly recapitulate the
properties of phosphorylated WT HSPB6. HSPB6 has indeed been demonstrated to be
an effective chaperone for 14−3−3, with this interaction being contingent upon S16 phos-
phorylation [43,171,172]. However, neither the unphosphorylated WT HSPB6 nor S16D
HSPB6 can effectively interact with 14−3−3, while the S16-phosphorylated WT can, the
two forming what appears to be a functional complex [171]. This has implications for
its chaperone function in other contexts, as both S16-phosphorylated and S16D HSPB6
have been shown to exhibit reduced chaperone function for insulin in the absence of this
functional complex; but the WT form, through interaction with 14−3−3, can regain the
ability to effectively chaperone insulin [171]. This illustrates the important point that while
phosphomimetic and non-phosphorylatable mutant forms of sHSPs can serve as important
experimental tools, they do not always fully model the impacts of phosphorylated and
unphosphorylated WT proteins.

6. Conclusions
Collectively, these findings highlight the complex and varied roles of phosphorylation

in modulating the structural and functional properties of different sHSPs, supporting that
these modifications are crucial for their chaperone functions and protein interactions within
the cellular context. Through the induction of oligomeric disaggregation, phosphorylation
has the capacity to functionally enhance sHSPs and increase their protective potential.
This has profound implications in terms of the potential use of sHSPs in therapeutic
capacities [173–175]. Our understanding of sHSP phosphorylation could be strengthened by
a specific investigation of HSPB3/7/8/9/10 PTMs, about which virtually nothing is known
at this time. Further, the findings presented above regarding oligomeric disaggregation
largely pertain to homo-oligomerization; however, the impacts of phosphorylation on
sHSP hetero-oligomerization [29] remain poorly understood. Finally, while we briefly
discuss the regulation of various sHSP phosphosites by protein kinases, little is known
regarding their regulation by phosphatases [176–180], providing another important avenue
for future research.

It should be noted that sHSPs are subject to a wide variety of PTMs besides phospho-
rylation, each of which results in different impacts on sHSP structure and function. While
this review and several of the sources referenced focus specifically on phosphorylation
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alone, the possible presence and impact of other modifications should not be discounted
and may explain some of the divergent disease- or condition-specific findings presented
above. For example, possible relationships between sHSP isomerization and phospho-
rylation have been discussed elsewhere [71], and combinatorial modification could lead
to a variety of different impacts. There are obviously other sHSP PTMs that have been
shown to generally result in activating effects as well, one of which worth mentioning
in this review is O-GlcNAcylation since it similarly targets serine and threonine residues.
sHSP O-GlcNAcylation has been associated with increased chaperone function, larger and
more heterogenous oligomers, and altered interactomes (including altered interactions with
other sHSPs) [181–183]. Further study of post-translational regulation of sHSP properties is
thus warranted to interrogate the possibility of harnessing their chaperone and protective
roles for disease prevention or management, particularly of “activating” PTMs such as
phosphorylation or O-GlcNAcylation.
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