Leukocyte Telomere Length and Chronic Conditions in Older Women of Northeast Brazil: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population and Sample
2.2. Ethical Considerations
2.3. Data Collection
2.4. Chronic Conditions
2.5. Anthropometric Measures and Blood Pressure
2.6. Health Behaviors
2.7. Blood Collection
2.8. Telomere Length Measurement
2.9. Potential Confounders
2.10. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Lopez-Otin, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [PubMed]
- Sanders, J.L.; Newman, A.B. Telomere length in epidemiology: A biomarker of aging, age-related disease, both, or neither? Epidemiol. Rev. 2013, 35, 112–131. [Google Scholar] [CrossRef] [PubMed]
- De Meyer, T.; Nawrot, T.; Bekaert, S.; De Buyzere, M.L.; Rietzschel, E.R.; Andrés, V. Telomere length as cardiovascular aging biomarker. J. Am. Coll. Cardiol. 2018, 72, 805. [Google Scholar] [CrossRef] [PubMed]
- Starkweather, A.R.; Alhaeeri, A.A.; Montpetit, A.; Brumelle, J.; Filler, K.; Montpetit, M.; Mohanraj, L.; Lyon, D.E.; Jackson-Cook, C.K. An integrative review of factors associated with telomere length and implications for biobehavioral research. Nurs. Res. 2014, 63, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, B.S.; Zunzunegui, M.V.; Quinlan, J.; Fahmi, H.; Tu, M.T.; Guerra, R.O. Systematic review of the association between chronic social stress and telomere length: A life course perspective. Res. Rev. 2016, 26, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Schrock, J.M.; Adler, N.E.; Epel, E.S.; Nuru-Jeter, A.M.; Lin, J.; Blackburn, E.H.; Taylor, R.J.; Chae, D.H. Socioeconomic status, financial strain, and leukocyte telomere length in a sample of african american midlife men. J. Rac. Ethn. Health Dispar. 2018, 5, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Carroll, J.E.; Diez-Roux, A.V.; Adler, N.E.; Seeman, T.E. Socioeconomic factors and leukocyte telomere length in a multi-ethnic sample: Findings from the multi-ethnic study of atherosclerosis (mesa). Brain Behav. Immun. 2013, 28, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, B.S.; Zunzunegui, M.V.; Quinlan, J.; Batistuzzo de Medeiros, S.R.; Thomasini, R.L.; Guerra, R.O. Lifecourse adversity and telomere length in older women from northeast brazil. Rejuvenat. Res. 2018, 21, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Feng, C.; Li, L.; Yang, S.; Chen, Y.; Hui, R.; Zhang, M.; Zhang, W. The association of telomere attrition with first-onset stroke in southern chinese: A case-control study and meta-analysis. Sci. Rep. 2018, 8, 2290. [Google Scholar] [CrossRef] [PubMed]
- Scheller Madrid, A.; Rode, L.; Nordestgaard, B.G.; Bojesen, S.E. Short telomere length and ischemic heart disease: Observational and genetic studies in 290 022 individuals. Clin. Chem. 2016, 62, 1140–1149. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Miao, K.; Wang, H.; Ding, H.; Wang, D.W. Association between telomere length and type 2 diabetes mellitus: A meta-analysis. PLoS ONE 2013, 8, e79993. [Google Scholar] [CrossRef] [PubMed]
- Zgheib, N.K.; Sleiman, F.; Nasreddine, L.; Nasrallah, M.; Nakhoul, N.; Isma’eel, H.; Tamim, H. Short telomere length is associated with aging, central obesity, poor sleep and hypertension in lebanese individuals. Aging Dis. 2018, 9, 77–89. [Google Scholar] [CrossRef] [PubMed]
- D’Mello, M.J.; Ross, S.A.; Briel, M.; Anand, S.S.; Gerstein, H.; Pare, G. Association between shortened leukocyte telomere length and cardiometabolic outcomes: Systematic review and meta-analysis. Circ. Cardiovasc. Genet. 2015, 8, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Alvira, J.M.; Fuster, V.; Dorado, B.; Soberón, N.; Flores, I.; Gallardo, M.; Pocock, S.; Blasco, M.A.; Andrés, V. Short telomere load, telomere length, and subclinical atherosclerosis: The pesa study. J. Am. Coll. Cardiol. 2016, 67, 2467–2476. [Google Scholar] [CrossRef] [PubMed]
- Bekaert, S.; De Meyer, T.; Rietzschel, E.R.; De Buyzere, M.L.; De Bacquer, D.; Langlois, M.; Segers, P.; Cooman, L.; Van Damme, P.; Cassiman, P.; et al. Telomere length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease. Aging Cell 2007, 6, 639–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mundstock, E.; Zatti, H.; Louzada, F.M.; Oliveira, S.G.; Guma, F.T.; Paris, M.M.; Rueda, A.B.; Machado, D.G.; Stein, R.T.; Jones, M.H.; et al. Effects of physical activity in telomere length: Systematic review and meta-analysis. Ageing Res. Rev. 2015, 22, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Weischer, M.; Bojesen, S.E.; Nordestgaard, B.G. Telomere shortening unrelated to smoking, body weight, physical activity, and alcohol intake: 4,576 general population individuals with repeat measurements 10 years apart. PLoS Genet. 2014, 10, e1004191. [Google Scholar] [CrossRef] [PubMed]
- Boonekamp, J.J.; Simons, M.J.; Hemerik, L.; Verhulst, S. Telomere length behaves as biomarker of somatic redundancy rather than biological age. Aging Cell 2013, 12, 330–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin-Ruiz, C.M.; Gussekloo, J.; van Heemst, D.; von Zglinicki, T.; Westendorp, R.G. Telomere length in white blood cells is not associated with morbidity or mortality in the oldest old: A population-based study. Aging Cell 2005, 4, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Arai, Y.; Martin-Ruiz, C.M.; Takayama, M.; Abe, Y.; Takebayashi, T.; Koyasu, S.; Suematsu, M.; Hirose, N.; von Zglinicki, T. Inflammation, but not telomere length, predicts successful ageing at extreme old age: A longitudinal study of semi-supercentenarians. EBioMedicine 2015, 2, 1549–1558. [Google Scholar] [CrossRef] [PubMed]
- Adler, N.; Pantell, M.; O’Donovan, A.; Blackburn, E.; Cawthon, R.; Koster, A.; Opresko, P.; Newman, A.; Harris, T.B.; Epel, E. Educational attainment and late life telomere length in the health, aging and body composition study. Brain Behav. Immun. 2013, 27, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.M.; Peek, M.K.; Mitra, N.; Ravichandran, K.; Branas, C.; Spangler, E.; Zhou, W.; Paskett, E.D.; Gehlert, S.; DeGraffinreid, C.; et al. Race, ethnicity, psychosocial factors, and telomere length in a multicenter setting. PLoS ONE 2016, 11, e0146723. [Google Scholar] [CrossRef] [PubMed]
- Zunzunegui, M.V.; Alvarado, B.E.; Guerra, R.; Gomez, J.F.; Ylli, A.; Guralnik, J.M. The mobility gap between older men and women: The embodiment of gender. Arch. Gerontol. Geriatr. 2015, 61, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Brazilian Institute of Geography and Statistics—IBGE. Available online: http://www.ibge.gov.br/ (accessed on 3 April 2016).
- Bernal, A.; Tusell, L. Telomeres: Implications for cancer development. Int. J. Mol. Sci. 2018, 19, 294. [Google Scholar] [CrossRef] [PubMed]
- Jafri, M.A.; Ansari, S.A.; Alqahtani, M.H.; Shay, J.W. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med. 2016, 8, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huohvanainen, E.; Strandberg, A.Y.; Stenholm, S.; Pitkala, K.H.; Tilvis, R.S.; Strandberg, T.E. Association of self-rated health in midlife with mortality and old age frailty: A 26-year follow-up of initially healthy men. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 923–928. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.; Pelaez, M.; Palloni, A. [self-reported general health in older adults in latin america and the caribbean: Usefulness of the indicator]. Rev. Panam. Salud Publ. 2005, 17, 323–332. [Google Scholar]
- Perez-Zepeda, M.U.; Belanger, E.; Zunzunegui, M.V.; Phillips, S.; Ylli, A.; Guralnik, J. Assessing the validity of self-rated health with the short physical performance battery: A cross-sectional analysis of the international mobility in aging study. PLoS ONE 2016, 11, e0153855. [Google Scholar] [CrossRef] [PubMed]
- Radloff, L.S. The ces-d scale: A self-report depression scale for research in the general population. Appl. Psychol. Meas. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- Batistoni, S.S.; Neri, A.L.; Cupertino, A.P. [validity of the center for epidemiological studies depression scale among brazilian elderly]. Rev. Salud. Publ. 2007, 41, 598–605. [Google Scholar] [CrossRef]
- Marsh, A.P.; Janssen, J.A.; Ip, E.H.; Barnard, R.T.; Ambrosius, W.T.; Brubaker, P.R.; Burdette, J.H.; Sheedy, J.L.; Rejeski, W.J. Assessing walking activity in older adults: Development and validation of a novel computer-animated assessment tool. J. Gerontol. A Biol. Sci. Med. Sci. 2015, 70, 1555–1561. [Google Scholar] [CrossRef] [PubMed]
- Pearson, T.A.; Mensah, G.A.; Alexander, R.W.; Anderson, J.L.; Cannon, R.O., 3rd; Criqui, M.; Fadl, Y.Y.; Fortmann, S.P.; Hong, Y.; Myers, G.L.; et al. Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the centers for disease control and prevention and the american heart association. Circulation 2003, 107, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Cawthon, R.M. Telomere measurement by quantitative pcr. Nucleic Acids Res. 2002, 30, e47. [Google Scholar] [CrossRef] [PubMed]
- Hanssen, L.M.; Schutte, N.S.; Malouff, J.M.; Epel, E.S. The relationship between childhood psychosocial stressor level and telomere length: A meta-analysis. Health Psychol. Res. 2017, 5, 6378. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, B.E.; Zunzunegui, M.V.; Beland, F.; Sicotte, M.; Tellechea, L. Social and gender inequalities in depressive symptoms among urban older adults of latin America and the caribbean. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2007, 62, S226–S236. [Google Scholar] [CrossRef]
- Sousa, A.C.; Guerra, R.O.; Tu, M.T.; Phillips, S.P.; Guralnik, J.M.; Zunzunegui, M.V. Lifecourse adversity and physical performance across countries among men and women aged 65-74. PLoS ONE 2014, 9, e102299. [Google Scholar]
- Sharifpour, M.; Sinclair, H.; Veerasamy, M.; Tee, J.; Neely, D.; Martin-Ruiz, C.; Qiu, W.; Kunadian, V. Telomere length is not associated with known cardiovascular risk factors in older patients (>75 years) with acute coronary syndrome treated by invasive strategy. Circulation 2014, 130, A13114. [Google Scholar]
- Appleby, S.; Pearson, J.F.; Aitchison, A.; Spittlehouse, J.K.; Joyce, P.R.; Kennedy, M.A. Mean telomere length is not associated with current health status in a 50-year-old population sample. Am. J. Hum. Biol. 2017, 29. [Google Scholar] [CrossRef] [PubMed]
- Willson, A.E.; Shuey, K.M.; Elder, G.H., Jr. Cumulative advantage processes as mechanisms of inequality in life course health. Am. J. Sociol. 2007, 112, 1886–1924. [Google Scholar] [CrossRef]
- Markides, K.S.; Machalek, R. Selective survival, aging and society. Arch. Gerontol. Geriatr. 1984, 3, 207–222. [Google Scholar] [CrossRef]
- Ferraro, K.F.; Farmer, M.M. Double jeopardy, aging as leveler, or persistent health inequality? A longitudinal analysis of white and black americans. J. Gerontol. Ser. B 1996, 51, S319–S328. [Google Scholar] [CrossRef]
- Ferrucci, L.; Corsi, A.; Lauretani, F.; Bandinelli, S.; Bartali, B.; Taub, D.D.; Guralnik, J.M.; Longo, D.L. The origins of age-related proinflammatory state. Blood 2005, 105, 2294–2299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reihmane, D.; Dela, F. Interleukin-6: Possible biological roles during exercise. Eur. J. Sport Sci. 2014, 14, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-J.; Zourdos, M.C.; Jo, E.; Ormsbee, M.J. Influence of physical activity and nutrition on obesity-related immune function. Sci. World J. 2013, 2013, 752071. [Google Scholar] [CrossRef] [PubMed]
- Elvsashagen, T.; Vera, E.; Boen, E.; Bratlie, J.; Andreassen, O.A.; Josefsen, D.; Malt, U.F.; Blasco, M.A.; Boye, B. The load of short telomeres is increased and associated with lifetime number of depressive episodes in bipolar ii disorder. J. Affect. Disord. 2011, 135, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Dal Grande, E.; Fullerton, S.; Taylor, A.W. Reliability of self-reported health risk factors and chronic conditions questions collected using the telephone in south australia, australia. BMC Med. Res. Methodol. 2012, 12, 108. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Liu, T.; Wu, L.; Zou, Z.-Y.; Li, C. Validity of self-reported diabetes among middle-aged and older chinese adults: The china health and retirement longitudinal study. BMJ Open 2015, 5, e006633. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.M.; Leff, M.; Calonge, N.; Garrett, C.; Nelson, D.E. Validation of self-reported chronic conditions and health services in a managed care population. Am. J. Prev. Med. 2000, 18, 215–218. [Google Scholar] [CrossRef]
Characteristics | Total Sample, n = 83 | Less Than Secondary Education, n = 42 | Secondary or More Education, n = 41 | p |
---|---|---|---|---|
Age, years, median (min–max) | 69 (65–74) | 69 (66–74) | 67 (65–74) | 0.0001 |
T/S ratio, median (IQR) | 0.86 (0.3) | 1.02 (0.4) | 0.64 (0.6) | 0.0001 |
ln T/S ratio, mean ± SD | 2.4 ± 0.9 | 2.8 ± 0.9 | 2.0 ± 0.9 | 0.0010 |
Adverse childhood experiences | 0.0200 | |||
None, % | 62.7 | 50 | 75.6 | |
1 or more, % | 37.3 | 50 | 24.4 | |
Chronic conditions | ||||
Number of chronic conditions, % | 0.0100 | |||
None or 1 | 24.1 | 14.3 | 34.1 | |
2 | 38.6 | 38.1 | 3.9 | |
3 | 24.1 | 23.8 | 24.4 | |
4 or more | 13.3 | 23.8 | 2.4 | |
Hypertension | 67.5 | 69.0 | 65.9 | 0.7600 |
Diabetes | 36.1 | 45.2 | 26.8 | 0.0800 |
Stroke | 2.4 | 2.4 | 2.4 | 0.9900 |
Cardiovascular disease | 8.4 | 7.1 | 9.8 | 0.6700 |
Chronic lung disease | 10.8 | 16.7 | 4.9 | 0.1600 |
Arthritis, rheumatism or osteoarthritis | 67.5 | 71.4 | 63.4 | 0.4400 |
Osteoporosis | 32.5 | 47.6 | 17.1 | 0.0030 |
Systolic blood pressure, mmHg, mean ± SD | 136.8 ± 17.6 | 141.0 ± 18.3 | 132.4 ± 16.0 | 0.0200 |
Diastolic blood pressure, mmHg, mean ± SD | 75.6 ± 10.3 | 75.8 ± 11.7 | 75.3 ± 8.9 | 0.8300 |
Self-reported health | 0.0010 | |||
Good, % | 37.3 | 11.9 | 88.1 | |
Poor, % | 62.7 | 63.4 | 36.6 | |
Depression (CES-D) | 0.0010 | |||
Score < 16, % | 88 | 76.2 | 100 | |
Score ≥ 16, % | 12 | 23.8 | ||
Blood biomarkers | ||||
Cholesterol total (mg/dL), mean ± SD | 216.2 ± 49.5 | 226.2 ± 52.0 | 206 ± 45.1 | 0.0600 |
HDL cholesterol, mg/dL, mean ± SD (n = 75) | 54.5 ± 12.9 | 53.0 ± 10.1 (n = 36) | 55.9 ± 15.0 (n = 39) | 0.3400 |
LDL cholesterol, mg/dL, mean ± SD (n = 75) | 117.8 ± 37.1 | 114.0 ± 35.5 (n = 36) | 121.3 ± 38.7 (n = 39) | 0.4000 |
Triglycerides, mg/dL, median (min–max) (n = 75) | 121.3 (43.4–369.1) | 125.8 (43.4–252.5) (n = 36) | 118 (51.4–369.1) (n = 39) | 0.5300 |
Glucose, mg/dL, median (min-max) (n = 82) | 99.8 (62–456) | 110 (62–456) (n = 41) | 89.3 (65.4–169) (n = 41) | 0.0020 |
HbA1C, %, median (min–max) | 5.9 (1.0–9.8) | 5.0 (4.9–14.4) | 5.9 (5.2–8.5) | 0.0900 |
hs-CRP, % | 0.2500 | |||
Low (<1 mg/L) | 31.3 | 26.2 | 36.6 | |
Moderate (1–3 mg/L) | 25.3 | 21.4 | 29.3 | |
High (3–10 mg/L) | 32.5 | 35.7 | 29.3 | |
Very high (≥10 mg/L) | 10.8 | 16.7 | 4.9 | |
IL-6 (pg/mL), median (min–max) | 2.0 (1.0–9.8) | 2.2 (2.0–9.8) | 2.0 (1.0–7.3) | 0.1100 |
Anthropometric measures | ||||
Weight, kg, mean ± SD | 67.7 ± 14.2 | 67.1 ± 13.9 | 68.6 ± 14.6 | 0.6400 |
Height, meters, mean ± SD | 152.4 ± 5.8 | 150.8 ± 4.8 | 154.0 ± 6.3 | 0.0100 |
Body mass index, Kg/m2, mean ± SD | 29.2 ± 5.8 | 29.4 ± 5.6 | 28.9 ± 6.0 | 0.6800 |
Waist circumference, cm, mean ± SD | 96.5 ± 13 | 99.9 ± 13.4 | 92.9 ± 11.8 | 0.0100 |
Health behaviors | ||||
Smoking status | 0.5500 | |||
Never smoker | 62.7 | 59.5 | 65.9 | |
Former smoker | 36.1 | 38.1 | 34.1 | |
Current smoker | 1.2 | 2.4 | ||
Never drank alcohol | 55.4 | 71.4 | 39 | 0.0300 |
Minutes of walking per week, median IQR | 50 (120) | 40 (80) | 60 (170) | 0.1800 |
Variables | Unadjusted | Adjusted a | ||
---|---|---|---|---|
Mean (95% CI) | p Value | Mean (95% CI) | p Value | |
Chronic Conditions | ||||
Hypertension | 1.00 | 0.88 | ||
No | 2.42 (2.05–2.79) | 2.45 (2.10–2.79) | ||
Yes | 2.41 (2.16–2.67) | 2.72 (2.18–2.66) | ||
Diabetes | 0.24 | 0.47 | ||
No | 2.32 (2.06–2.58) | 2.37 (2.13–2.62) | ||
Yes | 2.58 (2.23–2.93) | 2.52 (2.19–2.85) | ||
Cardiovascular disease | 0.49 | 0.43 | ||
No | 2.39 (2.17–2.61) | 2.40 (2.19–2.61) | ||
Yes | 2.66 (1.93–3.38) | 2.68 (2.0–3.34) | ||
Chronic lung disease | 0.73 | 0.29 | ||
No | 2.35 (2.17–2.61) | 2.39 (2.18–2.60) | ||
Yes | 2.66 (1.93–3.38) | 2.72 (2.13–3.31) | ||
Arthritis, Rheumatism or Osteoarthritis | 0.75 | 0.94 | ||
No | 2.37 (2.00–2.74) | 2.41 (2.07–2.76) | ||
Yes | 2.44 (2.18–2.70) | 2.43 (2.19–2.67) | ||
Osteoporosis | 0.16 | 0.69 | ||
No | 2.31 (2.06–2.57) | 2.40 (2.16–2.64) | ||
Yes | 2.63 (2.27–3.00) | 2.48 (2.13–2.85) | ||
Self-reported health | 0.06 | 0.91 | ||
Good | 2.16 (1.82–2.49) | 2.44 (2.07–2.82) | ||
Poor | 2.57 (2.31–2.83) | 2.41 (2.16–2.68) | ||
Depression (CES-D) | 0.03 | 0.28 | ||
Score < 16 | 2.33 (2.11–2.55) | 2.38 (2.17–2.60) | ||
Score ≥ 16 | 3.05 (2.46–3.64) | 2.73 (2.14–3.31) | ||
Health behaviors | ||||
Smoking | 0.43 | 0.55 | ||
Never | 2.35 (2.08–2.62) | 2.48 (2.25–2.71) | ||
Current smoker or former smoker | 2.52 (2.18–2.87) | 2.26 (1.83–2.69) | ||
Alcohol | 0.34 | 0.39 | ||
Never | 2.53 (2.26–2.79) | 2.44 (2.19–2.71) | ||
Sometimes | 2.24 (1.90–2.58) | 2.43 (2.06–2.72) | ||
Inflammatory biomarkers | ||||
hs-CRP | 0.13 | 0.44 | ||
Low (<1 mg/L) | 2.21 (1.85–2.58) | 2.34 (1.99–2.70) | ||
Moderate (1–3 mg/L) | 2.39 (1.98–2.80) | 2.46 (2.07–2.84) | ||
High (3–10 mg/L) | 2.40 (2.04–2.76) | 2.34 (2.00–2.68) | ||
Very high (≥10 mg/L) | 3.09 (2.47–3.72) | 2.87 (2.27–3.47) | ||
IL-6 | 0.19 | 0.39 | ||
Lower quartile (<75th) | 2.34 (2.10–2.58) | 2.38 (2.15–2.61) | ||
Higher quartile (75th and over) | 2.66 (2.23–3.09) | 2.56 (2.17–2.95) |
Unadjusted Model | Adjusted Model a | |||
---|---|---|---|---|
B Coefficient ± SE | p Value | B Coefficient ± SE | p Value | |
Weight, Kg | 0.001 ± 0.008 | 0.87 | −0.030 ± 0.007 | 0.67 |
Height, meters | −0.010 ± 0.020 | 0.43 | −0.004 ± 0.020 | 0.81 |
Body mass index, kg/m2 | 0.008 ± 0.020 | 0.66 | −0.007 ± 0.002 | 0.69 |
Waist circumference, cm | 0.010 ± 0.008 | 0.12 | 0.0001 ± 0.008 | 0.96 |
Minutes of walking per week | 0.0001 ± 0.001 | 0.65 | 0.00001 ± 0.001 | 0.99 |
Total cholesterol, mg/dL | 0.001 ± 0.002 | 0.57 | 0.0001 ± 0.002 | 0.82 |
HDL cholesterol, mg/dL | −0.040 ± 0.009 | 0.66 | 0.001 ± 0.008 | 0.90 |
LDL cholesterol, %, mg/dL | 0.002 ± 0.003 | 0.47 | 0.003 ± 0.003 | 0.26 |
Triglycerides, mg/dL | 0.001 ± 0.002 | 0.45 | 0.001 ± 0.002 | 0.67 |
Glucose, mg/dL | 0.001 ± 0.002 | 0.58 | 0.0001 ± 0.002 | 0.83 |
HbA1C, % | 0.180 ± 0.210 | 0.40 | 0.180 ± 0.200 | 0.36 |
hs-CRP, mg/L | 0.030 ± 0.020 | 0.06 | 0.020 ± 0.020 | 0.16 |
IL-6, pg/mL | 0.070 ± 0.070 | 0.32 | 0.020 ± 0.060 | 0.69 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, B.S.; Pirkle, C.M.; Zunzunegui, M.V.; Batistuzzo de Medeiros, S.R.; Thomasini, R.L.; Guerra, R.O. Leukocyte Telomere Length and Chronic Conditions in Older Women of Northeast Brazil: A Cross-Sectional Study. Cells 2018, 7, 193. https://doi.org/10.3390/cells7110193
Oliveira BS, Pirkle CM, Zunzunegui MV, Batistuzzo de Medeiros SR, Thomasini RL, Guerra RO. Leukocyte Telomere Length and Chronic Conditions in Older Women of Northeast Brazil: A Cross-Sectional Study. Cells. 2018; 7(11):193. https://doi.org/10.3390/cells7110193
Chicago/Turabian StyleOliveira, Bruna Silva, Catherine M. Pirkle, Maria Victoria Zunzunegui, Silvia Regina Batistuzzo de Medeiros, Ronaldo Luis Thomasini, and Ricardo Oliveira Guerra. 2018. "Leukocyte Telomere Length and Chronic Conditions in Older Women of Northeast Brazil: A Cross-Sectional Study" Cells 7, no. 11: 193. https://doi.org/10.3390/cells7110193
APA StyleOliveira, B. S., Pirkle, C. M., Zunzunegui, M. V., Batistuzzo de Medeiros, S. R., Thomasini, R. L., & Guerra, R. O. (2018). Leukocyte Telomere Length and Chronic Conditions in Older Women of Northeast Brazil: A Cross-Sectional Study. Cells, 7(11), 193. https://doi.org/10.3390/cells7110193