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Abstract: Kaposi Sarcoma (KS) is a vascular tumor originating from endothelial cells
and is associated with human herpesvirus 8 (KSHV) infection. It disproportionately af-
fects populations facing health disparities. Although antiretroviral therapy (ART) has
improved KS control in people with HIV (PWH), treatment options for advanced KS re-
main limited. This study investigates the tumor microenvironment (TME) of KS through
whole-transcriptomic profiling, analyzing changes over time and differences based on HIV
status. The TME was categorized into four subtypes: immune-enriched (IE), non-fibrotic,
immune-enriched/fibrotic (IE/F), fibrotic (F) and immune-depleted (D). Nine KS patients
(four HIV-negative and five HIV-positive) were enrolled in the study. Longitudinally col-
lected KS samples from three patients (one HIV-negative and two HIV-positive) allowed
for the investigation of dynamic TME changes within individual patients. The immune
cellular composition was determined using deconvolution and compared to a cohort of
non-KS patients. Our findings revealed that all KS samples, regardless of HIV status, were
enriched in endothelial cells. Compared to non-KS tissues, the KS samples contained a
higher percentage of NK and CD8+ T cells. HIV-negative KS samples displayed the IE
and IE/F TME subtypes, while HIV-positive samples exhibited IE, IE/F, and F subtypes.
Over the course of the disease, a decrease in angiogenic signatures was observed in two
HIV-positive KS patients. Notably, HIV-negative KS samples showed alterations in NK
cell-mediated immunity and cytotoxic response pathways, whereas HIV-positive samples
exhibited changes in growth regulation and protein kinase activity pathways at the time of
initial diagnosis. The gene expression of immune checkpoints, including CD274 (PD-L1)
and PDCD1LC2 (PD-L2), was comparable between HIV-positive and HIV-negative KS sam-
ples at diagnosis. Furthermore, sequencing identified a shared TCRβ chain in all patients
analyzed, indicating a T-cell immune response to a common antigen. This study demon-
strates unique transcriptomic features and TME subtypes in KS that differ based on HIV
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status. Additionally, it illustrates longitudinal dynamic changes in the gene signatures and
TME subtypes in individual patients. The identification of a shared TCRβ chain suggests
that immune T cells in KS patients may target a common antigen. Future studies should
further explore the immune microenvironment and unique T cell clonotypes, which could
pave the way for the development of novel therapeutic strategies for KS patients.

Keywords: Kaposi sarcoma; immune milieu; transcriptomics; TCR clonotype; tumor microen-
vironment; gene signatures; HIV

1. Background
Kaposi sarcoma (KS) is a rare vascular malignancy associated with human herpesvirus-

8 (HHV-8/KSHV). It often arises in immunosuppressed individuals, particularly people
with HIV (PWH). KS was one of the hallmark cancers of the AIDS epidemic, and despite
advancements in antiretroviral therapy (ART), disease control remains a significant challenge
for many patients [1]. In 2020, it was estimated that over 34,000 new KS cases and over 15,000
KS-related deaths occurred globally, with the majority of the cases occurring in Southern
and Eastern Africa [2]. While KS is classified as an AIDS-defining cancer, it can also affect
patients without HIV. Based on clinical and histological features, KS can be categorized
into four clinical subtypes: (1) the classic or sporadic subtype, characterized by indolent
growth, which is typically seen in Mediterranean countries; (2) the epidemic subtype, which
is observed in PWH; (3) the endemic subtype, which is seen in Sub-Saharan countries; and
(4) the iatrogenic subtype, which occurs in patients receiving immunosuppressive therapy,
such as organ transplant patients [3].

Since the introduction of effective ART in 1996, the incidence of KS in PWH has declined
significantly [1]. However, KS remains a significant public health concern in low-income
countries with a high HIV burden, highlighting the critical need to address global healthcare
disparities [4]. Despite the availability of highly effective antiretroviral therapies, PWH
continue to face significantly elevated risk of KS, with a standard incidence ratio of 35
compared to the general population [5].

Management options for KS depend on its subtype. For epidemic and iatrogenic KS,
treatment often begins with ART and a reduction in immunosuppression, respectively.
However, when the above strategies become insufficient, or in cases of classic or endemic KS,
therapeutic options are limited [1]. Chemotherapy is commonly used, and a few clinical trials
using immunomodulators, immunotherapy agents, and targeted therapies are currently
underway [6].

Immune evasion is recognized as one of the eight hallmarks of cancer [7]. The tumor
microenvironment (TME) comprises a heterogeneous mix of cells, including infiltrating im-
mune and stromal cells, which plays various roles in cancer progression. The TME can either
suppress or promote tumor growth. On the one hand, it facilitates cytotoxicity by secreting
cytokines, recruiting effector cells, and presenting tumor antigens. On the other hand, it can
drive tumor progression by promoting angiogenesis and metastasis and inhibiting effective
cytotoxic T cell responses [8]. TME subtypes are correlated with clinical outcomes and
immunotherapy responses [9]. A prior study identified four TME subtypes across twenty
different cancers based on gene signatures: immune-enriched/fibrotic (IE/F), immune-
enriched/non-fibrotic (IE), fibrotic (F) and immune-depleted (D). This study highlighted
the potential of multiparametric biomarkers, such as TME composition, in predicting im-
munotherapy efficacy. Notably, TME subtyping outperformed many traditional predictive
biomarkers in predicting immunotherapy outcomes across different cancer subtypes [10].
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Characterization of the TME in HIV-associated cancers is particularly critical, as HIV
infection and antiretroviral therapies are known to alter immune cells and their interactions
with cancer cells [11,12]. Prior studies have identified differences in the TME of HIV-
associated cancers compared to cancers in the general population [13]. For instance, our
group recently showed that NSCLC in PWH had low CD8+ tumor-infiltrating lymphocytes
counts and limited PD-L1 expression compared to the NSCLC in the general population [14].
A better understanding of the KS immune milieu, especially its relationship with HIV status
and its dynamic nature within individual patients, is essential, as it could inform therapeutic
strategies. This study aims to investigate the TME of KS through transcriptomic analysis of
HIV-positive and HIV-negative samples, with a focus on its dynamic nature and potential
implications for treatment.

2. Methods
2.1. Patients

Nine patients with pathologically confirmed KS were enrolled in this study. Three
of the patients (two HIV-positive and one HIV-negative) had multiple samples collected
longitudinally to study the dynamic changes in TME in individual patients. The specimens
were collected from the skin or other sites of metastases at the treating physicians’ discre-
tion. The clinicopathological data, including demographics, HIV disease characteristics,
and treatment history, were collected through a retrospective chart review. All protocols
were reviewed and approved by the Institutional Review Board of Montefiore Medical
Center/Albert Einstein College of Medicine. The meta-cohort of non-KS patients (n = 1046)
was provided by BostonGene, Boston, MA, USA.

2.2. Bulk RNA Sequencing (RNAseq)

Whole-transcriptomic profiling was performed on thirteen retrospective tissue samples
from nine patients. RNA from FFPE specimens was isolated using the AllPrep DNA/RNA
FFPE Kit (Cat. 80234, Qiagen, Hilden, Germany) as per the manufacturer’s protocol. Next,
20 to 200 ng of total RNA from RNA-Seq libraries was prepared using the Agilent XT HS2
RNA Kit with V7+UTR probes (Agilent, Santa Clara, CA, USA). All library preparations
were performed as per the manufacturer’s instructions. Cleanup procedures were per-
formed using Agencourt AMPure XP beads (Beckman Coulter, Brea, CA, USA, Cat A63881).
All RNA libraries were sequenced on NovaSeq 6000 (Illumina, San Diego, CA, USA). The
samples were sequenced with a target of 50 M reads using 151 bp paired-end sequencing.

2.3. NGS Data Quality Control

FastQC v0.11.5, FastQ Screen v0.11.1, RSeQC v3.0.0 and MultiQC v1.6 were used to
perform quality control (QC) of all NGS samples. Sample correspondence was checked by
HLA comparison from RNA-Seq using OptiType70.

2.4. Deconvolution

The novel machine learning algorithm, Kassandra, was used to predict the cell percent-
ages from bulk RNA-seq [15]. The model consisted of a two-level hierarchical ensemble that
used LightGBM as building blocks. The model was trained on artificial RNA-seq mixtures
of different cell types (T cells, B cells, NK, macrophages, cancer-associated fibroblasts, and
endothelial cells), obtained from multiple datasets of sorted cells. All datasets were isolated
from poly-A or total RNA-seq profiled human tissues with read lengths higher than 31 bp
and at least 4 million coding read counts. These datasets passed quality control via FASTQC
with minimal contamination (<2%). The model was trained to predict the percentage of
RNA belonging to specific cell types. Predicted percentages of RNA were later converted
into percentages of cells using the previously described methodology [16].
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2.5. Gene Expression Signatures and TME

RNA-sequencing reads were aligned with GENCODE v23 transcripts using Kallisto
v0.42.4 with default parameters. Retained transcripts included protein-coding transcripts as
well as immunoglobulin-heavy kappa and lambda light chains, and TCR-related transcripts.
Noncoding RNA, histone, and mitochondria-related transcripts were excluded, resulting
in 20,062 protein-coding genes. Gene expression levels were quantified as transcripts
per million (TPM) and subsequently log2-transformed [17]. Gene signature scores were
derived using the ssGSEA algorithm implemented in custom script (https://github.com/
BostonGene/MFP/, accessed on 1 February 2023). Differential gene expression analysis
was performed by EdgeR and TME types were estimated according to the prevMFP method.

2.6. RNA-Seq Data Processing and Differential Expression Analysis

Gene expression data were quantified as Transcripts Per Million (TPM). Genes with
consistently low expression across all samples were filtered out to reduce noise. Differential
expression analysis between HIV-positive (HIV+) and HIV-negative (HIV−) KS samples
was performed using a two-sample independent t-test on log2-transformed TPM values.
The log2 fold-change (log2FC) was calculated as the difference in mean expression be-
tween HIV+ and HIV− samples. Genes with p < 0.05 and |log2FC| > 1 were considered
statistically significant.

2.7. Volcano Plot

The volcano plot was generated to visualize differential expression results. The x-axis
represents log2 fold-change (HIV+ vs. HIV−) and the y-axis represents −log10 (p-value).
All analyzed genes are shown, with statistically significant genes highlighted in purple
(upregulated in HIV+) and orange (upregulated in HIV−). The most significant genes,
based on p-value, were labeled for clarity.

2.8. Gene Ontology (GO) Enrichment Analysis

Gene Ontology (GO) enrichment analysis was performed separately for significantly
upregulated genes in HIV+ and HIV− KS samples. Enrichment was assessed using the
gseapy Python library with the “GO Biological Process 2021” database. A ranked list of
upregulated genes (based on log2FC) was analyzed to identify overrepresented biological
processes. Adjusted p-values (FDR) were used to rank the top enriched terms, which were
visualized as bar plots.

2.9. Principal Component Analysis (PCA)

PCA was conducted to assess overall variation in gene expression across samples. The
analysis was performed on the top 1000 most variable genes (based on standard deviation
of TPM values) to capture the most biologically relevant differences. Gene expression
data were standardized using z-score normalization prior to PCA. The first two principal
components (PC1 and PC2) were visualized, showing clear separation between HIV+
(purple) and HIV− (orange) samples.

2.10. Identification of Top Genes Contributing to PCs

Individual genes’ contributions to PC1 and PC2 were determined using PCA loadings.
Loadings represent the coefficients for each gene in the linear combination defining a principal
component. Genes with the highest absolute loadings for PC1 and PC2 were identified and
ranked. The top contributing genes were visualized as horizontal bar plots.

https://github.com/BostonGene/MFP/
https://github.com/BostonGene/MFP/
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2.11. T-Cell Receptor (TCR) Analysis

Extraction of data for TCR clonotypes from raw FASTQ files was executed with MiXCR
version 3.0.12 [18] with default parameters for bulk RNA-seq extraction. The TCR logo was
plotted using “ggseqlogo” package version 0.1.

2.12. KSHV Status

KSHV viral reads identification was assessed with the GATK 4 Pathseq software
kit [19] with quantitative assessment expressed in viral reads per million human reads
(VRM), and their viral status was verified with VIRTUS.

3. Results
3.1. Baseline Characteristics of KS Patients

Nine KS patients were included in this study (Table 1). Of these, four were HIV-
negative and five were HIV-positive. To investigate temporal changes in TME, we analyzed
multiple samples collected at different time points from one of the HIV-negative and two of
the HIV-positive KS patients. All patients were male, with a median age of 37 years (range
32–80). The majority of patients had an ECOG performance status (PS) of 0–1, except for
one patient with an ECOG PS of 3. Three patients presented with metastatic disease, and
five were categorized as poor-risk. Two patients had CD4 cell counts <100 cells/µL. Most
patients received local therapies, while three underwent systemic chemotherapy consisting
of liposomal doxorubicin (Table 1).

Table 1. Baseline patient characteristics. ART: antiretroviral therapy; NA: not available; PS: perfor-
mance status.

Patient
Number

of
Samples

HIV
Status Age Sex Race/Ethnicity ECOG

PS Stage Treatment
Received

Baseline
CD4 Count
(Cells/µL)

HIV Viral
Load

(Copies/mL)

1 1 Positive 32 Male Hispanic 0 T0 I1 S0 ART 37 <40

2 3 Negative 42 Male Black 0 T0 I0 S0
Cryotherapy,

radiation therapy,
resection

3 1 Negative 73 Male Hispanic 1 T0 I0 S0 Resection

4 1 Positive 37 Male NA 1 T0 I0 S0 ART 377 0

5 1 Negative 80 Male Hispanic 3 T0 I0 S1 Cryotherapy,
radiation therapy

6 2 Positive 36 Male Hispanic 1 T1 I1 S1
ART, Radiation

therapy, liposomal
doxorubicin

96 <40

7 1 Positive 37 Male Black 1 T1 I0 S1 ART, liposomal
doxorubicin 553 0

8 1 Negative 80 Male Hispanic 1 T0 I0 S0 Radiation therapy

9 2 Positive 36 Male Hispanic 1 T1 I0 S1 ART, liposomal
doxorubicin 477 121103

Immune Cellular Deconvolution of KS Specimens

The immune cell distribution of the KS specimens was analyzed using the Kassandra
deconvolution algorithm of the transcriptome (Figure 1A). The KS cohort had a higher
proportion of endothelial, CD4+ and CD8+ cells, alongside a lower proportion of fibroblasts
compared to the meta-cohort of non-KS samples (Figure 1B). The majority of the non-KS
meta-cohort consisted of patients with leiomyosarcoma (40%) and liposarcoma (22%).
Notably, macrophages were abundant in KS TME irrespective of the HIV status.
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3.2. TME Subtypes in KS Specimens Based on Gene Expression Profiles 

In our KS cohort, three TME subtypes were identified: IE, IE/F, and F (Figure 2). HIV-
negative KS samples demonstrated the IE and IE/F TME subtypes. The IE TME subtype was 
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Figure 1. (A) Cellular composition of Kaposi’s sarcoma (KS) samples (n = 13), as determined using
the Kassandra deconvolution algorithm. Connected lines at the bottom represent sequential samples
collected from the same patient, with sample IDs indicating collection order (e.g., 2.1, 2.2, 2.3 represent
sequential samples from patient 2). (B) Comparative analysis of cell type proportions between KS
samples (n = 13) and BostonGene’s internal sarcoma cohort (n = 1046), shown using center log
ratio (CLR)-transformed values. The analysis includes all cell types predicted by the deconvolution
algorithm. Bars represent means with confidence intervals. * p < 0.05, *** p < 0.001. The lines at the
bottom indicate sequential samples from the same patient.

3.2. TME Subtypes in KS Specimens Based on Gene Expression Profiles

In our KS cohort, three TME subtypes were identified: IE, IE/F, and F (Figure 2). HIV-
negative KS samples demonstrated the IE and IE/F TME subtypes. The IE TME subtype
was characterized by high levels of immune infiltration and low prevalence of stromal and
fibrotic elements (Supplementary Figure S1). The IE/F TME subtype displayed moderate
immune infiltration, a high prevalence of stromal and fibrotic elements, along with intense
vascularization. HIV-positive KS specimens exhibited all three subtypes: IE, IE/F, and F.
The F TME subtype was characterized by minimal immune infiltration, a high prevalence
of stromal elements, abundant cancer-associated fibroblasts and moderate angiogenesis.
Notably, the D TME subtype, which was observed in other non-KS samples, was absent in
our KS cohort.
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Figure 2. TME subtypes identified in the KS cohort. The heatmap shows the normalized ssGSEA
score changes in the KS cohort compared to the meta-cohort (z-score scale shown on the right). The
top annotation bars indicate HIV status and TME subtypes. The rows represent immune infiltration
signatures including MHC expression, immune cell populations (T cells, B cells, NK cells), immune
response markers (cytokines, checkpoint molecules), and stromal elements (CAF, angiogenesis).
Connected lines and arrows at the bottom indicate sequential samples from the same patient, with
arrows pointing in the order of sample collection (e.g., 2.1 → 2.2 → 2.3).

3.3. Comparison of Gene Expression Profiles Between KS Specimens Based on HIV Status

Distinct differences in gene expression patterns were observed between HIV-negative
and HIV-positive KS specimens when the nine initial patient samples were analyzed, as
seen in the volcano plot and the principal component analysis (Figure 3). HIV-negative
samples showed an enrichment of genes associated with NK cell-mediated immunity and
cytotoxic response pathways. In contrast, HIV-positive samples exhibited enrichment of
genes related to growth regulation and protein kinase activity pathways. The expression
levels of immune checkpoint genes, including CD274 (PD-L1) and PDCD1LG2 (PD-L2), did



Cells 2025, 14, 134 8 of 12

not differ significantly between the two cohorts. Notably, two HIV-positive KS patients
(patient #6 and patient #9) with longitudinal paired samples showed a shift towards a less
angiogenic TME during the course of their disease.
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Figure 3. Differential gene expression and pathway analysis between HIV+ and HIV− KS samples.
(A) Volcano plot showing log2 fold-change (HIV+ vs. HIV−) against −log10(p-value) for all genes.
Significant genes (p < 0.05, |log2FC| > 1) are highlighted in purple (upregulated in HIV+) and orange
(upregulated in HIV−), with the top genes labeled. (B) Gene Ontology (GO) terms enriched in HIV+
upregulated genes. (C) GO terms enriched in HIV− upregulated genes. (D) Principal component
analysis (PCA) of KS samples based on the top 1000 variable genes, showing clear separation between
HIV+ (purple) and HIV− (orange) samples. (E) Top genes contributing to PC1, ranked by absolute
loading values. (F) Top genes contributing to PC2, ranked by absolute loading values.
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3.4. T-Cell Receptor–Beta (TCR-β) Repertoire Analysis in KS Tumor-Infiltrating Lymphocytes

We analyzed TCR-β chains in tumor-infiltrating lymphocytes from three HIV-negative
KS patients and two HIV-positive KS patients (Figure 4). Three shared TCR-β chains were
detected across different patients. Notably, one of these TCR-β chains was found in all
five patients, comprising 12–98% of their respective TCR-β repertoires. Additionally, we
identified seven highly homologous TCR-β chains within the KS cohort. None of these
TCR-β chains were found in VDJdb, a curated database that stores TCR sequences with
known antigen specificities [20]. Among patients with shared T cell clonotypes, patients #2
and #5 carried the HLA-A*02, patient #9 had HLA-A*24, and patient #3 had both the HLA-
A*02 and HLA-A*24 alleles. These findings suggest a T cell immune response targeting a
common antigen, potentially originating from the tumor or KSHV, in these patients.
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(C) Position Weight Matrix from the biggest cluster.

4. Discussion
First described by Moritz Kaposi in 1872, KS is a multicentric endothelial cell cancer

that affects the skin, mucosa, lymph nodes and various organs, including the gastroin-
testinal tract, lungs, and bones [1]. While the incidence of KS has markedly decreased
with the early implementation of ART, it remains a significant contributor to long-term
morbidity and mortality, especially in populations facing health disparities. Characterizing
the immune milieu and altered cellular pathways in KS can be instrumental in developing
novel therapeutic strategies to improve patient outcomes.

Our study provides novel insights into the TME of KS, highlighting differences based
on HIV status. Macrophages are the predominant tumor-infiltrating immune cells in sarco-
mas [21], and studies investigating the KS immune microenvironment remain limited. An
earlier study employing immunohistochemical staining of PD-L1, CD3, CD33, CD68, and
CD168 revealed that KS samples were rich in CD68+/CD163+ macrophages, and CD33+
myeloid-derived suppressor cells [22].
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Similarly, in our KS cohort, macrophages represented a substantial proportion of
infiltrating immune cells. Compared to the non-KS cohort, our KS cohort demonstrated a
higher percentage of endothelial cells—consistent with the endothelial origin of KS—and a
lower percentage of fibroblasts. Moreover, more than half (seven out of thirteen samples; five
out of nine patients) were categorized as the immune-enriched/non-fibrotic (IE) subtype.
The F TME subtype was observed only in two samples, both from HIV-positive patients.
Overall, the TME categorization of our KS cohort is notably distinct from the non-KS cohort:
Only 18.66% of the non-KS cohort were categorized as IE. In addition, none of the KS sample
exhibited a D TME subtype, whereas the D subtype was seen in 17.1% of the non-KS cohort.

Transcriptomic differences based on HIV status were also noted. Lidenge et al. pre-
viously compared transcriptome profiles of endemic and epidemic KS lesions, finding
that while KSHV is the principal causative factor in both subtypes, HIV-positive KS cases
exhibit more pronounced gene dysregulation in pathways affecting tumorigenesis and
inflammation/immune responses [23]. Similarly, in our study, HIV-positive KS samples
showed enrichment of genes related to protein kinase pathways, while HIV-negative KS
samples demonstrated enrichment of genes involved in innate immunity and cytotoxicity
pathways. These findings underscore the impact of HIV status on KS pathobiology and
TME characteristics.

Our study also revealed that TME features are dynamic. In two HIV-positive KS
patients, a longitudinal analysis revealed a shift towards a less angiogenic TME over time.
A transcriptomic analysis of KS tumors by another group also highlighted the critical role
of angiogenesis pathways in the pathogenesis of this malignancy [24].

Additionally, we identified highly homologous TCR-β chains among KS samples
in our cohort, suggesting a T cell response to a common antigen, which was potentially
derived from the tumor or KSHV infection. Future studies should investigate potential
shared antigens and their interactions with MHC molecules. An improved understanding
of TCR clonotypes may provide a foundation for designing T cell-based immunotherapies
for KS patients.

Our study is among the few in the literature that aim to provide new insights into the
pathogenesis of KS by investigating its TME. However, there are some limitations. The small
sample size is a key constraint, though this is expected given the rarity of this disease. While
we observed longitudinal changes in the TME, the underlying drivers of these changes remain
unclear due to the limited number of paired samples and the variability in the treatments
received. It is also important to note that the immune cell composition in HIV-positive KS
cases may be influenced by the degree of HIV control and the low CD4 counts. In addition,
our analysis relies on transcriptomic signatures, which, while informative, require validation
through complementary techniques such as immunohistochemical analysis. Future studies
should build on these findings to deepen our understanding of KS pathogenesis.

5. Conclusions
Our study investigates the TME of HIV-negative and HIV-positive KS patients using

transcriptomic signatures. It provides unique insights into the KS TME by comparing
signatures in HIV-positive and -negative cohorts, while also highlighting the dynamic nature
of the TME through paired sample analyses. Our findings reveal a significant proportion of
the IE TME subtype in KS patients, emphasizing the need for future studies to investigate
the potential role of new immunotherapies in this cohort. Importantly, we showed that
KS samples, irrespective of HIV status, do not exhibit an immune desert (D) TME type.
However, HIV-positive samples can be categorized into both F and IE/F TME subtypes in
addition to IE. This suggests that therapeutic strategies targeting the remodeling of fibrotic,
immune-suppressive TMEs should be prioritized in HIV-positive KS cases. Finally, the
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shared T-cell clonotype identified in our cohort warrants further investigation to determine
its potential therapeutic implications. Future studies should focus on exploring these shared
clonotypes and their interactions, which may ultimately inform the development of T
cell-based immunotherapies for KS patients.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cells14020134/s1. Supplementary Figure S1. Comparison of gene
signatures between KS and non-KS sarcoma cohort.

Author Contributions: Conceptualization, H.C., B.H. and X.Z.; methodology, A.S., A.E.C.D., J.Y.,
B.H. and H.C.; formal analysis, A.S., J.Y., A.E.C.D., E.P., H.C.; investigation, J.Y., A.E.C.D., A.S., M.W.,
A.T., M.L., E.P., H.N., K.Z., N.S., N.K., L.P., C.Z., H.C.; resources, C.Z., H.C.; writing—original draft
preparation, A.E.C.D. and J.Y.; writing—review and editing, J.Y., A.E.C.D., A.S., M.W., A.T., M.L., E.P.,
H.N., K.Z., N.S., N.K., L.P., C.Z., H.C., B.H. and X.Z.; supervision, H.C.; funding acquisition, H.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by NIH P30 Cancer Centers Support Grants (CCSG) to Stimulate
Research in Immunotherapy and Tumor Microenvironment in HIV/AIDS Cancer Patients at NCI
designated Cancer Centers Grant Number: 3P30CA013330-48S1 to H.C., NIH P30 Cancer Centers
Support Grants (CCSG) Grant Number: 3P30CA013330-48S3 to H.C. and AECC Price Pilot Project
Award by Price Family Foundation to H.C.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board of Montefiore Medical Center/Albert
Einstein College of Medicine (protocol code 2013-2570, date of revision approval 1 May 2024.

Informed Consent Statement: Patient consent was waived due to the retrospective, observational
nature of the study.

Data Availability Statement: The supporting data are not publicly available due to research partici-
pant privacy restrictions.

Conflicts of Interest: B.H. receives clinical research funding from Boehringer Ingelheim, Astra Zeneca,
Merck, BMS, Advaxis, Amgen, AbbVie, Daiichi, Pfizer, GSK, Beigene, Janssen, Black Diamond
Therapeutics, Forward Pharma, Numab, and Arrivent, and receives Honoraria from Astra Zeneca,
Boehringer Ingelheim, Apollomics, Janssen, Takeda, Merck, BMS, Genentech, Pfizer, Eli-Lilly, Arcus,
Merus, Daiichi, Precede. He also serves on the Data Safety Monitoring Board/Advisory board
for BMS, TPT, Apollomics, eFECTOR, and City of Hope. H.C. receives grants from Astra Zeneca,
Genentech, and honoraria from Daiichi, Genentech, AstraZeneca. All BostonGene authors were
employees thereof at the time the study was performed; they declare no other competing financial
interests. L.P. is an employee of Regeneron Pharmaceuticals, owns stock options and restricted stock
award at Regeneron.

References
1. Cesarman, E.; Damania, B.; Krown, S.E.; Martin, J.; Bower, M.; Whitby, D. Kaposi sarcoma. Nat. Rev. Dis. Primers 2019, 5, 9. [CrossRef]
2. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
3. Lebbe, C.; Garbe, C.; Stratigos, A.J.; Harwood, C.; Peris, K.; Marmol, V.D.; Malvehy, J.; Zalaudek, I.; Hoeller, C.; Dummer, R.; et al.

Diagnosis and treatment of Kaposi’s sarcoma: European consensus-based interdisciplinary guideline (EDF/EADO/EORTC). Eur.
J. Cancer 2019, 114, 117–127. [CrossRef]

4. Fu, L.; Tian, T.; Wang, B.; Lu, Z.; Gao, Y.; Sun, Y.; Lin, Y.F.; Zhang, W.; Li, Y.; Zou, H. Global patterns and trends in Kaposi sarcoma
incidence: A population-based study. Lancet Glob. Health 2023, 11, e1566–e1575. [CrossRef]

5. Hleyhel, M.; Belot, A.; Bouvier, A.M.; Tattevin, P.; Pacanowski, J.; Genet, P.; De Castro, N.; Berger, J.L.; Dupont, C.; Lavole, A.; et al.
Risk of AIDS-defining cancers among HIV-1-infected patients in France between 1992 and 2009: Results from the FHDH-ANRS
CO4 cohort. Clin. Infect. Dis. 2013, 57, 1638–1647. [CrossRef] [PubMed]

6. Ramaswami, R.; Lurain, K.; Yarchoan, R. Oncologic Treatment of HIV-Associated Kaposi Sarcoma 40 Years on. J. Clin. Oncol. 2022,
40, 294–306. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/cells14020134/s1
https://www.mdpi.com/article/10.3390/cells14020134/s1
https://doi.org/10.1038/s41572-019-0060-9
https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/j.ejca.2018.12.036
https://doi.org/10.1016/S2214-109X(23)00349-2
https://doi.org/10.1093/cid/cit497
https://www.ncbi.nlm.nih.gov/pubmed/23899679
https://doi.org/10.1200/JCO.21.02040
https://www.ncbi.nlm.nih.gov/pubmed/34890242


Cells 2025, 14, 134 12 of 12

7. Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [CrossRef]
8. Lei, X.; Lei, Y.; Li, J.K.; Du, W.X.; Li, R.G.; Yang, J.; Li, J.; Li, F.; Tan, H.B. Immune cells within the tumor microenvironment:

Biological functions and roles in cancer immunotherapy. Cancer Lett. 2020, 470, 126–133. [CrossRef] [PubMed]
9. Bai, R.; Lv, Z.; Xu, D.; Cui, J. Predictive biomarkers for cancer immunotherapy with immune checkpoint inhibitors. Biomark. Res.

2020, 8, 34. [CrossRef] [PubMed]
10. Bagaev, A.; Kotlov, N.; Nomie, K.; Svekolkin, V.; Gafurov, A.; Isaeva, O.; Osokin, N.; Kozlov, I.; Frenkel, F.; Gancharova, O.; et al.

Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell 2021, 39, 845–865.e7. [CrossRef]
11. Chaudhary, O.; Trotta, D.; Wang, K.; Wang, X.; Chu, X.; Bradley, C.; Okulicz, J.; Maves, R.C.; Kronmann, K.; Schofield, C.M.; et al.

Patients with HIV-associated cancers have evidence of increased T cell dysfunction and exhaustion prior to cancer diagnosis. J.
Immunother. Cancer 2022, 10. [CrossRef] [PubMed]

12. Korencak, M.; Byrne, M.; Richter, E.; Schultz, B.T.; Juszczak, P.; Ake, J.A.; Ganesan, A.; Okulicz, J.F.; Robb, M.L.; de Los Reyes, B.;
et al. Effect of HIV infection and antiretroviral therapy on immune cellular functions. JCI Insight 2019, 4. [CrossRef]

13. Liu, Y.; Gaisa, M.M.; Wang, X.; Swartz, T.H.; Arens, Y.; Dresser, K.A.; Sigel, C.; Sigel, K. Differences in the Immune Microenvironment
of Anal Cancer Precursors by HIV Status and Association With Ablation Outcomes. J. Infect. Dis. 2018, 217, 703–709. [CrossRef]

14. Cali Daylan, A.E.; Maia, C.M.; Attarian, S.; Guo, X.; Ginsberg, M.; Castellucci, E.; Gucalp, R.; Haigentz, M.; Halmos, B.; Cheng, H.
HIV Associated Lung Cancer: Unique Clinicopathologic Features and Immune Biomarkers Impacting Lung Cancer Screening
and Management. Clin. Lung Cancer 2024, 25, 159–167. [CrossRef]

15. Zaitsev, A.; Chelushkin, M.; Dyikanov, D.; Cheremushkin, I.; Shpak, B.; Nomie, K.; Zyrin, V.; Nuzhdina, E.; Lozinsky, Y.;
Zotova, A.; et al. Precise reconstruction of the TME using bulk RNA-seq and a machine learning algorithm trained on artificial
transcriptomes. Cancer Cell 2022, 40, 879–894.e16. [CrossRef]

16. Racle, J.; de Jonge, K.; Baumgaertner, P.; Speiser, D.E.; Gfeller, D. Simultaneous enumeration of cancer and immune cell types
from bulk tumor gene expression data. Elife 2017, 6. [CrossRef] [PubMed]

17. Goldman, M.J.; Craft, B.; Hastie, M.; Repecka, K.; McDade, F.; Kamath, A.; Banerjee, A.; Luo, Y.; Rogers, D.; Brooks, A.N.; et al.
Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 2020, 38, 675–678. [CrossRef]

18. Bolotin, D.A.; Poslavsky, S.; Mitrophanov, I.; Shugay, M.; Mamedov, I.Z.; Putintseva, E.V.; Chudakov, D.M. MiXCR: Software for
comprehensive adaptive immunity profiling. Nat. Methods 2015, 12, 380–381. [CrossRef] [PubMed]

19. Walker, M.A.; Pedamallu, C.S.; Ojesina, A.I.; Bullman, S.; Sharpe, T.; Whelan, C.W.; Meyerson, M. GATK PathSeq: A customizable
computational tool for the discovery and identification of microbial sequences in libraries from eukaryotic hosts. Bioinformatics
2018, 34, 4287–4289. [CrossRef]

20. Goncharov, M.; Bagaev, D.; Shcherbinin, D.; Zvyagin, I.; Bolotin, D.; Thomas, P.G.; Minervina, A.A.; Pogorelyy, M.V.; Ladell, K.;
McLaren, J.E.; et al. VDJdb in the pandemic era: A compendium of T cell receptors specific for SARS-CoV-2. Nat. Methods 2022,
19, 1017–1019. [CrossRef] [PubMed]

21. Zhu, N.; Hou, J. Assessing immune infiltration and the tumor microenvironment for the diagnosis and prognosis of sarcoma.
Cancer Cell Int. 2020, 20, 577. [CrossRef]

22. Joest, B.; Kempf, W.; Berisha, A.; Peyk, P.; Tronnier, M.; Mitteldorf, C. Stage-related PD-L1 expression in Kaposi sarcoma tumor
microenvironment. J. Cutan. Pathol. 2020, 47, 888–895. [CrossRef] [PubMed]

23. Lidenge, S.J.; Kossenkov, A.V.; Tso, F.Y.; Wickramasinghe, J.; Privatt, S.R.; Ngalamika, O.; Ngowi, J.R.; Mwaiselage, J.; Lieberman,
P.M.; West, J.T.; et al. Comparative transcriptome analysis of endemic and epidemic Kaposi’s sarcoma (KS) lesions and the
secondary role of HIV-1 in KS pathogenesis. PLoS Pathog. 2020, 16, e1008681. [CrossRef] [PubMed]

24. Ramaswami, R.; Tagawa, T.; Mahesh, G.; Serquina, A.; Koparde, V.; Lurain, K.; Dremel, S.; Li, X.; Mungale, A.; Beran, A.;
et al. Transcriptional landscape of Kaposi sarcoma tumors identifies unique immunologic signatures and key determinants of
angiogenesis. J. Transl. Med. 2023, 21, 653. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1158/2159-8290.CD-21-1059
https://doi.org/10.1016/j.canlet.2019.11.009
https://www.ncbi.nlm.nih.gov/pubmed/31730903
https://doi.org/10.1186/s40364-020-00209-0
https://www.ncbi.nlm.nih.gov/pubmed/32864131
https://doi.org/10.1016/j.ccell.2021.04.014
https://doi.org/10.1136/jitc-2022-004564
https://www.ncbi.nlm.nih.gov/pubmed/35470232
https://doi.org/10.1172/jci.insight.126675
https://doi.org/10.1093/infdis/jix454
https://doi.org/10.1016/j.cllc.2023.12.002
https://doi.org/10.1016/j.ccell.2022.07.006
https://doi.org/10.7554/eLife.26476
https://www.ncbi.nlm.nih.gov/pubmed/29130882
https://doi.org/10.1038/s41587-020-0546-8
https://doi.org/10.1038/nmeth.3364
https://www.ncbi.nlm.nih.gov/pubmed/25924071
https://doi.org/10.1093/bioinformatics/bty501
https://doi.org/10.1038/s41592-022-01578-0
https://www.ncbi.nlm.nih.gov/pubmed/35970936
https://doi.org/10.1186/s12935-020-01672-3
https://doi.org/10.1111/cup.13716
https://www.ncbi.nlm.nih.gov/pubmed/32310306
https://doi.org/10.1371/journal.ppat.1008681
https://www.ncbi.nlm.nih.gov/pubmed/32706839
https://doi.org/10.1186/s12967-023-04517-5
https://www.ncbi.nlm.nih.gov/pubmed/37740179

	Background 
	Methods 
	Patients 
	Bulk RNA Sequencing (RNAseq) 
	NGS Data Quality Control 
	Deconvolution 
	Gene Expression Signatures and TME 
	RNA-Seq Data Processing and Differential Expression Analysis 
	Volcano Plot 
	Gene Ontology (GO) Enrichment Analysis 
	Principal Component Analysis (PCA) 
	Identification of Top Genes Contributing to PCs 
	T-Cell Receptor (TCR) Analysis 
	KSHV Status 

	Results 
	Baseline Characteristics of KS Patients 
	TME Subtypes in KS Specimens Based on Gene Expression Profiles 
	Comparison of Gene Expression Profiles Between KS Specimens Based on HIV Status 
	T-Cell Receptor–Beta (TCR-) Repertoire Analysis in KS Tumor-Infiltrating Lymphocytes 

	Discussion 
	Conclusions 
	References

