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Abstract: Inside the female genital tract, mammalian sperm undergo a maturation process called
capacitation, which primes the sperm to navigate across the oviduct and fertilize the egg. Sperm
capacitation and motility are controlled by 3’,5’-cyclic adenosine monophosphate (cAMP). Here,
we show that optogenetics, the control of cellular signaling by genetically encoded light-activated
proteins, allows to manipulate cAMP dynamics in sperm flagella and, thereby, sperm capacitation
and motility by light. To this end, we used sperm that express the light-activated phosphodiesterase
LAPD or the photo-activated adenylate cyclase bPAC. The control of cAMP by LAPD or bPAC
combined with pharmacological interventions provides spatiotemporal precision and allows to probe
the physiological function of cAMP compartmentalization in mammalian sperm.
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1. Introduction

The sperm flagellum functions as both sensor and propeller, allowing sperm to steer along
physical and chemical cues provided by the female genital tract towards the site of fertilization [1].
To this end, sensory signaling pathways in the flagellum translate the complex physico-chemical
code of the oviductal microenvironment into motor responses [2]. The second messenger cyclic AMP
(cAMP) plays a key role for sperm motility [3]: Genetic ablation of the predominant source of cAMP
in mammalian sperm, the bicarbonate-dependent, soluble adenylate cyclase Adcy10, renders sperm
immotile [4-6]. Bicarbonate-induced cAMP synthesis by Adcyl0 triggers the phosphorylation of
flagellar motor proteins by protein kinase A (PKA), increasing the flagellar beat frequency [7-10].
PKA-dependent protein phosphorylation also stimulates the activity of the tyrosine kinase FER [11].
FER-mediated protein tyrosine phosphorylation is a hallmark of sperm capacitation, a maturation
process inside the female genital tract. In vitro, capacitation can be induced by incubation of sperm
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in medium containing Ca?", bicarbonate, an energy source (e.g., lactate, glucose), and a cholesterol
acceptor (e.g., serum albumin) [12].

In the last few years, the picture emerged that cAMP signaling in sperm is compartmentalized,
i.e., in head versus flagellum, with the latter being further separated into the midpiece, principal
piece, and endpiece [3,13-15]. To decipher the underlying molecular principles, cAMP signaling
needs to be dissected with spatiotemporal precision. Optogenetics and genetically-encoded biosensors
have already been proven as powerful tools to manipulate and analyze cAMP signaling in mouse
sperm [13,15]. The photo-activated adenylate cyclase bPAC from Beggiatoa sp. [16] makes it possible to
control cAMP dynamics and sperm motility by light [13], and cAMP dynamics along the flagellum can
be monitored with a FRET-based cAMP biosensor [15]. Here, to complement the tool set, we expressed
the light-activated phosphodiesterase LAPD [17] in mouse sperm to manipulate cAMP signaling in
the flagellum. We demonstrate that the control of cAMP levels by LAPD can be used to study the
role of cAMP for sperm capacitation and that the combination of optogenetics and pharmacology is
well-suited to study the cAMP-dependent control of sperm motility.

2. Material and Methods

2.1. Mouse Sperm

Animal care and experiments were approved by the local authorities (Landesamt fiir Natur,
Umwelt und Verbraucherschutz, North Rhine-Westphalia, LANUV). Mice were killed by cervical
dislocation after isoflurane (Curamed Pharma, Karlsruhe-Durlach, Germany) inhalation under normal
room light for protein-phosphorylation analysis and under dim green light for sperm imaging. Sperm
were isolated by incision of the cauda epididymis followed by a swim-out in modified TYH medium
(in mM: 135 NaCl, 4.8 KC, 2 CaCly, 1.2 KH,PO4, 1 MgSQy, 5.6 glucose, 0.5 sodium pyruvate, 10 lactic
acid, 10 HEPES, pH 7.4 adjusted at 37 °C with NaOH). After 15-30 min swim-out at 37 °C, sperm were
collected and counted.

2.2. Generation of Transgenic Mice

The LAPD cDNA sequence [17] was amplified via PCR. A hemagglutinin (HA) tag was fused to
the C terminus, an EcoRI restriction site was added to the 5" end, and a BamHI and Xhol restriction
site to the 3’ end by nested PCR. The PCR product was cloned into a pBluescript SK™ vector (Agilent
Technologies, Santa Clara, CA, USA) using EcoRI and Xhol (pB-LAPD). After sequencing, the LAPD-HA
insert was excised and cloned into pPrCExV (kind gift from Bob Brown, Jackson Laboratory) using
EcoRI/BamHI to express LAPD under the control of the protamine-1 promotor that is exclusively active
in post-meiotic spermatids. Transgenic mice were generated via pronuclear injection at the transgenic
facility of the LIMES (University of Bonn, Germany; license number: 84-02.04.2012.A192). Mice
were genotyped by PCR using LAPD-specific primers (#1: GGACTGATCCTGAGATTTGAGGGC, #2:
CAGCCACAGGCTGTATCCCATCATG,; see also Figure 1A). Mice used in this study were 2-5 months
of age.

2.3. LAPD Activity Assay

For PDE activity assays in eukaryotic cells, cells were seeded on a PLL-coated 96-well plate at
3 x 10* cells per well and incubated over night at 37 °C and 5% (v/v) CO, in darkness. All following
steps were conducted under dim green light. Medium was removed, and cells were washed with 50 uL
ES buffer (120 mM NaCl, 5 mM KCl, 2 mM CaCl,, 2 mM MgCl,, 10 mM glucose, 10 mM HEPES pH 7.4).
Cells were loaded with 2 uM Fluo4-AM (stock in DMSO/pluronic) and 3 mM probenecid in 50 pL. ES
for 30 min at 37 °C. Afterwards, the buffer was replaced with 90 uL ES containing 3 mM probenecid,
and cells were incubated for 30 min at 29 °C inside the fluorescence plate-reader (FLUOstar omega,
BMG Labtech). Fluorescence was measured at 29 °C with the 485 + 6 excitation and 530 + 15 nm
emission wavelengths. After 2 min, NKH477 (Sigma-Aldrich, MI, USA) in ES buffer was added (final
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concentration: 100 uM), and measurements continued for 15 min. In the controls, only ES buffer
was added. During the measurement, the plate was illuminated with an 850-nm LED (0.5 pW/cm?)
mounted inside the reader until the illumination was switched to a 690-nm LED (0.5 uW/cm?) to
activate LAPD. After another 6 min, ionomycin was added (final concentration: 2 uM), and fluorescence
was recorded until saturation of the signal amplitude.

2.4. Western Blot Analysis

Protein lysates were obtained by homogenizing cells or tissue in lysis buffer (10 mM Tris/HCI,
pH 7.6, 140 mM NaCl, 1 mM EDTA, 1% Triton X-100, mPIC protease inhibitor cocktail 1:500,
Sigma-Aldrich, MI, USA). Samples were incubated for 30 min on ice and centrifuged at 10,000x g for
5 min at 4 °C. Prior to separation by SDS-PAGE, samples were mixed with 4 x SDS loading-buffer
(200 mM Tris/HCI, pH 6.8, 8% SDS (w/v), 4% B-mercaptoethanol (v/v), 50% glycerol, 0.04% bromophenol
blue) and heated for 5 min at 95 °C. Sperm samples used for SDS-PAGE were washed with 1 mL PBS
and sedimented by centrifugation at 5000x g for 5 min. 1-2 x 10° cells were resuspended in 2 x SDS
loading buffer and heated for 5 min at 95 °C. For Western blot analysis, proteins were transferred
onto PVDF membranes (Merck Millipore, Billerica, USA), probed with antibodies, and analyzed using
the Odyssey Imaging System (LI-COR Biosciences, Bad Homburg, Germany). To analyze protein
tyrosine phosphorylation, 1.5-3 x 10° sperm were incubated in 1.5 mL of capacitation buffer containing
TYH buffer plus 25 mM NaHCOj3; and 3 mg/mL BSA for 0, 60, or 90 min at 37 °C under white light.
Sperm were centrifuged at 10,000x g for 1 min and frozen in liquid nitrogen. Prior to SDS-PAGE and
Western blot analysis, samples were washed in 1 mL PBS, resuspended in 2x SDS loading buffer, and
heated for 5 min at 95 °C. The pY and alpha-tubulin band intensities of WT and LAPD samples after
60 min capacitation were quantified using Image]J (1.52i, U.S. National Institutes of Health, Bethesda,
MD, USA). The pY band intensities of WT and LAPD sperm were normalized to the intensity of the
alpha-tubulin loading control and plotted as a ratio of LAPD/WT.

The following antibodies were used for Western blot analysis: (a) primary antibodies: HA 3F10
antibody (1:5000, rat monoclonal; Roche, Basel, Switzerland), alpha-tubulin antibody (1:5000, mouse
monoclonal, clone B-5-1-2, T5168; Sigma-Aldrich, MI, USA), phospho-tyrosine 4G10 antibody (1:1000,
mouse monoclonal, 05-321; Merck, NJ, USA); (b) secondary antibodies: IRDye680 and IRDye800
antibodies (LI-COR, 1:20,000).

2.5. Immunohistochemistry and Immunocytochemistry

Testes were fixed in 4% paraformaldehyde/PBS overnight, cryo-protected first in 10% and
then in 30% sucrose, and embedded in Tissue Tek (Sakura Finetek). To block unspecific binding
sites, cryosections (16 um) were incubated for 1 h with blocking buffer (0.5% Triton X-100 and 5%
ChemiBLOCKER (Merck Millipore, Billerica, MA, USA) in PBS, pH 7.4). Primary antibodies were
diluted in blocking buffer and incubated for 2 h. Fluorescent secondary antibodies were diluted in
blocking buffer containing 0.5 mg/mL DAPI (Life Technologies) and pictures were taken on a confocal
microscope (FV1000; Olympus). For analyzing protein tyrosine phosphorylation, band intensities
of the whole lane were determined with Image] (1.52i, U.S. National Institutes of Health, Bethesda,
MD, USA).

2 x 10° sperm were plated and allowed to dry on glass slides. Dried sperm were rinsed twice
with PBS for 15 min and heated for 20 min at 99 °C in 10 mM sodium citrate solution (pH 6, with
0.05% Tween-20) to retrieve the antigen. After cooling the slides in PBS, sperm were fixed in 4%
paraformaldehyde for 15 min and washed thrice in PBS containing 0.1% Triton X-100 (washing
solution). Unspecific binding sites were blocked by incubating slides for 1 h in blocking solution
(PBS containing 1% BSA and 0.1% Triton X-100). Primary antibodies diluted in blocking solution
were incubated overnight. Afterwards, sperm were washed thrice in washing solution and incubated
overnight, with fluorescently labelled secondary antibodies diluted in blocking solution. After
washing, sperm were incubated for 45 min with 0.5 mg/mL DAPI diluted in PBS and mounted (Aqua
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Poly/Mount, Polysciences, Hirschberg an der Bergstrasse, Germany). Image recording was performed
as mentioned above.

The following antibodies were used: (a) primary antibodies: HA 3F10 antibody (1:1000,
rat monoclonal; Roche, Basel, Switzerland), tubulin, PDE2A antibody (1:250, rabbit polyclonal,
PD2A-101AP; Fabgennix, Texas, USA); beta-tubulin-cy3 antibody (1:500, mouse monoclonal, clone
TUB 2.1, C4585; Sigma-Aldrich, Missouri, USA); (b) secondary antibodies: donkey anti-rat CY3 (1:500,
Dianova, Hamburg, Germany), anti-rabbit 488 (1:500, Dianova, Hamburg, Germany).

2.6. Determination of Total cAMP Content

Prm1-LAPD (1 x 10°) sperm were illuminated with 690 nm light for 5 min. Afterwards, sperm
were quenched with 0.5 M HCIOy, vortexed, frozen in liquid Nj, thawed, and neutralized by addition
of K3POy (0.24 M final concentration). The salt precipitate and cell debris were sedimented by
centrifugation (15 min, 20,000 g, 4 °C). The cAMP content in the supernatant was determined by
a competitive immunoassay (CatchPoint cAMP Fluorescent Assay Kit, Molecular Devices, San Jose,
USA) including an acetylation step for higher sensitivity. Calibration curves were obtained by serial
dilutions of cAMP standards. 96-well plates were analyzed by using a microplate reader (FLUOstar
Omega; BMGLabtech, Ortenberg, Germany).

2.7. Imaging

Dark-field microscopy was performed using an inverted microscope (IX71; Olympus, Hamburg,
Germany) equipped with a dark-field condenser and a high-speed camera (ORCA-Flash4.0 V3,
(C13220-20 CU, Hamamatsu, Hamamatsu City, Japan). Imaging of Prm1-bPAC sperm was performed
as described previously [13]. Image sequences of wild-type and Prm1-LAPD sperm were recorded with
200 frames per second (fps) using a 10x objective (NA 0.4, UPlanFL; Olympus, Hamburg, Germany)
with an additional 1.6x magnifying lens (Olympus, Hamburg, Germany) that was inserted into the
light path (final magnification: 16x). For imaging, sperm purified by swim-up were added to an ibidi
chamber with a depth of about 400 um (M-SLIDE VI, Elvesys, Paris, France). The temperature of the
microscope incubator (Life Imaging Services, Basel, Switzerland) was adjusted to 37 °C for imaging.
To image tethered sperm, cells were perfused into the chamber using a syringe pump and the flagellar
beat was recorded under illumination at 850 nm. TYH buffer containing 25 mM NaHCO; was perfused
into the chamber and after 30 s, the flagellar beat of the sperm in buffer with high bicarbonate was
recorded under 850 nm illumination. Sperm were then illuminated with 660 nm light and the beat
frequency was recorded after 1 min of illumination. Imaging was performed under green room light.
Imaging of Prm1-bPAC sperm has been described before [13]. The beat frequency was determined using
SpermQ [18]; the details are as follows. At each flagellar position, the time-course of the parameter
curvature angle was converted into a frequency spectrum by Fast-Fourier-Transformation (integrated
in SpermQ). The frequency of the highest (f1) and second highest (f2) peak in the power spectrum was
reported [18] and merged into a local beat frequency value as (f1 + £2)/2. The flagellar beat frequency
of each sperm was determined as the average local beat frequency of all flagellar positions between 15
and 60 pm. For data presented in Figure 4D-F, every frame represents one beat cycle and all images
were recorded at 200 Hz. Because the beat frequency was different under different conditions, different
numbers of frames were used to create a one-beat-cycle overlay. The number of frames was adjusted to
the number of frames corresponding to one beat cycle (= recording frequency/beat frequency).

2.8. Image Analysis

All image processing and analysis was performed in Image] (1.52i, U.S. National Institutes
of Health, Bethesda, MD, USA). Image Sequences of sperm were cropped to single-sperm images,
which were further processed by a Gaussian Blur (sigma: 0.5) and background-removed using the
Image] function Subtract Background (radius: 5 px, corresponding to 3.25 um). After background
correction, image sequences were subjected to Sperm(Q) analysis (settings: Table 1) [18]. The local beat
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asymmetry was determined using SpermQ_Evaluator; the local beat asymmetry at a given point of the
sperm flagellum represents the absolute of the average of all curvature angle values over time at the
given point.

Table 1. SpermQ settings.

Parameter Setting
Thresholding Method Triangle
Gauss Sigma 1.0
Repeat gauss fit after binarization false
Blur only inside ROI selection false
Upscaling of point list (fold) 3
Add head center-of-mass as first point false
Unify start points false
Filter points by gauss fits false
Maximum vector length (points) 14
Normal radius for gauss fit (um) 5.0
Exclude head from correction or deletion true
Smooth normal for XY gauss fit true
Accepted xy distance of points for fit-width-smoothing (um) 9.6
# (+/—)-consecutive points for xy- and fit-width-smoothing 15
Distance of point to first point to form the reference vector (um) 10.0
Curvature: reference point distance 10.0
FFT: Grouped consecutive time-steps 400
FFT: Do not analyze (frequency results of flagellar parameters for the) initial ... pm from head 0.0
Head rotation matrix radius 10

2.9. Software Availability

SpermQ is accessible upon request [18]. SpermQ Evaluator is publicly available at https:
//github.com/IllImaging/SpermQ_Evaluator.

3. Results

3.1. Characterization of Heterologously Expressed LAPD

First, we scrutinized whether LAPD can be functionally expressed in a mammalian system using
HEK-293 cells. To this end, we stably co-expressed a LAPD-mCherry fusion protein with a cyclic
nucleotide-gated (CNGA2-TM) ion channel (HEK-TM). The Ca®*-permeable CNG channel is gated
by cAMP and, thereby, translates changes of the intracellular cAMP concentration into changes of
the intracellular Ca?* concentration, which can be monitored with a fluorescent Ca%* indicator [19].
In HEK-TM cells, both in the absence (control) and presence of LAPD, activation of transmembrane
adenylate cyclases by the water-soluble forskolin analog NKH477 evoked a sustained Ca?* increase,
whose amplitude rose in a dose-dependent fashion (Figure 1D,E). The cells were continuously
illuminated with 850 nm light to keep LAPD in a low-activity state [17]. Yet, the expression of LAPD
attenuated the amplitude of the NKH477 response, indicating that a basal “dark” activity of LAPD
counteracted cAMP synthesis evoked by NKH477 (Figure 1E). When the NKH477 response reached a
steady-state, LAPD was activated by 680 nm light. In turn, in LAPD-expressing, but not in control
cells, Ca?* levels decreased due to light-induced cAMP hydrolysis (Figure 1D,E). After light-induced
activation of LAPD, the Ca?* and, thus, cAMP concentration resumed to levels prevailing before
NKH477 stimulation. The slope of the Ca?* decrease was correlated with the NKH477 concentration,
i.e., with increasing “resting” cAMP levels, the LAPD-mediated cAMP decrease was faster (Figure 1E).
In summary, our results demonstrate that LAPD is functional in mammalian cells, which allowed us to
design similar experiments in mouse sperm.
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Figure 1. Characterization of LAPD in HEK-TM cells. (A) Scheme illustrating the principle of the
assay used to measure LAPD activity in HEK cells via cAMP-gating of a Ca®*-permeable cyclic
nucleotide-gated ion channel (CNGA2-TM) [19]. HEK-TM cells were first stimulated with 100 uM
NKH477 to activates transmembrane adenylate cyclases (AC). The ensuing increase in cAMP evokes
a Ca%* influx that is detected by a fluorescent Ca?* indicator (Fluo4-AM). Subsequently, cells were
illuminated to stimulate LAPD activity. (B) Western blot analysis of LAPD-mCherry expression
in HEK-TM cells (LAPD). Non-transfected cells (HEK-TM) were used as a control. Immunoblots
were stained with RFP, CNGA2, and alpha-tubulin antibodies. (C) Immunocytochemical analysis of
LAPD-mCherry expression in HEK-TM cells. Non-transfected cells (NT) were used as a control. Cells
were stained with DAPI (blue) to label the DNA; scale bar: 10 um. (D,E) Measuring LAPD activity.
Fluo4-AM-loaded HEK-TM cells were incubated with increasing concentrations of NKH477 (see legend
in E) during continuous 850 nm light illumination (grey, 0.5 uW/cm?). When reaching a steady-state,
light was switched to 690 nm (red, 0.5 uW/cm?) to stimulate LAPD activity. To evoke a maximal CaZ*
response, cells were stimulated at the end of the experiment with 2 pM ionomycin for normalization
(data not shown). Data are shown as mean + S.D. Panels (D) and (E) show data for non-transfected
HEK-TM cells and stable LAPD-mCherry lines, respectively.

3.2. Generation of Transgenic Mice

To manipulate cAMP levels in vivo in mammalian sperm, we generated transgenic mice expressing
LAPD under the control of the protamine 1 promoter (Prm1, Figure 2A). Genomic insertion of the
transgene was confirmed by PCR (Figure 2B). We analyzed two founders (9828 and 9834), none of
which showed any gross phenotype. Moreover, the fecundity of transgenic males was similar to that of
wild-type males. In Prm1-LAPD mice, LAPD was exclusively expressed in sperm, predominantly in
the midpiece of the flagellum (Figure 2C-F).
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Figure 2. Design and characterization of Prm1-LAPD mice. (A) Scheme of the Prm1-LAPD targeting
vector. Expression of hemagglutinin (HA)-tagged LAPD is driven by the Protamine 1 promoter
(Prm1); arrows indicate the position of genotyping primers. (B) Genotyping by PCR. In Prm1-LAPD
mice, a 514 bp fragment is amplified. (1) Wild-type mouse, (2) Prm1-LAPD mouse; the targeting
vector served as a positive control (+) and H,O as negative control (—). (C) Western blot analysis of
LAPD-HA expression in testis and sperm of wild-type (WT) and Prm1-LAPD mice (LAPD) from two
different founder lines. Immunoblots were stained with HA and alpha-tubulin antibodies. (D) Western
blot analysis of LAPD-HA expression in various tissues from male and female Prm1-LAPD mice.
Immunoblots were stained with HA and alpha-tubulin antibodies. (E) Cryo-sections from wild-type
(WT) and Prm1-LAPD (LAPD) testes labeled with a HA antibody (red) and DAPI (blue). (F) Wild-type
(WT) and Prm1-LAPD (LAPD) sperm labeled with PDE2A (green) and alpha-tubulin antibodies (red),
and DAPI (blue). Scale bars are indicated.

3.3. Characterization of LAPD Function in Mouse Sperm

We investigated whether light-dependent activation of LAPD affects cAMP levels in sperm. To this
end, we first determined via ELISA the total CAMP content in wild-type and Prm1-LAPD sperm after
illumination at 690 nm to activate LAPD. In Prm1-LAPD sperm, the total cCAMP content was seemingly,
but not statistically significantly, reduced (p = 0.5, Figure 3A). However, the basal concentration of
cAMP in mouse sperm is low [15], which might hamper the detection of a LAPD-mediated decrease
of total cAMP content. Thus, we tested whether light-activation of LAPD is able to counteract
the bicarbonate-induced increase in cAMP. To this end, we analyzed the FER-mediated increase in
protein tyrosine phosphorylation, which is triggered by PKA and a hallmark of capacitation [20].
We investigated the time course of bicarbonate-induced tyrosine phosphorylation in wild-type and
Prm1-LAPD sperm in the dark and after light stimulation. In the dark, tyrosine phosphorylation
increased in both, wild-type and Prm1-LAPD sperm. The intensity of the band pattern was slightly
more enhanced in Prm1-LAPD sperm compared to wild-type sperm, which could be attributed to a
compensatory response due to dark activity of LAPD (Figure 3B). After light stimulation, tyrosine
phosphorylation was, however, strongly attenuated in Prm1-LAPD sperm (Figure 3C-D), indicating
that light-dependent activation of LAPD can counteract bicarbonate-induced cAMP synthesis.
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Figure 3. Analysis of LAPD function in mouse sperm. (A) Total cAMP content in wild-type (WT)
and Prm1-LAPD sperm after stimulation with 690 nm light for 5 min. Data are shown as box plots,
containing individual data points and mean + SD (Per 25/75). (B) Western blot analysis of protein
tyrosine phosphorylation. Tyrosine phosphorylation after stimulation with 25 mM NaHCO; for
0 and 90 min in the dark in wild-type (WT) and Prm1-LAPD (LAPD) sperm was detected with a
phospho-tyrosine antibody (pY). Alpha-tubulin was used as loading control. (C) See (B) after continuous
white light stimulation for 0, 60, and 90 min. (D) Quantification of protein tyrosine phosphorylation in
Prm1-LAPD sperm, relative to wild-type sperm (set to 1), after 90 min bicarbonate incubation under
660 nm illumination. Data were normalized to the WT. Data are shown as mean + SD, n number
is indicated.

3.4. Controlling Sperm Motility by Optogenetics

In addition to protein tyrosine phosphorylation, the flagellar beat frequency is also controlled
by cAMP [7,8,13]: in wild-type sperm, bicarbonate-induced cAMP synthesis increased the flagellar
beat frequency from 11 + 4 Hz to 22 + 6 Hz (Supplementary Movie 1, n = 22). Of note, inhibition of
cAMP hydrolysis by PDEs using IBMX did not significantly change the beat frequency of wild-type
sperm (control: 10 + 4 Hz vs. IBMX: 10 + 3 Hz, n = 12), indicating that the basal cAMP-synthesis rate
is rather low in mouse sperm. The beat frequency of Prm1-LAPD sperm was similar to wild-type
sperm, both at 850 nm and 660 nm illumination to suppress and stimulate LAPD activity, respectively
(Supplementary Movie 2; 10 + 4 Hz, n = 30 vs. 10 + 3 Hz, n = 11). However, bicarbonate was seemingly
more efficacious to increase the beat frequency in Prm1-LAPD sperm than in wild-type sperm: Under
850 nm light, the flagellar beat frequency of Prm1-LAPD increased from 10 + 3 Hz to 27 + 12 Hz
(Supplementary Movie 3, n = 22), whereas in wild-type sperm, the frequency increased from 11 + 4 to
22 + 6 Hz (n = 25, p = 0.06). Thus, for unknown reasons, the expression of LAPD renders the motility
apparatus more sensitive to an increase in the intracellular cAMP concentration. In the presence of
bicarbonate, however, light-induced activation of LAPD did decrease the flagellar beat frequency
(LAPD: 24 + 9 Hz vs. WT: 22 + 12 Hz, n = 22), indicating that cAMP hydrolysis by LAPD, due to its
high Km value, is not sufficient to counteract the bicarbonate action on beat frequency.

The cAMP dynamics in the sperm flagellum also regulate the flagellar waveform [8]. Therefore,
using SpermQ [18], we investigated cAMP-induced changes in beat symmetry in wild-type, Prm1-LAPD,
and Prm1-bPAC sperm, expressing bPAC in the flagellum [13]. As a parameter for the local asymmetry
of the flagellar beat, at each flagellar point, Sperm(Q) determines the absolute of the time-average
of all curvature angle values. When the beat at a given position along the flagellum is perfectly
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symmetric, the time-average of all curvature angles is zero, while it increases when the beat becomes
asymmetric. In wild-type and Prm1-bPAC sperm, bicarbonate- and light-induced cAMP synthesis,
respectively, increased the local beat asymmetry in the first 30 um of the flagellum (Figure 4A,B).
Bicarbonate-stimulation of wild-type, but not light-stimulation of Prm1-bPAC sperm increased the
local beat asymmetry also in the distal part of the flagellum (at ~60 um; Figure 4A). In Prm1-LAPD
sperm, bicarbonate did not affect the beat asymmetry at any point along the flagellum, neither under
control conditions (850 nm) nor under 660 nm illumination (Figure 4C). The action of the bicarbonate-
and light-induced increase of cAMP are also evident in the projection of the flagellar waveform for one
beat cycle for each condition and mouse line (Figure 4D-F). Thus, manipulating cAMP dynamics using
either pharmacology or optogenetics results in a distinct response in the flagellar waveform. This will

make it possible to design experiments to decipher the compartmentalization of cAMP signaling along
the flagellum.
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Figure 4. Using optogenetics to control sperm motility. (A) Local beat asymmetry, determined at each
flagellar position by the absolute of the time-averaged curvature angle. Wild-type sperm (WT) were
analyzed before and 1 min after stimulation with 25 mM NaHCO3 (850 nm). Plotted is the difference
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before and after stimulation as mean (dark red line) + S.D. (light red line). (B) Local beat asymmetry
Prm1-bPAC sperm before and after 10 s exposure to 365 nm light. Plotted is the difference after
compared to before stimulation as mean (dark red line) + S.D. (light red line). (C) Local beat asymmetry
for Prm1-LAPD sperm at 850 nm illumination before and after stimulation with 25 mM NaHCO3,
and 1 min after switching to 660 nm illumination in the presence of 25 mM NaHCOj3. Plotted is the
difference after compared to before stimulation with 25 mM NaHCOj (red), and after compared to before
switching to 660 nm (green). Data are shown as mean + S.D. (dotted line) and have been determined
using SpermQ and SpermQ_Evaluator; p-values were determined using a Two-Way ANOVA and
corrected for multiple testing (Turkey’s range test); regions with significant test results (p < 0.05) are
highlighted in grey and indicated p-values refer to the lowest p-value within the highlighted range.
(D-F) Projection of the flagellar waveform for one beat cycle. Each frame is color-coded. (D) for (A);
(E) for (B); (F) for (C). Scale bar: 50 um.

4. Discussion

Mammalian sperm function relies on cAMP signaling pathways. Here, we establish and apply an
optogenetic tool box to manipulate cAMP signaling in mouse sperm by light.

In mammalian sperm, cAMP-signaling components are not uniformly distributed; PKA and
Adcy10 are exclusively localized to the flagellum [5,10,21] and cAMP signaling is compartmentalized
along the flagellum. Live-cell cAMP imaging using a FRET-based cAMP biosensor revealed that
the kinetics of the bicarbonate-induced cAMP changes are faster in the midpiece compared to the
principal piece [15]. In fact, this compartmentalization might be the basis for the differential cAMP
response of the flagellar waveform in the distal and proximal part of the flagellum upon bicarbonate
stimulation. The local beat asymmetry in the midpiece displays a more profound increase than
in the principal piece (see Figure 4A). The domain architecture might be due to a distinct flagellar
distribution of PDEs [22]: at least two PDE isoforms and splice variants, PDE4 (cAMP-specific) and
PDE1 (Ca?*/calmodulin-dependent), control sperm capacitation and motility [23-25]. An enhanced
PDE activity in certain flagellar compartments might restrict free diffusion of cAMD, creating cAMP
microdomains. In the presence of LAPD, the bicarbonate response is abolished altogether, indicating that
the expression of LAPD interferes with cAMP signaling and its compartmentalization. Light-stimulation
of bPAC or LAPD activity in the whole flagellum most likely overrides the endogenous cAMP machinery
and, thereby, disables the microdomain-dependent control of the flagellar waveform. Thus, illuminating
the sperm flagellum with spatial precision might make it possible to analyze the function and molecular
underpinnings of cAMP compartments on sperm motility in more detail.

Understanding how cAMP microdomains along the flagellum control sperm motility is particularly
important to unravel how sperm navigate. Various chemical and physical cues guide sperm to the
egg. In mammals, three guidance mechanisms have been proposed: chemotaxis, rheotaxis, and
thermotaxis [1,26]. However, the molecular mechanisms underlying mammalian sperm motility are
ill-defined. Whether and how cAMP signaling is involved in any of these guidance mechanisms is
unknown. It has been proposed that progesterone-dependent chemotaxis in human sperm is controlled
by a cAMP-dependent signaling pathway that involves activation of PKA [27]. However, this concept
could not be confirmed by others [28]. Furthermore, G-protein coupled signaling pathways that act via
cAMP have also been proposed to govern thermotaxis in mammalian sperm [29]. Thus, to gain further
insight in to sperm physiology and the fertilization process, the role of cAMP-signaling pathways has
to be elucidated and the application of optogenetic tools will be a great asset to this endeavor.

Understanding the molecular principles underlying sperm motility also goes beyond basic research.
Infertility affects approximately 15% of all couples wanting to conceive. In 30-40% of cases, the etiology
of male infertility remains unknown and is called idiopathic male infertility. The success rates of
assisted reproductive technologies (ART) highly depends on understanding the molecular mechanisms
underlying spermatogenesis and sperm function. Thereby, the diagnosis can be improved and a more
personalized treatment can be developed. Men treated with PDES inhibitors, e.g., vardenafil, displayed
increased cAMP levels in sperm and improved sperm motility, suggesting that PDE5 inhibitors may
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improve the outcome of ART programs [30]. Furthermore, cAMP-dependent signaling is crucial for
sperm development. The cAMP-dependent transcription factor CREM regulates the expression of
genes that control spermiogenesis, the structuring of the mature sperm cell. In normospermic men, a
switch from expression of repressors to activators occurs, which is regulated by CREM-dependent gene
expression. Patients that show a maturation arrest during sperm development only express repressors,
but no activators, demonstrating the importance of cAMP-dependent gene expression during sperm
development [31]. Thus, understanding the molecular details of cAMP signaling in sperm is clinically
relevant and might improve diagnoses and treatment of male infertility.
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