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Abstract

:

P-glycoprotein (P-gp) is an important determinant of multidrug resistance (MDR) because its overexpression is associated with increased efflux of various established chemotherapy drugs in many clinically resistant and refractory tumors. This leads to insufficient therapeutic targeting of tumor populations, representing a major drawback of cancer chemotherapy. Therefore, P-gp is a target for pharmacological inhibitors to overcome MDR. In the present study, we utilized machine learning strategies to establish a model for P-gp modulators to predict whether a given compound would behave as substrate or inhibitor of P-gp. Random forest feature selection algorithm-based leave-one-out random sampling was used. Testing the model with an external validation set revealed high performance scores. A P-gp modulator list of compounds from the ChEMBL database was used to test the performance, and predictions from both substrate and inhibitor classes were selected for the last step of validation with molecular docking. Predicted substrates revealed similar docking poses than that of doxorubicin, and predicted inhibitors revealed similar docking poses than that of the known P-gp inhibitor elacridar, implying the validity of the predictions. We conclude that the machine-learning approach introduced in this investigation may serve as a tool for the rapid detection of P-gp substrates and inhibitors in large chemical libraries.
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1. Introduction


ATP-binding cassette (ABC) transporters are energy-dependent efflux pumps responsible for the active efflux of drugs, thereby reducing their intracellular concentration. Due to overexpression of ABC transporters in tumor cells, multidrug resistance (MDR) develops, which leads to the failure of chemotherapy with fatal consequences for cancer patients [1]. P-glycoprotein, being a well-known member among the ABC transporter family, is encoded by the ABCB1/MDR1 gene. It is an important determinant of MDR [2,3,4] and upregulated in many clinically resistant and refractory tumors [5,6]. Its overexpression in tumor cells is associated with efficient extrusion of a large number of established anticancer drugs and natural cytotoxic products out of cancer cells, representing a major drawback of cancer chemotherapy [7]. Resistance is either inherently present or will be acquired during chemotherapy [8,9,10]. Hence, P-glycoprotein (P-gp) represents an important target to search for pharmacological inhibitors to overcome MDR [11]. Targeting P-gp to overcome MDR is of importance to achieve higher success rates for chemotherapy. The concept is to combine P-gp inhibitors with established chemotherapy drugs to resensitize tumors [12,13,14,15].



Machine learning and artificial intelligence are recently acquiring increasing interest in the area of drug discovery [16,17,18] because these methods have an enormous potential to speed up the preclinical development processes at minimal costs. For this purpose, we utilized a machine learning strategy in order to establish a prediction platform that allows to predict whether a given compound behaves as a substrate or an inhibitor of P-gp.



Available natural compound databases serve as an invaluable source to identify novel lead compounds that possess activity against certain diseases or disorders by focusing on particular target biomarker proteins. As a majority of established anticancer drugs are of natural origin [19], natural products may serve as lead compounds for derivatization to obtain novel chemical entities with improved pharmacological features. Analyses of the interaction between the compounds and the target protein with molecular docking provide clues about the possible binding mode and binding energy, as we reported before [11,20,21]. Selecting P-gp as target protein, the interaction of test compounds can be compared with that of known P-gp inhibitors, such as verapamil, valspodar, tariquidar, or elacridar, in order to assess their binding properties, docking poses, and binding energies. In those cases, where the test compounds yielded by using the P-gp modulator prediction platform possess similar docking poses and comparable binding energies as known inhibitors, it could be concluded that these compounds may be potential P-gp inhibitors.



In the present study, we used machine learning strategies to establish such a P-gp modulator prediction platform for compounds by using defined chemical descriptors to predict whether a given compound can behave as a substrate or an inhibitor of P-gp. Selected compounds from inhibitor or substrate classes were subjected to molecular docking for further verification and compared with known P-gp inhibitors and substrates.




2. Material and Methods


2.1. Preparation of Compound List and Calculation of Chemical Descriptors


For the P-gp modulator/non-modulator prediction model, a compound list with modulators and non-modulators from Broccatelli et al. [22] was used. Compounds for learning and validation steps were randomly selected. Thirty-two modulator and thirty-two non-modulator compounds were used for the learning step, while 16 modulator and 16 non-modulator substances were used for the validation step (Table 1). For the P-gp inhibitor/substrate prediction model, a list of P-gp substrates and inhibitors was prepared by referring to the literature [23], yielding a total of 60 compounds (34 inhibitors, 26 substrates). Again, compounds for learning and validation steps were randomly selected. Forty compounds (20 inhibitors, 20 substrates) were used for learning and model establishment. The remaining 20 compounds (14 inhibitors, 6 substrates) were used for the external validation step (Table 2).



Data Warrior software is a multipurpose chemistry data visualization and data analysis program that calculates various molecular descriptors and properties for a given set of compounds. It was used to calculate the chemical descriptors as previously reported [24,25]. After calculation of the 32 chemical descriptors, correlation coefficients between descriptors and correlation of the descriptors with the P-gp modulator category (substrate or inhibitor) were determined using SPSS statistics software version 23.0.0.3 (IBM, Armonk, NY: IBM Corp, USA). If the correlation coefficient between the P-gp modulator category (substrate or inhibitor) and a certain descriptor was below 0.1, this descriptor was omitted. Only descriptors correlating with the P-gp modulator (substrate or inhibitor) category above 0.1 were selected for further processing. As a next step, descriptors having a pairwise correlation coefficient to the P-gp modulator category lower than 0.9 were excluded [26]. By this strategy, relevant descriptors without an issue of over-fitting can be selected.




2.2. P-Glycoprotein Modulator Prediction Model Establishment


At first, a model, which can predict whether a given compound is a P-gp modulator, was built by using the compound list from Broccatelli et al. [22] After applying the descriptor selection criteria by considering the relevancy and over-fitting issues, “logP”, “H-donors”, “polar surface area”, “ligand efficiency dependent lipophilicity”, “molecular complexity”, “stereo centers”, “rotatable bonds”, “rings closures”, “aromatic rings”, “sp-3 atoms”, “amides”, “amines”, “alkyl-amines, ”and “basic nitrogens” were considered for the preparation of the P-gp modulator/non-modulator prediction model. Various classification algorithms with the leave-one-out random sampling method were tested, i.e., k-Nearest Neighboring (kNN), Neural Network, Random Forest (RF), and Support Vector Machine (SVM). Receiver operating characteristic (ROC) curves are depicted in Figure 1. The receiver operating characteristic (ROC) curve plotted the true positive rate (= sensitivity) against the false positive rate (= 1-specificity). The RF algorithm performed better than the other classification algorithms both in learning and validation steps. The overall performance for the established model based on RF algorithm is summarized in Table 3. The establishment of the P-gp modulator/non-modulator and P-gp inhibitor/substrate prediction models were performed by using the machine learning software Orange (Ljubljana, Slovenia) [27].



After applying the descriptor selection criteria by considering the relevancy and over-fitting issues, “logP”, “total surface area”, “shape index”, “molecular flexibility”, “rotatable bonds”, “aromatic rings”, “aromatic atoms”, “aromatic nitrogens”, “basic nitrogens”, “symmetric atoms”, and “acidic oxygens” were considered for P-gp inhibitor/substrate prediction model preparation. Various classification algorithms with the leave-one-out random sampling method were tested, i.e., kNN, Neural Network, RF, and SVM. The ROC curves are depicted in Figure 2. The RF algorithm performed better than the other classification algorithms. The overall performance for the established model is summarized in Table 4.



In order to evaluate the model performance further and select potential inhibitors, a P-gp modulator compound list consisting of 643 compounds from ChEMBL was used.




2.3. Molecular Docking


The recently published human P-gp structure was used (nanodisc reconstituted in complex with UIC2 fab and paclitaxel at the drug-binding pocket, PDB ID: 6QEX, in the absence of a lipid bilayer) [28]. The Fab chains were deleted. The bound ligands marked as “HETATM” including taxol were also deleted from the PDB structure file in order to prevent interference with molecular docking. The preparation of the final receptor structure as “.pdbqt” file was performed with Autodock tools 1.5.7. Selected compounds from inhibitor and substrate classes have been subjected to an automated and comprising molecular docking campaign by using the high-performance supercomputer MOGON (Johannes Gutenberg University, Mainz). Compound flexibilities were taken into account and a rigid receptor structure was used. At first, three independent screening of all 643 compounds from ChEMBL with Autodock Vina algorithm was performed by focusing on the drug-binding pocket of P-gp, where the majority of the known inhibitors and substrates bind to. The grid parameters are listed in Table 5.



Afterward, the top 20 compounds in terms of binding energy yielded from both inhibitor and substrate predictions were selected for molecular docking. Each molecular docking was based on three independent dockings each consisting of 2,500,000 calculations. This means that each data point represents the mean value of 7,500,000 individual MOGON-based calculations. The Autodock 4 algorithm was used for defined molecular docking calculations on the drug-binding pocket of P-gp as described before [11], and Visual Molecular Dynamics (VMD) software (Theoretical and Computational Biophysics group at the Beckman Institute, University of Illinois at Urbana-Champaign) was used for the visualization of the docking poses. Estimated inhibition constants were calculated by the Autodock algorithm with the equation:


  K i = exp  (    Δ G   R * T    )   



(1)








	
Ki (M)



	
ΔG (cal/mol) = 1000 * LBE (lowest binding energy, kcal/mol)



	
R (cal/mol-K): gas constant, 1.986 cal/mol-K



	
T (K): room temperature, 298 K









2.4. Boxplot Analysis


The distribution of the values for the descriptors used for the P-gp inhibitor/substrate prediction model and the comparison for the predicted inhibitors and substrates among the ChEMBL P-gp modulator list were subjected to Boxplot analysis using Microsoft Excel 2019 (Microsoft, USA). Statistical significances were evaluated by the t-test (two-tailed, two-sample unequal variance).





3. Results


3.1. P-glycoprotein Modulator Predictions


The P-gp modulator/non-modulator prediction model was evaluated with the validation set as mentioned in the corresponding method part. The RF algorithm reached 0.938 for all parameters. The ChEMBL P-gp modulator list of 643 compounds was tested, and 641 out of 643 substances were correctly predicted as modulators.



The P-gp inhibitor/substrate prediction model with the ChEMBL P-gp modulator list of 643 compounds was evaluated. A total of 493 substances were predicted as inhibitors, and 150 compounds were predicted as substrates. Subjecting all compounds to Autodock Vina screening allowed to rank them according to their binding energies. The top 20 inhibitor predictions with strong interaction to P-gp are shown in Table 6. These inhibitors were selected for subsequent molecular docking. The top 20 substrate predictions with strong interaction to P-gp are shown in Table 7. These substrates were also selected substances for subsequent molecular docking. The complete predictions for all 493 inhibitors together with their binding affinities to P-gp are shown in Supplementary Table S1, while all predictions for the 150 substrates and their affinities to P-gp are listed in Supplementary Table S2. The average lowest binding energy (LBE) was -8.155 for the inhibitors and -9.289 for the substrates.



Among the 493 inhibitor compounds were 117 natural products (= 23.7%), while all other compounds were of synthetic origin (Supplementary Table S1). The proportion of natural products was higher among the predicted P-gp substrates (69/150 = 46%) (Supplementary Table S2). This trend was even more apparent if we focused on the top 20 inhibitor or substrate compounds only (Table 6 and Table 7). Here, 2/20 (= 10%) were predicted inhibitors, but 11/20 (= 55%) were predicted substrates, indicating that P-glycoprotein may expel natural xenobiotics from cells with higher probability.




3.2. Molecular Docking


After running the prediction model on the P-gp modulator list from ChEMBL and the Autodock VINA screening, the top 20 compounds from the inhibitor class and the top 20 compounds from the substrate class were selected for molecular docking analyses on human P-gp. The lowest binding energies (LBE) and predicted inhibition constants are listed in Table 8 for the inhibitors and Table 9 for the substrates.



The negative control compounds (oxprenolol, promazine, riluzole) revealed weaker interaction with P-gp (Table 10) and slightly different docking pose as well (Figure 3).



As can be seen in Figure 4, the predicted inhibitors possessed similar docking poses as elacridar at the drug-binding pocket of P-gp. Similar results were observed for the substrates: The predicted substrates revealed similar docking poses as doxorubicin. Hence, these results validated the precision and reliability of the model.



Predicted inhibitors and substrates interact with P-gp significantly stronger than the negative control compounds. This is clear both from the binding energies and predicted inhibition constants. Binding energies of non-modulators are within −5.380 (piluzole) to −6.933 (promazine) kcal/mol and the predicted inhibition constants are within 8.273–114.080 µM, whereas binding energies for the predicted substrates are within −7.337 (vindoline) to −12.500 (latilagescene G) and for the predicted inhibitors −8.900 (3-methylcholanthrene) to −13.537 (karavoate P). Predicted inhibition constants for the predicted substrates are within 0.001–4.363 and for the predicted inhibitors 0.0002–0.300 µM. Docking pose of the negative control compounds differs from that of inhibitors and substrates. Overall, it can be speculated that the predicted inhibitors interact with P-gp stronger than the predicted substrates and the non-modulators are making weak interactions with P-gp and they bind to a different site.



The distribution of the values for the descriptors used to build the model and the comparison for the predicted inhibitors and substrates in terms of those descriptor values were performed with Boxplot analysis. As can be seen from Figure 5, the inhibitors revealed significantly different values for all descriptors except logP and acidic oxygens. The average values of descriptors for inhibitors and substrates are listed in Table 11.





4. Discussion


In the present study, we utilized machine learning methods based on leave-one-out random sampling in order to develop a P-gp modulator prediction platform by using chemical descriptors. The main focus was to predict whether a given compound can behave as substrate or inhibitor of P-gp. The RF classification algorithm (AUC:0.774) outperformed the other tested algorithms (kNN—0.676, Neural Network—0.745, SVM—0.720). Performance scores for the external validation set were even higher than the learning set with better sensitivity (0.786 vs. 0.750), specificity (0.833 vs. 0.700), overall prediction accuracy (0.800 vs. 0.725), and precision (0.917 vs. 0.714). Further testing with the P-gp modulator list from ChEMBL yielded promising results with accurate predictions. Four compounds from inhibitor and four compounds from substrate prediction list were selected for molecular docking analyses. Validations with molecular docking on a recently released human P-gp structure were performed in terms of binding energy and docking poses by including known inhibitor (elacridar) and substrate (doxorubicin) as controls. Curcumin, miconazole, tacrolimus, and venlafaxine revealed a similar docking pose at the drug-binding pocket of P-gp with comparable binding energies with that of elacridar. MK-3207, rifampin, vindoline, and voacamine revealed similar docking poses and comparable binding energy with those of doxorubicin. Overall, the precision and reliability of the model were further confirmed.



Machine learning and artificial intelligence attracted increasing interest in the drug discovery area [18,29,30], and utilizing these methods possess great potential for drug discovery, as they save time and costs during the preclinical steps. The RF algorithm depends on multiple decision trees that are built based on the training data, and a majority voting scheme is used to make classification or regression predictions [31]. RF application to drug discovery has been recently reported, and it outperformed other algorithms such as SVM and NN in terms of feature selection [32].



There are various studies in the literature that utilized machine-learning strategies focusing on P-gp. One study pointed out a P-gp substrate prediction model based on RF algorithm to estimate transport potential for central nervous system drugs, accuracy lies between 0.713 and 0.846 whereas precision is between 0.633 and 0.777 [33]. Our P-gp modulator prediction model involves an accuracy of 0.953 for the learning set and 0.938 for the validation set, and our P-gp inhibitor prediction model has an accuracy value of 0.725 for the learning set and 0.800 for the validation set. In terms of precision, our models also perform better. Modulator prediction model involves a precision of 0.968 for the learning set and 0.938 for the validation set. Inhibitor prediction model has a 0.714 precision for the learning set and 0.917 for the validation set. Similarly, a P-gp substrate efflux ratio prediction model has been recently reported based on SVM algorithm [34]. The affinities of flavonoids to P-gp have been evaluated with an SVM-based model and a high correlation with the experimental data has been achieved [35]. Another study involving P-gp inhibitor prediction was performed for chalcone derivatives and selected inhibitor candidates were analyzed in terms of their docking pose on a homology model of human P-gp [36]. The prediction of blood–brain barrier permeability mechanism of central nervous system drugs has been utilized with an SVM-based model [37]. Binding pattern prediction based on pharmacophore ensemble/SVM method for potential P-gp inhibitors was also recently reported [38]. Another SVM-based model coupled with molecular docking aimed to predict whether a given compound may act as P-gp substrate, the accuracy lies between 0.750 and 0.800, specificity between 0.750 and 0.810, and sensitivity between 0.740 and 0.790 [39]. Our modulator prediction model outperforms that model in all those parameters. Our inhibitor prediction model outperforms in the validation set. Similarly, in 2004, SVM-based P-gp substrate prediction model was reported; sensitivity was 0.812, specificity was 0.792, and accuracy was 0.794 [40]. Our modulator prediction model outperforms that model in all those parameters. Our inhibitor prediction model outperforms in the validation set for the specificity and accuracy parameters. In general, these previously published studies have certain disadvantages, e.g., low performance scores in terms of prediction, focusing on only P-gp substrate prediction or molecular docking with homology models but not crystal structures. Our model is superior compared to the previously published studies for several reasons. It is based on leave-one-out random sampling RF algorithm, focused on both natural as well as synthetic compounds, has high sensitivity, specificity, predictive accuracy, and precision to predict at first P-gp modulator/non-modulator and as a next step to predict P-gp substrate/inhibitor depending on various chemical descriptors, and it was coupled with molecular docking using the recently released crystal structure of human P-gp. The fact that predictions on the P-gp modulator list of compounds from ChEMBL was validated with accurate molecular docking results was also advantageous for our model. Furthermore, after the initial compound screening, selected inhibitors revealed similar docking poses as elacridar (as positive control for an inhibitor) and selected substrates revealed similar docking poses as doxorubicin (as positive control for a substrate). Non-modulators have significantly weaker interaction with P-gp and they bind to a slightly different position. Overall, those observations provide further clues for the reliability of the prediction model.



Selected inhibitors and substrates after the virtual screening are supported by literature; astemizole [41], cryptotanshinone [42], dihydrocytochalasin B [43], jolkinol B [44], latilagascenes D [45], lonafarnib [46], tariquidar [12], zosuquidar [47], acetyldigitoxin [48], bromocriptine [49], candesartan cilexetil [50], cepharanthin [51], cytochalasin E [52], digitoxin [53], digoxin [54], dihydroergosrictine [55], dofequidar [56], ergocristine [55], irinotecan [57], latilagascenes E [45], MK-3207 [58], paclitaxel [59], vindoline [60].



Many cancer types involve P-gp overexpression, which is associated with increased efflux of established anticancer drugs and natural cytotoxic products out of cancer cells. This phenomenon represents a major drawback of cancer chemotherapy with limitations in killing tumor populations due to MDR [61,62]. P-gp overexpression is indeed one of the main reasons for MDR and thus inadequate chemotherapy success rate. Targeting P-gp is critical to achieve high success rates for chemotherapy, therefore, identification of novel P-gp inhibitors is critical in that regard.



Our prediction platform for P-gp modulators facilitates to predict whether a given compound can behave as a substrate or an inhibitor of P-gp. The selection of potential inhibitors can be further validated by molecular docking and the comparison of the binding energy and docking pose with those of known P-gp inhibitors. As a next step in the future, our model may be helpful to identify potential novel P-gp inhibitors and to develop effective chemotherapy strategies involving combination therapy with targeted chemotherapy drugs and identified P-gp inhibitors.




5. Conclusion


In the present study, we established P-gp modulator/non-modulator and inhibitor/substrate prediction models based on the RF algorithm and leave-one-out random sampling. Validation with molecular docking was performed. The identification of novel P-gp inhibitors is critical to overcome MDR and to achieve better chemotherapy strategies. This model can predict whether a given compound can behave as substrate or inhibitor of P-gp, and will be, thus, helpful to identify potential P-gp inhibitors.
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Figure 1. Receiver operating characteristic (ROC) curves of k Nearest Neighboring (kNN), Neural Network, Random Forest (RF), and Support Vector Machine (SVM) classification algorithms based on random leave-one-out sampling for the P-gp modulator/non-modulator prediction model for the learning step. 
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Figure 2. ROC curves of kNN, Neural Network, RF, and SVM classification algorithms based on random leave-one-out sampling for the P-gp inhibitor/substrate prediction model for the learning step. 
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Figure 3. Molecular docking results for selected non-modulators (pink). 
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Figure 4. Molecular docking results for selected inhibitors (red) and substrates (green) yielded from the P-gp inhibitor/substrate prediction model. Elacridar (blue) and doxorubicin (yellow) were selected as control drugs. 
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Figure 5. Boxplot analysis of the descriptors used for the model and comparison of the predicted inhibitors and substrates. 
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Table 1. Compounds selected for learning and external validation for the P-glycoprotein (P-gp) modulator/non-modulator prediction model.
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Learning Set

	
External Validation Set




	
Compound

	
Category

	
Compound

	
Category

	
Compound

	
Category






	
Escitalopram

	
Modulator

	
Hydroxyzine

	
Non-modulator

	
Terfenadine

	
Modulator




	
Simvastatin acid

	
Modulator

	
Oxybutynin

	
Non-modulator

	
Prazosin

	
Modulator




	
Neostigmine

	
Modulator

	
Ethosuximide

	
Non-modulator

	
Prednisone

	
Modulator




	
Zolmitriptan

	
Modulator

	
Warfarin

	
Non-modulator

	
Chloroquine

	
Modulator




	
Atomoxetine

	
Modulator

	
Mexilitene

	
Non-modulator

	
Lopinavir

	
Modulator




	
Methysergide

	
Modulator

	
Sulpiride

	
Non-modulator

	
Prednisolone

	
Modulator




	
Famciclovir

	
Modulator

	
Thiopental

	
Non-modulator

	
Vincristine

	
Modulator




	
Lovastatin acid

	
Modulator

	
Lamotrigine

	
Non-modulator

	
Sertraline

	
Modulator




	
Darifenacin

	
Modulator

	
Diphenhydramine

	
Non-modulator

	
Loperamide

	
Modulator




	
Paliperidone

	
Modulator

	
Enoxacin

	
Non-modulator

	
Etoposide

	
Modulator




	
Trospium

	
Modulator

	
Methylphenidate

	
Non-modulator

	
Indinavir

	
Modulator




	
Aprepitant

	
Modulator

	
Itraconazole

	
Non-modulator

	
Dipyridamole

	
Modulator




	
Apomorphine

	
Modulator

	
Nortriptyline

	
Non-modulator

	
Mitoxantrone

	
Modulator




	
Cetirizine

	
Modulator

	
Galantamine

	
Non-modulator

	
Cimetidine

	
Modulator




	
Cyclosporin A

	
Modulator

	
Ramelteon

	
Non-modulator

	
Bromocriptine

	
Modulator




	
Labetalol

	
Modulator

	
Rivastigmine

	
Non-modulator

	
Reserpine

	
Modulator




	
Amisulpride

	
Modulator

	
Ropivacaine

	
Non-modulator

	
Oxprenolol

	
Non-modulator




	
5-Hydroxymethyl tolterodine

	
Modulator

	
Zonisamide

	
Non-modulator

	
Alprazolam

	
Non-modulator




	
Cabergoline

	
Modulator

	
Zolpidem

	
Non-modulator

	
Oxcarbazepine

	
Non-modulator




	
Ximelagatran

	
Modulator

	
Sulfasalazine

	
Non-modulator

	
Tolterodine

	
Non-modulator




	
Hoechst 33342

	
Modulator

	
Metoclopramide

	
Non-modulator

	
Zaleplon

	
Non-modulator




	
Rhodamine 123

	
Modulator

	
Nalmefene

	
Non-modulator

	
Cyclobenzaprine

	
Non-modulator




	
Actinomycin D

	
Modulator

	
Oxycodone

	
Non-modulator

	
Nimodipine

	
Non-modulator




	
Olanzapine

	
Modulator

	
Topiramate

	
Non-modulator

	
Riluzole

	
Non-modulator




	
Ranitidine

	
Modulator

	
Hydrocodone

	
Non-modulator

	
Tiagabine

	
Non-modulator




	
Astemizole

	
Modulator

	
Rosuvastatin

	
Non-modulator

	
Nalbuphine

	
Non-modulator




	
Verapamil

	
Modulator

	
Tropisetron

	
Non-modulator

	
Duloxetine

	
Non-modulator




	
Ziprasidone

	
Modulator

	
Varenicline

	
Non-modulator

	
Pravastatin acid

	
Non-modulator




	
Chlorpromazine

	
Modulator

	
Clemastine

	
Non-modulator

	
Promazine

	
Non-modulator




	
Clozapine

	
Modulator

	
Clonazepam

	
Non-modulator

	
Bromazepam

	
Non-modulator




	
Trimethoprim

	
Modulator

	
Ropinirole

	
Non-modulator

	
Lorazepam

	
Non-modulator




	
Paroxetine

	
Modulator

	
Solifenacin

	
Non-modulator

	
Mirtazapine

	
Non-modulator
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Table 2. Compounds selected for learning and external validation for the P-gp inhibitor/substrate prediction model.
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Learning Set

	
External Validation Set




	
Compound

	
Category

	
Compound

	
Category

	
Compound

	
Category

	
Compound

	
Category






	
Ginsenoside

	
Inhibitor

	
Epirubicin

	
Substrate

	
Agosterol

	
Inhibitor

	
Colchicin

	
Substrate




	
Laniquidar

	
Inhibitor

	
Etoposide

	
Substrate

	
Amiodarone

	
Inhibitor

	
Dexamethazone

	
Substrate




	
Loratidine

	
Inhibitor

	
Fexofenadine

	
Substrate

	
Amorinin

	
Inhibitor

	
Digoxin

	
Substrate




	
Mibefradil

	
Inhibitor

	
Hoechst 33342

	
Substrate

	
Apigenin

	
Inhibitor

	
Docetaxel

	
Substrate




	
Naringenin

	
Inhibitor

	
Idarubicin

	
Substrate

	
Atorvastatin

	
Inhibitor

	
Doxorubicin

	
Substrate




	
Pgp-4008

	
Inhibitor

	
Irinotecan

	
Substrate

	
Atovaquone

	
Inhibitor

	
Daunorubicin

	
Substrate




	
Phloretin

	
Inhibitor

	
Kaempferol

	
Substrate

	
Biochanin

	
Inhibitor

	

	




	
Quercetin

	
Inhibitor

	
Loperamide

	
Substrate

	
Biricodar

	
Inhibitor

	

	




	
Quinine

	
Inhibitor

	
Mitomycin

	
Substrate

	
Catechin

	
Inhibitor

	

	




	
Rotenone

	
Inhibitor

	
Mitoxantrone

	
Substrate

	
Cefoperazone

	
Inhibitor

	

	




	
Sakuranetin

	
Inhibitor

	
Ondansetron

	
Substrate

	
Chrysine

	
Inhibitor

	

	




	
Sertraline

	
Inhibitor

	
Paclitaxel

	
Substrate

	
Cyclosporine

	
Inhibitor

	

	




	
Sinensetin

	
Inhibitor

	
Procyanidin B2

	
Substrate

	
Diltiazem

	
Inhibitor

	

	




	
Stigmasterol

	
Inhibitor

	
Rhodamine 123

	
Substrate

	
Elacridar

	
Inhibitor

	

	




	
Syringaresinol

	
Inhibitor

	
Tenoposide

	
Substrate

	

	

	

	




	
Tamoxifen

	
Inhibitor

	
Topotecan

	
Substrate

	

	

	

	




	
Tariquidar

	
Inhibitor

	
Vinblastine

	
Substrate

	

	

	

	




	
Valspodar

	
Inhibitor

	
Vincristine

	
Substrate

	

	

	

	




	
Verapamil

	
Inhibitor

	
Vindesine

	
Substrate

	

	

	

	




	
Zosuquidar

	
Inhibitor

	
Vinorelbine

	
Substrate
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Table 3. Performance of the P-gp modulator/non-modulator prediction model based on the RF classifier algorithm.
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	Steps
	Sensitivity
	Specificity
	Overall Predictive Accuracy
	Precision





	Learning
	0.938
	0.969
	0.953
	0.968



	External Validation
	0.938
	0.938
	0.938
	0.938
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Table 4. Performance of the P-gp inhibitor/substrate prediction model based on the RF classifier algorithm.
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	Steps
	Sensitivity
	Specificity
	Overall Predictive Accuracy
	Precision





	Learning
	0.750
	0.700
	0.725
	0.714



	External Validation
	0.786
	0.833
	0.800
	0.917
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Table 5. Grid parameters for molecular docking analyses on human P-gp.
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	x
	y
	z





	Number of Points
	126
	98
	116



	Grid Center
	168.614
	166.372
	162.000



	Grid Spacing (Å)
	0.375
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Table 6. Prediction of the top 20 P-gp inhibitors identified by the RF classification algorithm using the ChEMBL P-gp modulator list of 493 compounds. The results were validated by determining the binding affinities using Autodock VINA.
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	Name
	ChEMBL ID
	Inhibitor Probability
	Class
	VINA LBE (kcal/mol)





	Karavoate P
	CHEMBL1641677
	0.849
	Synthetic
	−12.200 ± 1.212



	Tribenzoylbalsaminol F
	CHEMBL1928854
	0.549
	Synthetic
	−12.033 ± 0.896



	Zosuquidar
	CHEMBL444172
	0.513
	Synthetic
	−11.967 ± 0.058



	Latilagascenes D
	CHEMBL435917
	0.566
	Synthetic
	−11.700 ± 0.001



	Dihydrocytochalasin B
	CHEMBL2074735
	0.513
	Synthetic
	−11.367 ± 0.231



	Jolkinoate I
	CHEMBL2315618
	0.593
	Synthetic
	−11.300 ± <0.001



	Karavoate K
	CHEMBL1641672
	0.849
	Synthetic
	−11.267 ± 0.493



	Fanchinin
	CHEMBL176045
	0.586
	Synthetic
	−11.233 ± 0.208



	Latilagascene I
	CHEMBL511018
	0.586
	Synthetic
	−11.167 ± 0.058



	Karavoate L
	CHEMBL1641673
	0.766
	Synthetic
	−11.133 ± 0.808



	3-Methylcholanthrene
	CHEMBL40583
	0.788
	Synthetic
	−11.100 ± <0.001



	Lonafarnib
	CHEMBL298734
	0.567
	Synthetic
	−11.000 ± <0.001



	Karavoate N
	CHEMBL1641675
	0.666
	Synthetic
	−10.933 ± 0.058



	Tariquidar
	CHEMBL348475
	0.619
	Synthetic
	−10.933 ± 0.404



	Pimozide
	CHEMBL1423
	0.517
	Synthetic
	−10.900 ± 0.100



	Karavoate I
	CHEMBL1641670
	0.766
	Synthetic
	−10.767 ± 0.058



	Cryptotanshinone
	CHEMBL187460
	0.663
	Natural
	−10.700 ± <0.001



	Jolkinol B
	CHEMBL489265
	0.577
	Synthetic
	−10.700 ± <0.001



	Astemizole
	CHEMBL296419
	0.617
	Synthetic
	−10.667 ± 0.115



	Metergoline
	CHEMBL19215
	0.732
	Natural
	−10.600 ± <0.001
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Table 7. Prediction of P-gp substrates identified by the RF classification algorithm using the ChEMBL P-gp modulator list of 150 compounds. The results were validated by determining the binding affinities using Autodock VINA.
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	Name
	ChEMBL ID
	Substrate probability
	Class
	VINA LBE (kcal/mol)





	Vindoline
	CHEMBL526546
	0.771
	Synthetic
	−15.000 ± <0.001



	Cepharanthin
	CHEMBL2074948
	0.614
	Natural
	−12.600 ± <0.001



	Latilagascene G
	CHEMBL448193
	0.514
	Synthetic
	−12.300 ± <0.001



	Mk3207
	CHEMBL1910936
	0.733
	Synthetic
	−12.167 ± 0.058



	Ergocristine
	CHEMBL446315
	0.767
	Natural
	−12.067 ± 0.058



	Cytochalasin E
	CHEMBL494856
	0.6
	Natural
	−11.800 ± <0.001



	Jolkinoate L
	CHEMBL2315621
	0.567
	Synthetic
	−11.533 ± 0.058



	Irinotecan
	CHEMBL481
	0.967
	Natural
	−11.400 ± 0.819



	Latilagascenes E
	CHEMBL373511
	0.614
	Synthetic
	−11.367 ± 0.116



	Dofequidar
	CHEMBL65067
	0.583
	Synthetic
	−11.300 ± 0.001



	Acetyldigoxin
	CHEMBL2074725
	0.708
	Natural
	−11.233 ± 0.808



	Dihydroergocristine
	CHEMBL601773
	0.767
	Natural
	−11.133 ± 0.666



	Telcagepant
	CHEMBL236593
	0.517
	Synthetic
	−11.067 ± 0.058



	Ergotamine
	CHEMBL442
	0.8
	Natural
	−10.933 ± 0.058



	Candesartan Cilexetil
	CHEMBL1014
	0.567
	Synthetic
	−10.900 ± 0.200



	Digoxin
	CHEMBL1751
	0.708
	Natural
	−10.833 ± 1.097



	Bromocriptine
	CHEMBL493
	0.767
	Natural
	−10.800 ± 0.100



	Itrazole
	CHEMBL64391
	0.564
	Synthetic
	−10.700 ± 0.436



	Digitoxin
	CHEMBL254219
	0.725
	Natural
	−10.667 ± 0.462



	Paclitaxel
	CHEMBL428647
	0.808
	Natural
	−10.633 ± 0.462
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Table 8. Lowest binding energies (LBE) and predicted inhibition constants obtained by molecular docking of the top 20 P-gp inhibitors.
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	P-gp Inhibitor
	AutoDock LBE (kcal/mol)
	Predicted Inhibition Constant (µM)





	3-Methylcholanthrene
	−8.900 ± 0.001
	0.300 ± <0.001



	Astemizole
	−9.693 ± 0.047
	0.079 ± 0.007



	Cryptotanshinone
	−9.010 ± 0.001
	0.251 ± <0.001



	Dihydrocytochalasin B
	−10.460 ± 0.020
	0.0212 ± 0.001



	Fanchinin
	−9.937 ± 0.067
	0.0522 ± 0.006



	Jolkinoate I
	−10.440 ± 0.200
	0.0232 ± 0.008



	Jolkinol B
	−10.250 ± 0.044
	0.0307 ± 0.002



	Karavoate I
	−12.310 ± 0.235
	0.001 ± <0.001



	Karavoate K
	−12.330 ± 0.213
	0.001 ± <0.001



	Karavoate L
	−12.807 ± 0.200
	0.0004 ± <0.001



	Karavoate N
	−12.160 ± 0.560
	0.002 ± 0.001



	Karavoate P
	−13.537 ± 0.605
	0.0002 ± <0.001



	Latilagascene I
	−11.147 ± 0.561
	0.009 ± 0.009



	Latilagascenes D
	−12.220 ± 0.370
	0.001 ± 0.001



	Lonafarnib
	−11.433 ± 0.087
	0.004 ± 0.001



	Metergoline
	−9.737 ± 0.029
	0.073 ± 0.004



	Pimozide
	−10.220 ± 0.324
	0.031 ± 0.025



	Tariquidar
	−11.273 ± 0.274
	0.006 ± 0.002



	Tribenzoylbalsaminol F
	−12.403 ± 0.118
	0.001 ± <0.001



	Zosuquidar
	−11.257 ± 0.361
	0.006 ± 0.004



	Elacridar (positive control)
	−11.093 ± 0.361
	0.008 ± 0.004
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Table 9. Lowest binding energies (LBE) and predicted inhibition constants obtained by molecular docking of the top 20 P-gp substrates.






Table 9. Lowest binding energies (LBE) and predicted inhibition constants obtained by molecular docking of the top 20 P-gp substrates.





	P-gp substrate
	AutoDock LBE (kcal/mol)
	Predicted Inhibition Constant (µM)





	Acetyldigoxin
	−11.767 ± 0.480
	0.003 ± 0.002



	Bromocriptine
	−12.360 ± 1.02
	0.002 ± 0.001



	Candesartan Cilexetil
	−11.153 ± 0.370
	0.007 ± 0.004



	Cepharanthin
	−10.753 ± 0.006
	0.013 ± <0.001



	Cytochalasin E
	−10.957 ± 0.006
	0.093 ± 0.001



	Digitoxin
	−11.390 ± 0.517
	0.006 ± 0.004



	Digoxin
	−11.500 ± 0.151
	0.004 ± 0.001



	Dihydroergocristine
	−11.670 ± 0.056
	0.003 ± <0.001



	Dofequidar
	−10.970 ± 0.351
	0.010 ± 0.006



	Ergocristine
	−12.407 ± 0.012
	0.001 ± <0.001



	Ergotamine
	−11.227 ± 0.150
	0.006 ± 0.001



	Irinotecan
	−11.380 ± 0.020
	0.005 ± <0.001



	Itrazole
	−10.843 ± 0.186
	0.012 ± 0.003



	Jolkinoate L
	−10.643 ± 0.681
	0.022 ± 0.016



	Latilagascenes E
	−11.770 ± 0.185
	0.002 ± 0.001



	Latilagescene G
	−12.500 ± 0.316
	0.001 ± <0.001



	Mk-3207
	−11.650 ± 0.020
	0.003 ± <0.001



	Paclitaxel
	−9.607 ± 0.359
	0.103 ± 0.065



	Telcagepant
	−9.333 ± 0.021
	0.144 ± 0.005



	Vindoline
	−7.337 ± 0.211
	4.363 ± 1.389



	Doxorubicin (positive control)
	−11.070 ± 0.135
	0.008 ± 0.002
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Table 10. Lowest binding energies (LBE) and predicted inhibition constants obtained by molecular docking of the non-modulators.






Table 10. Lowest binding energies (LBE) and predicted inhibition constants obtained by molecular docking of the non-modulators.





	P-gp Inhibitor
	AutoDock LBE (kcal/mol)
	Predicted Inhibition Constant (µM)





	Oxprenolol
	−5.743 ± 0.398
	70.273 ± 40.057



	Promazine
	−6.933 ± 0.021
	8.273 ± 0.262



	Riluzole
	−5.380 ± 0.010
	114.080 ± 2.326
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Table 11. Average values of descriptors for inhibitors and substrates.






Table 11. Average values of descriptors for inhibitors and substrates.





	Descriptor
	Inhibitor
	Substrate





	cLogP
	3.498 ± 2.464
	3.134 ± 2.962



	Total surface area
	311.199 ± 188.142
	461.870 ± 286.187



	Shape index
	0.529 ± 0.125
	0.429 ± 0.081



	Molecular flexibility
	0.395 ± 0.141
	0.332 ± 0.114



	Rotatable bonds
	6.799 ± 12.158
	9.818 ± 11.778



	Aromatic rings
	1.450 ± 1.168
	1.918 ± 1.330



	Aromatic atoms
	8.237 ± 6.470
	10.759 ± 7.098



	Symmetric atoms
	2.649 ± 3.637
	3.582 ± 4.477



	Aromatic nitrogens
	0.301 ± 0.772
	0.559 ± 1.141



	Basic nitrogens
	0.441 ± 0.625
	0.659 ± 0.762



	Acidic oxygens
	0.117 ± 0.361
	0.171 ± 0.462











© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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