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Abstract: Stem cells are undifferentiated or partially differentiated cells with an extraor-
dinary ability to self-renew and differentiate into various cell types during growth and
development. The epithelial–mesenchymal transition (EMT), a critical developmental
process, enhances stem cell-like properties in cells, and is associated with both normal
stem cell function and the formation of cancer stem cells. Cell stemness and the EMT often
coexist and are interconnected in various contexts. Cancer stem cells are a critical tumor cell
population that drives tumorigenesis, cancer progression, drug resistance, and metastasis.
Stem cell differentiation and the generation of cancer stem cells are regulated by numerous
molecules, including microRNAs (miRNAs). These miRNAs, particularly through the mod-
ulation of EMT-associated factors, play major roles in controlling the stemness of cancer
stem cells. This review presents an up-to-date summary of the regulatory roles of miR-181
in human stem cell differentiation and cancer cell stemness. We outline studies from the
current literature and summarize the miR-181-controlled signaling pathways responsible
for driving human stem cell differentiation or the emergence of cancer stem cells. Given
its critical role in regulating cell stemness, miR-181 is a promising target for influencing
human cell fate. Modulation of miR-181 expression has been found to be altered in cancer
stem cells’ biological behaviors and to significantly improve cancer treatment outcomes.
Additionally, we discuss challenges in miRNA-based therapies and targeted delivery with
nanotechnology-based systems.

Keywords: human stem cells; cancer stem cells; microRNA-181 (miR-181); epithelial–
mesenchymal transition (EMT); cell differentiation; cancer progression; nanotechnology;
lipid nanoparticles; therapeutic strategies

1. Introduction
MicroRNAs (miRNAs) are small, non-protein-coding RNA molecules that act as epi-

genetic regulators suppressing gene expression at the post-transcriptional level [1]. These
RNAs range from 19 to 24 nucleotides in length and are highly phylogenetically con-
served [2]. MiRNAs interact with complementary sequences in the 3′-untranslated regions
of target mRNAs via their seed sequences, and subsequently lead to mRNA degradation
or translational suppression. MiRNAs can target multiple mRNAs, thereby modulating
several cellular pathways and networks, and playing essential roles in various biological
events such as apoptosis, differentiation, angiogenesis, and migration [3]. Substantial
evidence indicates key roles for miRNAs in many physiological functions and pathological

Cells 2025, 14, 132 https://doi.org/10.3390/cells14020132

https://doi.org/10.3390/cells14020132
https://doi.org/10.3390/cells14020132
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-2648-9444
https://orcid.org/0000-0002-9846-7113
https://doi.org/10.3390/cells14020132
https://www.mdpi.com/article/10.3390/cells14020132?type=check_update&version=1


Cells 2025, 14, 132 2 of 21

processes [4,5]. Moreover, miRNA deregulation in various stages of human cancers has
been observed to contribute to metastasis and drug resistance. MiRNAs can act as either
tumor suppressors or oncogenes, depending on the specific targets that they regulate and
the tissues in which they are expressed [6,7].

MiRNA-181 (miR-181) is a multifunctional miRNA involved in numerous biological
processes, including proliferation, differentiation, inflammation, and angiogenesis [4,8].
The miR-181 family comprises four highly conserved members (miR-181a/b/c/d) [9],
which originate independently from six precursors distributed across three chromosomes.
MiR-181a and miR-181b are transcribed from two distinct gene loci: miR-181a-1/miR-181b-
1 and miR-181a-2/miR-181b-2 [10,11]. The mature forms of miR-181 family members share
the same seed sequence and the sequence similarities and variations among them have been
characterized and illustrated by Indrieri et al. [12]. Each miR-181 family member regulates
distinct target genes and consequently has diverse functions and context-dependent activi-
ties [13]. Emerging studies indicate roles for miR-181 in cellular differentiation in various
non-neoplastic diseases, such as osteoarthritis, vascular inflammation, thrombosis, cardiac
abnormalities, and pulmonary arterial hypertension. These findings suggest that targeting
specific members of the miR-181 family might provide a promising therapeutic approach
for treatment or tissue repair in various human diseases [8,14,15]. Additionally, miR-181
members are dysregulated in various tumor tissues and display either tumor-suppressive
or oncogenic properties, depending on the specific cancer type [4,16,17]. MiR-181 plays key
roles in the development and metastasis of several human cancers, including breast cancer
(BC), hepatocellular carcinoma (HCC), and human gastric cancer [18,19].

Stem cells are human cells capable of self-renewal and differentiation into various
cell types [20]. Embryonic stem cells (ESCs) and adult stem cells (ASCs, also termed
somatic stem cells) are two main types of human stem cells. ESCs are derived from
the blastocyst inner cell mass and can differentiate into all cell types of the three germ
layers. ASCs are tissue-specific undifferentiated cells named according to their tissue of
origin. Examples include epithelial stem cells, hematopoietic stem cells (HSCs, or blood
stem cells), and mesenchymal stem cells (MSCs). Currently, ASCs are used in clinical
tissue and organ repair because of their wide availability, low tumorigenicity, and low
risk of transplant rejection. Induced pluripotent stem cells (iPSCs) are a new type of
pluripotent cells that can be generated from adult somatic cells, such as skin fibroblasts
or peripheral blood mononuclear cells, through genetic reprograming or the “forced”
introduction of embryonic genes (Oct4, Sox2, Klf4, and c-Myc) [21]. The proteins encoded
by these genes aid in reprogramming somatic cells into a state similar to that of ESCs.
The transcription factor OCT4 is expressed exclusively in undifferentiated ESCs and in all
pluripotent cells during embryogenesis, in which it plays crucial roles in establishing and
maintaining cellular pluripotency [22,23]. The SRY-related high-mobility group-box (SOX)
transcription factor family plays roles in regulating embryonic development, maintaining
stemness, and controlling cell differentiation. SOX2 collaborates with OCT4 in regulating
the expression of genes such as Fgf4 and Nanog [24]. The transcription factor KLF4 regulates
proliferation, differentiation, apoptosis, and somatic cell reprogramming [21]. NANOG is a
DNA-binding homeobox protein that helps ESCs maintain pluripotency by suppressing
cell determination [23,25]. C-Myc regulates various biological processes, including the
balance between stem cell differentiation and self-renewal [26,27]. Overall, stem cells
have substantial potential for clinical therapy because of their ability to self-renew and
pluripotency [28].
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2. MiR-181 in Stem Cell Differentiation
ESCs retain a self-renewal capability, thereby maintaining stem cell characteristics

and pluripotency to produce different cell progeny through differentiation [29]. The key
signaling pathways supporting the self-renewal and pluripotency of human ESCs involve
transforming growth factor-beta (TGF-β)/Smad, the insulin-like growth factor and fibrob-
last growth factor receptor-regulated AKT and MAPK networks, and wingless type MMTV
integration site (Wnt)/β-catenin; these pathways promote the expression of ESC-specific
(pluripotency) genes such as Sox2, Oct-4, and Nanog. In contrast, the Notch and bone
morphogenetic protein signaling pathways upregulate differentiation-specific genes and
consequently drive the differentiation of ESCs [30,31]. MiRNAs play fundamental roles in
regulating ESC fate decisions by controlling the balance between self-renewal and differen-
tiation [32,33]. The MiR-181 family is widely recognized for its broad pathophysiological
effects on cell fate and function, including facilitating ESC differentiation [4]. The miR-181
family members are highly expressed in differentiated human ESCs, in which they regu-
lates coactivator-associated protein arginine methyltransferase 1 (CARM1) [34], a protein
with a key role in regulating pluripotency in human ESCs [35]. Xu et al. have found that
miR-181c is highly expressed and strongly represses CARM1 expression induced during
ESC differentiation. Enforced expression of miR-181c in undifferentiated ESCs inhibits
the expression of pluripotency genes, thereby inducing differentiation [34]. Furthermore,
Polycomb repressive complexes (PRCs) act as key regulators of the pluripotency and differ-
entiation of ESCs and ASCs by modifying the chromatin architecture and maintaining gene
repression [36]. Mammalian genomes encode multiple homologs of PRC1 components.
O’Loghlen et al. have identified chromobox homolog 7 (CBX7) as the primary Polycomb
ortholog of PRC1 complexes in ESCs and have found that CBX7 represses its homologs.
During ESC differentiation, the overexpression of miR-181a or miR-181b regulates the PRC1
composition by suppressing CBX7 expression, thereby alleviating its repression of CBX7
homologs [37].

MSCs are typically defined as plastic-adherent, fibroblast-like cells found in various
tissues, including bone marrow (BM), adipose tissue, and the umbilical cord. MSCs have
the multipotent potential to differentiate into specialized cells, such as adipocytes, chondro-
cytes, osteoblasts, myocytes, and neurons [38]. Similar to ESCs, in MSCs, differentiation is
controlled by the TGF-β, bone morphogenetic protein, Notch, hedgehog, Wnt, fibroblast
growth factor, and epidermal growth factor signaling pathways [39]. MSCs and their de-
rived extracellular vesicles (EVs) have therapeutic effects in regenerative medicine [40,41],
tumor growth/inhibition [42], and immunoregulation [43]. The ability of MSCs to differen-
tiate into multiple cell types makes them a promising source for tissue repair approaches.
BM contains a population of multipotent BM-MSCs, which are most frequently used
in regenerative medicine because of their multipotent properties and high proliferative
capability [44,45]. Although the ability of human MSCs to differentiate into various mes-
enchymal cell lineages renders them particularly suitable for tissue repair strategies, the
differentiation potential of human MSCs varies among donors [46]. To identify biomark-
ers indicating donors with high differentiation potential, Georgi et al. have investigated
the miRNA expression levels of high-potential and low-potential BM-MSCs undergoing
chondrogenesis. An analysis of miRNA expression during a 7-day differentiation period
indicated that miR-181 showed elevated expression in high-potential MSCs and was also
upregulated in low-performing MSCs during chondrogenesis, thus suggesting that miR-181
is involved in the negative regulation of chondrogenesis [47]. Wang et al. have reported a
critical role for miR-181 in inducing the osteogenic differentiation of BM-MSCs. Overex-
pression of miR-181 decreases the expression of lysine acetyltransferase 2B (KAT2B), thus
enhancing the osteogenic differentiation capability of BM-MSCs [48]. KAT2B, a member
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of the lysine acetyltransferase family, has been implicated in regulating acetylation and
transcription levels in diverse biological processes [49]. Additionally, BM-MSCs are a key
component of the hematopoietic microenvironment and support hematopoiesis [38,50]. In
mouse BM, miR-181 is preferentially expressed in B cells compared with undifferentiated
progenitor cells or other lineages. Overexpression of miR-181 in HSCs has been found to
increase the fraction of B-lineage cells in both in vivo and in vitro studies [14], thus suggest-
ing that miR-181 promotes hematopoietic lineage differentiation. Lin28 is a pluripotency
marker that contributes to maintaining cell pluripotency, partly by inhibiting the matura-
tion of let-7 miRNAs [51–54]. MiR-181 overexpression and inhibition studies have proven
its role in promoting megakaryocyte (MK) differentiation by suppressing the expression
of Lin28 in human CD34+ HSCs [54]. In an investigation of miRNAs’ roles in the lineage
differentiation of amniotic fluid stem cells (AFSCs), Iordache et al. have observed that
miR-181 is upregulated in endothelial progenitor cells derived from AFSCs [55]; therefore,
this miRNA might have a role in lineage-specific differentiation (Table 1).

In contrast, Su et al. have demonstrated an inhibitory effect of miR-181a on the differ-
entiation of CD34+ HSCs into granulocytes and macrophages by downregulating targets
such as calcium/calmodulin-dependent protein kinase, small phosphatase like, and protein
kinase C delta CTD. This downregulation affects the protein kinase C delta-P38-C/EBPα
pathway by decreasing the phosphorylation of retinoblastoma protein (a tumor suppressor
involved in cell cycle regulation). In a xenograft mouse model of acute myeloid leukemia,
miR-181a inhibition has been found to enhance myeloid differentiation from CD34+ HSCs
and alleviate leukemic symptoms [56]. In agreement with these findings, De Luca et al.
have shown that the overexpression of miR-181a-5p in umbilical cord blood hematopoietic
CD34+ stem cells (a source of HSCs used for various treatments) increases cell viability
while decreasing differentiation [57]. Judson et al. have observed a transient elevation
in the expression of miR-181 family members during the dedifferentiation of mouse fi-
broblasts to iPSCs. The expression of miR-181 is regulated by the core reprogramming
cocktail OSK (consisting of the transcription factors Oct4, Sox2, and Klf4) [58], whereas
inhibiting endogenous miR-181 decreases iPSC colony formation. Thus, miR-181 has been
identified as a novel enhancer of reprogramming, partly through the suppression of nuclear
receptor subfamily 2 group C member 2 (Nr2c2) and myristoylated alanine-rich c-kinase
substrate (Marcks) [59]. Both NR2C2 and Marcks play fundamental roles in early embryonic
development and stem cell function [60,61].

Table 1. Roles of miR-181 family members in normal stem cell differentiation.

Cells/Tissues Upstream MiR-181 Targets Differentiation/Stemness Ref.

HSCs miR-181 Promotes HSC differentiation to
B-lineage cells [14]

ESCs miR-181s,
miR-181c CARM1 Induces the differentiation of

human ESCs [34]

ESC differentiation miR-181,
miR-181a/b CBX7 Accelerates ESC differentiation [37]

BM-MSCs DOT1L miR-181 KAT2B/SRSF1 Induces the osteogenic
differentiation of BM-MSCs [48]

MK hematopoiesis miR-181 Lin28-let-7 Promotes MK hematopoiesis [54]

Endothelial progenitor cells
derived from AFSCs miR-181a-5p Promotes the differentiation

of AFSCs [55]

BM-MSC-derived EVs miR-181a-5p EGR2 Inhibits the differentiation of
cord blood HSCs [57]

iPSCs OSK miR-181 Nr2c2, Marcks Enhances iPSC reprogramming [59]
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3. Cancer Stem Cells and the Oncogenic Epithelial–Mesenchymal
Transition

ESCs have an extraordinary capability to produce diverse cell progeny through a
sequential epithelial–mesenchymal transition (EMT) process. The EMT is a cell biologi-
cal program that occurs during development, adult tissue regeneration, wound healing,
and fibrosis in adult tissues [62,63]. However, under pathological conditions, the EMT
can confer stemness or stem-like phenotypes, thereby serving as a major mechanism for
generating cancer stem cells (CSCs) [64]. CSCs, also known as tumor-initiating cells, are
a subpopulation of cancer cells derived from either differentiated cancer cells or somatic
stem cells [64–66]. Despite being a minor tumor component, CSCs play fundamental
roles in mediating the recurrence of tumors after therapy, tumor dormancy, metastasis,
and chemoresistance [67]. Extensive evidence indicates that almost all treatment-naive
tumors contain CSCs. Notably, ESCs and CSCs share several common features, such as
pluripotency, self-renewal, the expression of stemness-associated genes, and the acquisition
of EMT traits [68].

The EMT is a reversible transdifferentiation process in which epithelial cells gain
mesenchymal characteristics. The substantial phenotypic changes during the EMT include
loss of polarity and cell–cell adhesion, along with the acquisition of migratory and invasive
properties. The EMT program consists of the sequential activation of several intracellular
signaling pathways, notably those mediated by TGF-β, Wnt/β-catenin, Notch, Hedgehog,
and receptor tyrosine kinases [69,70]. The EMT is also regulated by EMT-inducing tran-
scription factors (EMT-TFs), such as zinc finger E-box-binding homeobox (ZEB1), ZEB2
(also known as SIP1), Snail, Slug, E12/E47, Kruppel-like factor 8 (KLF8), and Twist [71].
Additionally, the SOX family members SOX2, SOX9, and SOX17 act synergistically with
Snail family transcriptional repressors in influencing the EMT process [72]. During the EMT,
epithelial markers such as E-cadherin, claudin, ZO-1, laminin-1, type IV a1-collagen, and
cytokeratin are progressively downregulated. In contrast, mesenchymal markers, including
N-cadherin, vimentin, smooth muscle actin, and fibronectin, are upregulated. E-cadherin
is a critical epithelial marker essential for the formation of adherens junctions. A loss of
E-cadherin causes major changes in cell physiology, including enhanced migratory and
invasive behaviors [69,71]. Vimentin, a mesenchymal marker, plays crucial roles in regu-
lating the expression of many EMT-associated genes, stabilizing pro-EMT pathways, and
promoting cell migration and metastasis [73]. As the EMT progresses, cell–cell junctions
are disrupted, the actin cytoskeleton undergoes extensive reorganization, and cells acquire
heightened motility and invasive capabilities (Figure 1).

The EMT process is integral to cancer progression and has been identified to varying
degrees across multiple human cancer types, including pancreatic cancer, prostate cancer,
colorectal cancer, ovarian cancer, and oral squamous cell carcinoma (SCC) [74–83]. A
strong connection has been established between the EMT in cancers and the acquisition
of a stem-cell-like state. EMT activation enhances tumor cells’ migratory and invasive
properties, which are critical for tumor dissemination. In contrast, the reverse process, the
mesenchymal-to-epithelial transition (MET), is essential for the development of metastatic
tumors at distant sites. A key hallmark of the EMT is the resistance of tumor cells to
anoikis, a form of programmed cell death triggered by detachment from the extracellular
matrix. This resistance is also a defining feature of CSCs [75,84]. CSCs simultaneously
express epithelial and mesenchymal phenotypic traits, and consequently can transition
between states during the EMT process [64,85]. In human mammary epithelial cell cultures,
a subpopulation of CSCs undergoes the EMT and forms mammospheres (MSs) upon
stimulation with TGF-β or ectopic expression of EMT-TFs such as Snail, or Twist [86].
Despite the dynamic and transient nature of the EMT, CSCs often exhibit mesenchymal-like
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characteristics. The development of CSCs and the EMT process share common signaling
pathways, including the Wnt, Notch, and hedgehog pathways [87,88]. Many EMT-TFs, such
as N-cadherin, Snail1/2, and ZEB1/2, play essential roles in driving CSC features. These
factors underscore the close relationships among the EMT, stemness, and cancer progression.
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Figure 1. Major EMT-related signaling pathways that regulate EMT-TFs and markers of epithelial
and mesenchymal cell states. The miR-181-regulated pathways are highlighted in orange. EMT,
epithelial–mesenchymal transition; MET, mesenchymal-to-epithelial transition.

4. MiR-181 in the EMT and CSCs
The process of CSC formation is regulated by a combination of genetic and epigenetic

factors. Emerging evidence indicates that abnormal miRNA expression contributes to the
initial formation of CSCs and leads to dysregulated self-renewal and cancer progression [89].
Several studies have demonstrated that miRNAs play major roles in metastatic tumor pro-
gression by modulating the reversible EMT process through the control of EMT-related
signaling pathways and targeting of stemness-related factors [90]. Several miRNAs have
been shown to influence CSC initiation, maintain stemness properties, regulate CSC func-
tion, and act as E-cadherin repressors by targeting multiple oncogenic pathways, such as
Notch, PI3K/AKT, WNT/β-catenin, JAK/STAT, and nuclear factor kappa B (NF-κB) [90–93].
Among these miRNAs, miR-181 has garnered particular attention for its involvement in the
EMT process. Polo-Generelo et al. have identified a TGF-β-responsive long non-coding RNA
(lncRNA), Lnc-Nr6a1, expressed during the EMT in mouse mammary epithelial cells. The
sequences of pri-miR181a2 and pri-miR181b2 are found in a non-polyadenylated isoform of
lnc-Nr6a1 and give rise to mature miR-181a2 and miR-181b2 after processing by Dicer. These



Cells 2025, 14, 132 7 of 21

miRNAs enhance the cell invasive capability and confer resistance to anoikis [94]. Interest-
ingly, miR-181b exhibits tissue-specific roles in EMT regulation. In mouse airway tissues,
miR-181b suppresses the EMT, a key event in airway remodeling. Huang et al. have demon-
strated that the overexpression of miR-181b decreases the expression of EMT-associated
factors such as vimentin and α-SMA while increasing E-cadherin expression. This regulation
occurs through the direct targeting of the high mobility group box 1 (HMGB1) mRNA, thus
enhancing the activation of NF-κB signaling. Furthermore, miR-181b is sponged by the
lncRNA TUG1, which contributes to airway remodeling [95]. The identification of miR-181
family dysregulation in various tumor tissues highlights the critical roles of these family
members in both CSCs and the EMT. These findings underscore the diverse and context-
dependent functions of miR-181, which are closely associated with cancer progression [96].
A summary of the roles of this miRNA in CSCs and the EMT is provided below (Table 2).

4.1. MiR-181 in Breast Cancer

BC is the most prevalent cancer globally. Metastatic BC is the most advanced BC stage
and is associated with high mortality rates [97]. The EMT process is critical in the initiation
and progression of BC metastasis by facilitating the transformation of non-invasive BC to
invasive BC [98]. TGF-β-dependent signaling has been strongly implicated in promoting
the EMT during advanced stages of BC [99,100]. Wang et al. have demonstrated that
TGF-β induces the expression of miR-181 and increases the population of BC cells capable
of forming MSs in suspension culture, a hallmark of stem cell-like properties. Notably,
miR-181 family members are highly expressed in MSs cultured under undifferentiated
conditions [101]. Ataxia telangiectasia mutated (ATM), a serine/threonine kinase, is es-
sential for DNA damage-induced cellular responses [102]. The downregulation of ATM
by the overexpression of miR-181a/b induces a sphere-forming CSC phenotype in BC
cells [101]. Using the overexpression of miR-181a and the miR-181a sponge (miArrest 181a),
Taylor et al. have identified miR-181a as a TGF-β-regulated “metastamir” that drives the
metastatic potential of BCs by promoting the EMT, migration, and invasion. The expression
of miR-181a is selectively upregulated in metastatic BC, particularly in triple-negative BC
tumors. High levels of miR-181a are associated with pulmonary micrometastatic outgrowth
and lethality in mice with late-stage BC. Mechanistically, miR-181a suppresses the expres-
sion of the pro-apoptotic protein Bim, thereby decreasing the sensitivity of metastatic cells
to anoikis [103]. Moreover, the expression of miR-181b is upregulated by high mobility
group A1 (HMGA1), a protein with a critical role in the TGF-β signaling network that
drives the EMT and maintains the undifferentiated phenotype of CSCs [104]. HMGA1
upregulates miR-181b, which in turn suppresses the tumor suppressor CBX. MiR-181b
overexpression contributes to the EMT and BC progression [104,105]. Yoo et al. have
further demonstrated through miR-181b-3p overexpression and inhibition experiments that
miR-181b-3p promotes the Snail-induced EMT and subsequent activation of MCF-7 BC cell
metastasis [106]. By directly targeting the oncogenic signaling adaptor protein YWHAG,
miR-181b-3p stabilizes Snail and consequently leads to EMT-associated morphological
changes, increased invasiveness, and altered expression of EMT markers in metastatic BC
cells [106,107].

In contrast, Kastrati et al. have revealed that miR-181 overexpression inhibits estrogen
receptor (ER)+ BC tumor growth by downregulating pleckstrin homology-like domain, fam-
ily A, member 1 (PHLDA1), a key protein in stem cell maintenance and cell survival [108].
PHLDA1 is highly expressed in MSs of ER+ BC cells, and its inhibition impairs MS for-
mation and decreases the population of aldehyde dehydrogenase (ALDH)-positive cells.
ALDH activity is a frequently used marker for stem cells. Interestingly, miR-181 expression
is suppressed by E2 and tumor necrosis factor α (TNFα) in an ER- and NF-κB-dependent
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manner. Moreover, TNFα promotes BC invasion through EMT programs, thus further
repressing E-cadherin and enhancing tumor aggressiveness [109].

4.2. MiR-181 in Glioblastoma Multiforme

Glioblastoma multiforme (GBM), a highly malignant astrocytoma, is among the most
aggressive forms of glioma. In GBM, a small population of GBM stem cells (GSCs) acts as
a reservoir for tumor recurrence and progression. The mesenchymal reprogramming of
GSCs within the tumor microenvironment is a critical determinant of GBM outcomes [110].
The stemness-associated transcription factor Notch2 is highly expressed in GBM, and its
activation plays critical roles in GBM formation and progression [111]. Although miR-
181a downregulates Notch2 expression, miR-181a itself is downregulated in GSCs derived
from U87 and U373 human glioblastoma cells. Overexpression of miR-181a inhibits the
expression of stemness-associated markers such as CD133 and BMI1, thereby decreasing
the tumorigenicity of GSCs [112]. The miR-181 family inversely correlates with NF-κB-
targeting gene expression and the activity of EMT pathways in GBM. This miRNA family
has been shown to inhibit glioblastoma cell invasion and proliferation [113]. Wang et al.
have demonstrated that the upregulation of the miR-181 family reverses the EMT by
targeting karyopherin subunit alpha 4 (KPNA4), a gene whose protein product activates
NF-κB-associated pathways critical for the EMT in multiple cancer types [113,114]. Among
miR-181 family members, miR-181b exhibits the most potent inhibitory effects on the EMT
in glioblastoma [113]. He et al. have reported the EMT-inhibitory role of miR-181c in the
glioblastoma EMT [115]. MiR-181c is often downregulated in glioblastoma, whereas its
overexpression leads to EMT suppression. Forced overexpression of miR-181c increases
E-cadherin levels and decreases the levels of mesenchymal markers, including N-cadherin
and vimentin. Additionally, miR-181c inhibits TGF-β signaling in GBM cells, thus further
curbing the EMT and tumor aggressiveness [115].

4.3. MiR-181 in Hepatocellular Carcinoma

HCC constitutes more than 90% of liver cancers. CSCs in HCC are identified through
the expression of several surface antigens, including CD133, CD90, CD44, OV6, and
epithelial cell adhesion molecule (EpCAM), as well as Hoechst staining of side popula-
tion cells [116]. Stem cell activators such as the Notch, TGF-β, Wnt/β-catenin, EpCAM,
Lin28, and Hedgehog signaling pathways drive HCC progression by activating CSCs [117].
Among these, TGF-β, a key driver of the EMT, plays a crucial role in HCC pathogene-
sis [118]. The miR-181 family has been widely implicated in mediating TGF-β signaling and
the EMT in HCC [119,120]. Brockhausen et al. have reported the significant upregulation
of miR-181a during the TGF-β-induced EMT in hepatocytes. Overexpressed miR-181a
in the mouse liver leads to genetic alterations associated with TGF-β signaling and the
EMT, thus highlighting its roles in the hepatocyte EMT and TGF-β-mediated effects [119].
Similarly, Riccioni et al. have corroborated the involvement of miR-181 family members
in the EMT in hepatocytes and HCC cells [121]. Heterogeneous nuclear ribonucleopro-
tein Q (hnRNP-Q) has been identified as a “mesenchymal” gene in hepatocytes. During
EMT/MET dynamics, miR-181-a1-3p and miR-181-b1-3p are among the miRNAs affected
by HnRNP-Q knockdown [121]. In liver cancers induced by diethylnitrosamine, miR-181
expression increases alongside tumor growth [122]. However, the liver-specific deletion
of miR-181ab1 (mir181a-1-mir181b-1 cluster) upregulates the tumor suppressor CBX7, a
confirmed miR-181 target, and inhibits liver tumor initiation and progression. This deletion
also increases E-cadherin expression and partially reverses the EMT [122].

Additionally, several independent studies have defined the role of miR-181 in malig-
nant hepatic stemness. (1) Arzumanyan et al. have demonstrated that hepatitis B virus-



Cells 2025, 14, 132 9 of 21

encoded X antigen (HBx) upregulates miR-181, along with Oct-4, Nanog, Klf-4, β-catenin,
and EpCAM, thus promoting self-renewal in HCC CSCs [123]. (2) High miR-181 expression
has been observed in embryonic livers, isolated hepatic stem cells, and HCC metastases.
MiR-181 expression is regulated by the Wnt signaling pathway [11]. In some cases, miR-181
stimulates Wnt/β-catenin signaling by downregulating GSK3b signaling [10]. Ji et al. have
shown that forced expression of miR-181 enhances the tumor-initiating ability of EpCAM+
HCC cells by targeting hepatic differentiation regulators, such as caudal type homeobox
2 (CDX2), GATA binding protein 6 (GATA6), and nemo-like kinase (NLK, a Wnt/beta-
catenin pathway inhibitor) [10]. (3) MiR-181 expression is influenced by IL-6 and Twist
in hepatocellular CSCs. Twist, a known inhibitor of myogenic differentiation, promotes
motility and invasion in these cells. Meng et al. have demonstrated that the overexpression
of miR-181a/b inhibited Ras association domain family 1A (RASSF1A, a tumor suppressor),
tissue inhibitor of metalloprotease 3 (TIMP3), and NLK protein expression in hepatocellular
CSCs, indicating that miR-181 mediates the oncogenic effects of Twist on the invasion of
these cells [124]. In summary, miR-181 plays critical roles in the regulation of the EMT, CSC
activation, and tumor progression in HCC, and mediates key oncogenic pathways.

4.4. MiR-181 in Other Types of Human Cancer

Independent studies have highlighted the anti-CSC properties of miR-181 in various
cancers, including SCC, melanoma, and non-small cell lung cancer (NSCLC).

To date, two studies have suggested anti-CSC effects of miR-18 on SCC cells. In
human papillomavirus 16 (HPV16)-transfected oral and oropharyngeal SCC cells, miR-
181a and miR-181d (miR-181a/d) expression are suppressed by HPV16 [125]. The ectopic
expression of miR-181a/d in HPV16-transfected oral and oropharyngeal SCC cells de-
creases anchorage-independent growth and the CSC-like phenotype by targeting K-ras
and ALDH1 [125]. In cervical SCC, miR-181c-5p directly downregulates the expression of
glycogen synthase kinase 3 beta interacting protein (GSKIP) [126], an A-kinase anchoring
protein involved in Wnt signaling regulation [127]. Overexpression of miR-181c-5p inhibits
the stem-like properties of cervical SCC (SiHa) cells by decreasing the expression of stem
cell markers (SOX2, OCT4, CD44, N-cadherin, and vimentin) and increasing E-cadherin
levels [126].

In melanoma stem cells, miR-181a induces apoptosis by directly targeting Bcl-2. Zhang
et al. have identified that the lncRNA LHFPL3-AS1-long interacts with miR-181a-5p, thus
preventing the miR-181a-5p-mediated degradation of the Bcl-2 mRNA and suppressing
melanoma stem cell death [128].

In NSCLC cells, ectopic expression of miR-181b decreases the CD133+ population,
inhibits CSC-like properties, and enhances sensitivity to cisplatin treatment by targeting
Notch2, thereby inactivating the Notch2/Hes1 signaling pathway [129]. Increased ex-
pression of miR-181b suppresses stem cell-like characteristics, such as sphere formation,
and markedly downregulates stemness-associated transcription factors (Notch2, NICD2,
HES1, and HEY1). However, miR-181b inhibition increases Notch2 expression and has
a significant relationship with the overall survival and CSC-like properties of NSCLC
patients. [129].

An unappreciated role of miR-181a has been identified in high-grade serous ovarian
cancer, a leading cause of cancer-associated deaths among women. Parikh et al. have
reported that the ectopic expression of miR-181a promotes the TGF-β-mediated EMT by
directly targeting Smad7 [130]. Smad7, an inhibitor of TGF-β signaling in epithelial ovarian
carcinoma, helps maintain the epithelial phenotype through the MET [131]. Conversely,
miR-181a inhibition via decoy vector suppression results in significant reversion of these
phenotypes [130]. In a study of HT-29 human colon adenocarcinoma cells, Cai et al. de-
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veloped an EMT model by treating the cells with TGF-β. In this model, a collection of
miRNAs was found to be dynamically regulated, including miR-181, which was signif-
icantly downregulated [132]. However, in colorectal cancer, one of the most prevalent
cancers worldwide [133], miR-181a is significantly upregulated in cancerous tissues with
liver metastasis. Overexpression of miR-181a not only promotes colorectal cancer cell
motility, invasion, and liver metastasis, but also plays a potential role in enhancing the
EMT by upregulating vimentin and downregulating epithelial markers such as β-catenin
and E-cadherin through the suppression of the Wnt inhibitory factor 1 (WIF-1) [134]. WIF1,
a tumor suppressor gene, regulates tumor invasion through the EMT process [135].

Table 2. Regulatory roles of the miR-181 family in the EMT and CSCs of human cancers.

Cells/Tissues Upstream MiR-181 Targets Stemness/EMT Refs.

Metastatic BC, MDA-MB-361 TGF-β miR-181a,
miR-181b ATM Induces the sphere-forming CSC

phenotype in BC cells [101]

Metastatic BC, triple-negative BC TGF-β miR-181a Bim Promotes the EMT [103]

BC, MCF-7 HMGA1 miR-181b CBX7 Induces the EMT of endometrial
epithelial cells [104]

BC, MCF-7 miR-181b-3p YWHAG/Snail Promotes EMT-characteristic
morphological changes [106]

ER+ BC, MCF-7 E2, TNFα miR-181a PHLDA1 Inhibits stem-like properties,
impairs MS formation [108]

GBM miR-181a Notch2
Inhibits stemness-associated
markers (CD133 and BMI1) and the
tumorigenicity of GSCs

[112]

GBM miR-181s,
miR-181b KPNA4 Reverses the EMT [113]

GBM miR-181c N-cadherin,
vimentin, TGF-β Inhibits the EMT of GBM [115]

Hepatocyte EMT TGF-β miR-181a Induces the hepatocyte EMT [119]

Hepatocytes and HCC cells SYNCRIP miR-181a1-3p,
miR-181b1-3p Promotes the EMT [121]

miR-181ab1 deficient liver tumors miR-181ab1 CBX7 Promotes the EMT [122]

Liver CSCs HBx miR-181 Maintains “stemness” [123]

Liver CSCs, EpCAM+ hepatic CSCs miR-181 CDX2, GATA6,
NLK

Promotes the stem-cell-like features
of HCC cells [10]

Hepatocellular CSCs IL-6, Twist miR-181a/b RASSF1A,
TIMP3, NLK

Induces hepatocellular CSC motility
and invasion [124]

Oral/oropharyngeal SCC HPV16 miR-181a/d K-ras, ALDH1
Inhibits the CSC phenotypes of
HPV-16-transfected
oral/oropharyngeal SCC cells

[125]

Cervical SCC miR-181c-5p Inhibits the stem-like properties of
cervical SCC cells [126]

Melanoma stem cells lncRNA
LHFPL3-AS1-long miR-181a-5p Bcl-2 Induces melanoma stem cell death [128]

NSCLC miR-181b Notch2, NICD2,
HES1, HEY1

Attenuates CSC characteristics,
decreases the CD133+ population [129]

Ovarian cancer miR-181a Smad7 Promotes the TGF-β-mediated EMT [130]

Colorectal cancer miR-181a WIF-1 Promotes the EMT [134]
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The roles of miR-181 in CSCs and the EMT in cancer cells are complex. Generally,
studies have shown inhibitory effects of this miRNA on glioma, SCC, and NSCLC, but have
highlighted its promotion of the EMT and CSCs in BC, hepatocarcinoma, ovarian cancer,
and colorectal cancer. The contradictory effects of miR-181 on the EMT and CSCs across
studies might stem from variations in the tissue origin, clinical stage distribution, metastatic
status, and analytical methods. Although TGF-β is widely recognized as an inducer of the
EMT and miR-181 targets several key molecules within the TGF-β signaling pathway in
various human cells, the precise molecular mechanisms governing the interaction between
TGF-β and miR-181 and their involvement in the EMT remain incompletely understood.
Advancing our understanding of how miR-181 regulates the EMT and CSCs might pave
the way for new approaches in cancer diagnosis and prognosis. Furthermore, identifying
potential therapeutic targets of miR-181 could potentially provide strategies to inhibit
metastatic dissemination and improve patient survival.

5. Therapeutic Potential of miR-181
Recent studies have highlighted the roles of miRNAs in various biological processes,

including cell differentiation and tissue regeneration. Therefore, miRNAs are promising
candidates for optimizing tissue repair and regeneration strategies. For instance, Qi et al.
encapsulated 181a/b-1 into poly (lactic-co-glycolic acid) (PLGA) nanofibers, a highly
effective biodegradable polymer. Their findings revealed that PLGA nanofibers loaded
with miR-181a/b-1, compared with non-encapsulated miR-181a/b-1, significantly increase
the osteogenic differentiation of human adipose-derived MSCs [136]. These advancements
suggest a promising direction for the development of miRNA-based regenerative therapies.

The EMT is a critical process driving invasion and metastasis during cancer progres-
sion, as reviewed by Kang et al. [71]. CSCs play critical roles in tumor relapse and metastatic
tumor growth, and are known contributors to cancer resistance and poor clinical outcomes.
Because both the EMT and CSC are closely linked and substantially contribute to cancer
recurrence and metastasis, targeting these processes represents a compelling therapeu-
tic strategy. MiRNAs regulate CSC stemness by directly targeting stemness-associated
TFs and markers or by indirectly reversing the EMT [137]. To restore the downregulated
miRNAs in CSCs or cancer cells, miRNA-specific mimics can re-establish miRNA levels
and restore their associated biological functions. In contrast, approaches such as anti-
miRNA oligonucleotides, genetic knockout technologies, and miRNA sponges effectively
suppress the aberrantly elevated expression of miRNAs [138–141]. These interventions
make stemness-associated miRNAs valuable as diagnostic and prognostic biomarkers, as
well as targets for cancer therapy. Notably, substantial evidence links the EMT process
to miR-181 regulation [96]. Whereas the functions of miR-181 family members and their
target genes vary by cancer type and gene expression profiles, targeting miR-181-associated
signaling pathways in CSCs and in the EMT process has substantial therapeutic potential.
In certain cancers, miR-181 inhibition might deplete CSCs by inducing their differentiation.
However, further research is essential to deepen our understanding of miR-181’s role in
CSCs hierarchies and to design more effective and specific anti-CSC therapies [116].

6. Current Progress of miRNA-Based Therapies
Despite their therapeutic potential, miRNAs face major challenges in clinical appli-

cation, primarily related to their stability and sustainability in the circulation, safety and
toxicity, and delivery. Unmodified, naked miRNAs are rapidly degraded by RNase A
in the bloodstream and cleared through renal excretion. Additionally, miRNA delivery
faces hurdles such as low endocytosis, potential cytotoxic effects on healthy tissues, and
immunotoxicity, which complicate therapeutic development [142]. For example, MRX34
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(miR-34a mimic, Mirna Therapeutics) was designed to restore the tumor-suppressive func-
tion of miR-34a, which was tested in a Phase I clinical trial for patients with advanced solid
tumors [143]. However, the trial was halted in 2016 due to dose-limiting toxicity and severe
immune-related side effects. Additionally, Miravirsen (Santaris Pharma), a locked nucleic
acid inhibitor targeting miR-122, showed promising results in Phase II clinical trials by
reducing the viral load in hepatitis C virus-infected patients. However, safety concerns
related to long-term inhibition of miR-122 have raised questions about its broader therapeu-
tic use [144]. MiRNA-based therapies are still in the experimental phase, with some notable
failures, but they hold significant promise for diseases with complex genetic regulation.

To overcome these challenges, chemical modifications have been introduced to en-
hance the stability of therapeutic miRNAs [145]. For example, 2′-ribose modified miRNAs
have enhanced stability and a prolonged half-life in the systemic circulation [146]. Beyond
viral delivery, nanotechnology-based delivery systems have been designed to encapsulate
miRNAs [4,145,147]. Nanoparticles (NPs) not only enhance miRNA stability in the serum
but also improve endosomal escape and biocompatibility. Surface functionalization of NPs
with targeting moieties enables specific binding to biomolecules expressed on CSCs or
cancer cells, thus improving therapeutic targeting [148,149]. Among NP platforms, lipid
nanoparticles (LNPs) are particularly promising delivery vectors for nucleic acids [141,150].
LNPs effectively encapsulate miRNAs, thereby protecting them from nuclease degradation
and overcoming physiological barriers to the delivery of miRNAs to difficult-to-reach
tissues [151]. Notable examples include (1) the LNP formulation of siRNAs targeting
transthyretin approved by the FDA [152], (2) nucleoside-modified mRNA-LNP vaccines
successfully developed during the COVID-19 pandemic [153], and (3) an LNP platform
encapsulating an miR-193a-3p mimic for solid tumors, which has reached a Phase 1 trial
(NCT04675996) [154]. Our research team has successfully encapsulated an miR-181a mimic
using liposomes and solid LNPs, and investigated their anti-neoplastic effects in preclinical
studies as treatments for retinoblastoma and glioblastoma [155,156]. These encapsulation
methods enable effective miR-181a delivery to tumors and the subsequent suppression of
tumor growth. Notably, hyaluronic acid-conjugated LNPs have been used to selectively
deliver miR-181a to CD44-positive cells, including CSCs [156].

Notably, EVs represent a promising alternative for delivering genetic therapeutics.
EVs are small lipid-enclosed particles including microvesicles, exosomes, ectosomes, mem-
brane vesicles, and apoptotic bodies [157,158]. Compared with artificial NPs, EVs offer
advantages such as lower immunogenicity and toxicity, and the ability to cross plasma
membranes and diffuse into tumor tissues [159]. Recent studies have highlighted the
immunomodulatory effects of MSC-derived exosomes, which can modulate the local mi-
croenvironment [159–162]. MiR-181 is notably abundant in MSC-derived exosomes and
exhibits substantial anti-inflammatory regulatory functions [162]. For example, human
umbilical cord MSC-derived exosomes with high miR-181c levels have been found to
decrease burn-induced inflammation by downregulating Toll-like receptor 4 and its path-
way [163,164]; moreover, BM MSC-derived exosomes rich in miR-181c have been found to
inhibit inflammation and apoptosis, thus alleviating spinal cord injury [165]. Although the
effects of miR-181 in MSC-derived exosomes on CSC differentiation or the EMT remain un-
clear, its diverse therapeutic roles underscore a need for further investigation of its clinical
potential. Continued research might uncover novel therapeutic strategies for addressing a
range of diseases.

7. Conclusions
The miR-181 family plays critical roles in regulating human stem cells by contributing

to their formation, maintenance, and differentiation through the targeting of key stem
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cell-related signaling pathways in various human stem cell types. These miRNAs are also
intricately associated with nearly all EMT-associated signaling pathways, and substantially
influence cancer cell behavior through EMT and CSC modulation. The effects of miR-181
vary according to disease-specific cellular contexts and tissue-specific molecular signaling
pathways, thus showcasing its therapeutic versatility beyond cancer treatment. Given its
diverse functions, miR-181’s immense therapeutic potential warrants further investigation.
Advances in genome-wide screening technologies, including single-cell and spatial multi-
omics technologies, should provide promising tools to identify new miR-181 targets and
pathways involved in CSC regulation. These advancements might clarify the role of miR-
181 in stem cell biology and facilitate its application in therapeutic strategies. Although
the rapid development of miRNA-based therapy holds great promise, challenges such
as off-target effects and potential adverse effects persist. NP delivery platforms have
successfully delivered anti-miR-181a oligonucleotides or miR-181 mimics in preclinical
models [155,156,166,167]. In the future, combining miR-181-based targeted therapy with
advanced nanodelivery systems might pave the way for breakthroughs in stem cell therapy
and other regenerative treatments.
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List of Abbreviations

Abbreviation Full Name
AFSCs amniotic fluid stem cells
ALDH aldehyde dehydrogenase
ASCs adult stem cells
ATM ataxia telangiectasia mutated
BC breast cancer
BM-MSC bone marrow mesenchymal stem cell
CARM1 coactivator-associated protein arginine methyltransferase 1
CBX7 chromobox homolog 7
CDX2 caudal type homeobox transcription factor 2
CSCs cancer stem cells
EMT epithelial-to-mesenchymal transition
EMT-TFs EMT-inducing transcription factors
EpCAM epithelial cell adhesion molecule
ER estrogen receptor
ESCs embryonic stem cells
EVs extracellular vesicles
GATA6 GATA binding protein 6
GBM glioblastoma multiforme
GSCs glioblastoma stem-like cells
GSKIP glycogen synthase kinase 3beta interacting protein
HBx hepatitis B virus-encoded X antigen
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HCC hepatocellular carcinoma
HMGA1 high mobility group A1
HMGB1 high mobility group box 1
hnRNP-Q heterogeneous nuclear ribonucleoprotein Q
HPV16 human papillomavirus 16
HSCs hematopoietic stem cells
iPSCs induced pluripotent stem cells
KAT2B lysine acetyltransferase 2B
KPNA4 karyopherin subunit alpha 4
lncRNAs long non-coding RNAs
LNPs lipid nanoparticles
Marcks myristoylated alanine-rich c-kinase substrate
MET mesenchymal–epithelial transition
miRNA, miR- microRNA
MK megakaryocytic
MS mammospheres
MSCs mesenchymal stem cells
NF-κB nuclear factor kappa-light-chain-enhancer of activated B
NLK nemo-like kinase
NPs nanoparticles
Nr2c2 nuclear receptor subfamily 2 group C member 2
NSCLC non-small cell lung cancer
PHLDA1 pleckstrin homology-like domain, family A, member 1
PLGA poly(lactic-co-glycolic acid)
PRC1 Polycomb repressive complex 1
RASSF1A Ras association domain family 1A
SCC squamous cell carcinoma
SOX SRY-related high-mobility group-box
TFs transcription factors
TGF-β transforming growth factor-β
TIMP3 tissue inhibitor of metalloprotease 3
TNFα tumor necrosis factor α
WIF-1 Wnt inhibitory factor 1
ZEB zinc finger E-box-binding homeobox
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