Truncated hemoglobins 1 and 2 are implicated in the modulation of phosphorus deficiency-induced nitric oxide levels in *Chlamydomonas*

Valentina Filina, Alexandra Grinko and Elena Ermilova

Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg 199034, Russia; filina.valya@yandex.ru (V.F); st047636@student.spbu.ru (A.G.)

* Correspondence: e.ermilova@spbu.ru

Supplementary Figures 1, 2 and 3:

Figure S1. Expression analysis of the *NRT2.1* gene in strains 305 and CC124. Cells were grown in ammoniumcontaining medium (Con) and then transferred to a medium containing 4 mM KNO₃ for 1 h. Levels of gene transcripts are calculated as times of relative abundance with respect to the housekeeping control gene (*RACK1*) that has a value of 1. Data are the means \pm SE from three biological and two technical replicates obtained by quantitative RT-PCR. Con

Figure S2. Expression analysis of the *PHOX* gene in nitrate reductase deficient mutants during P starvation. Levels of gene transcripts are calculated as times of relative abundance with respect to the housekeeping control gene (*RACK1*) that has a value of 1. Data are the means \pm SE from three biological and two technical replicates obtained by quantitative RT-PCR.

Figure S3. Characterization of *amiRNA-THB2* strains: **(a).** Expression analysis of the *THB2* gene in cw15-325 and *ami*RNA-*THB2* cells grown in TAP or incubated in P-free medium for 24 h. Relative expression levels were normalized with the gene expression of *RACK1* and calculated using Δ C_T; all measurements were done in triplicate; **(b)** Comparative chlorophyll contents of parental strain cw15-325 and *ami*RNA-*THB2* strains. Vegetative cells were grown in TAP medium. Insert shows test tubes with the same cell density of cultures (2 10⁶ cells/ml) in TAP; **(c)** Viability of parental strain cw15-325 and *ami*RNA-*THB2* strains. Vegetative cells were grown in TAP medium for 24h, 48h, 72h or 96h. A viability dye was used to distinguish viable from nonviable cells as explained in the Materials and Methods section. Values are means ± SD (n = 3).

Table S1: Chlamydomonas strains used

Strain	Genotype References		
cw15-325	mt+, cw15, arg7	[37]	
CC124	mt⁻, nit1, nit2	[37]	
305	mt ⁻ nit1	[44]	
amiTHB1-11	<i>mt+, cw15</i> [9]		
amiTHB1-14	<i>mt+, cw15</i> [9]		
amiTHB1-23	<i>mt+, cw15</i> [9]		
amiTHB2-7	<i>mt+, cw15</i> This work		
amiTHB2-17	mt+, cw15	This work.	
amiTHB2-22	mt+, cw15	This work	

Table S2. Primers for RT-qPCR analysis

Target gene/Accession number	Primer name	Sequence (5′–3′)	Reference
<i>THB1</i> /Cre14.g615400	THB1F	ATGAAGAAGCAGCGCCGCAAAC	[10]
	THB1R	ACCAGGTCAAAGTGGTGGTGGTTC	
THB2/Cre14.g615350	THB2F	GCCGGTTGATCCGCGACAAG	[10]
_	THB2R	CGATCCAACTTTTACACCCGCTCAA	
THB3/Cre04.g218800	THB3F	TCACTTATCGCCAGTCTAGAGGAC	[10]
_	THB3R	CGCTCAGGATGTCGTCTATAAGC	
THB4/Cre04.g218750	THB4F	GCTTCAAGGAGACGGTGTGAAGTCTAC	[10]
_	THB4R	ACATCCACCGTTGCTGCCACA	
<i>THB5/</i> Cre07.g351100	THB5F	GGCGTTTTATCGCAAGTTGT	[9]
	THB5R	CTTGAACGTATCCAGCAGCA	
THB6/Cre16.g654250	THB6F	CCTGGACTCGATAGCAGAGG	[9]
	THB6R	TGTCGTGAGAGACGGAACTG	
<i>THB7/</i> Cre16.g661000	THB7F	CATGGTGCCGTGCTCGTACA	[4]
	THB7R	CGACCAGCACTGCCTACTTG	
THB8/Cre16.g661200	THB8F	CGGGAGTCAGCAAGCTGTCAAC	[4]
_	THB8R	CCGCCCGTACACAAACAAGCAC	
THB9/Cre16.g661250	THB9F	GCTCTCTCTGGTTTTGAAGCAT	[9]
_	THB9R	AGCTGCTCATCTGCGTACAAT	
THB10/Cre16.g661300	THB10F	TGCTGCGGAGGTGTTCCTTG	[4]
	THB10R	CATTGCCGCCTCTGCTGATG	
THB11/Cre16.g662750	THB11F	TTGCGTGCGTCCATGCTGTC	[4]
	THB11R	CCGGTTGCGGATACACCTCT	
THB12/Cre16.g663000	THB12F	GACCCCTCACTCATAAAGTTCCT	[9]
	THB12R	AAGTACTTCATGCCCAGATCAAA	
RACK1/Cre06.g278222	RACK1F	CTTCTCGCCCATGACCAC	[38]
	RACK1R	CCCACCAGGTTGTTCTTCAG	
PHOX/Cre04.g216700	PHOXF	TTCCGTTTCCGTTCTCTGAC	[24]
	PHOXR	CCCTGCATCTTGTTCTCCAG	
NRT2.1/Cre09.g410850	NRT2.1F	CGCCGTGGCAACTGACCCTGAG	[15]
	NRT2.1R	CGCCACCTCCTCCGCACTCCAC	

Sequences were obtained from Phytozome 12, Chlamydomonas reinhardtii v5.5