The Meniscus Tear: A Review of Stem Cell Therapies
Abstract
:1. Introduction
2. Anatomy of the Meniscus
3. Functions of the Meniscus
4. Meniscus Pathology
5. Types of Mesenchymal Stem Cells
6. Mechanism of Meniscal Repair
7. Pre-Clinical Studies
7.1. Stem Cell Injection
7.2. Tissue Engineering
8. Clinical Studies
8.1. Stem Cell Injection
8.2. Tissue Engineering
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McDermott, I.D.; Amis, A.A. The consequences of meniscectomy. J. Bone Jt. Surg. 2006, 88, 1549–1556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, A.J.S.; Bedi, A.; Rodeo, S.A. The Basic Science of Human Knee Menisci: Structure, Composition, and Function. Sports Health 2012, 4, 340–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnoczky, S.P.; Warren, R.F. Microvasculature of the human meniscus. Am. J. Sports Med. 1982, 10, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, S.; Lotito, K.; Rodeo, S.A. Biomechanics and healing response of the meniscus. Oper. Tech. Sports Med. 2003, 11, 68–76. [Google Scholar] [CrossRef]
- McNeill Love, R.J. Prognosis after removal of semilunar cartilages. Br. Med. J. 1923, 2, 324–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seil, R.; Becker, R. Time for a paradigm change in meniscal repair: Save the meniscus! Knee Surgery, Sport. Traumatol. Arthrosc. 2016, 24, 1421–1423. [Google Scholar] [CrossRef] [Green Version]
- Zellner, J.; Pattappa, G.; Koch, M.; Lang, S.; Weber, J.; Pfeifer, C.G.; Mueller, M.B.; Kujat, R.; Nerlich, M.; Angele, P. Autologous mesenchymal stem cells or meniscal cells: What is the best cell source for regenerative meniscus treatment in an early osteoarthritis situation? Stem Cell Res. Ther. 2017, 8, 225. [Google Scholar] [CrossRef] [Green Version]
- Vaquero, J.; Forriol, F. Meniscus tear surgery and meniscus replacement. Muscles. Ligaments Tendons J. 2016, 6, 71–89. [Google Scholar] [CrossRef]
- Zaffagnini, S.; Grassi, A.; Marcheggiani Muccioli, G.M.; Bonanzinga, T.; Nitri, M.; Raggi, F.; Ravazzolo, G.; Marcacci, M. MRI evaluation of a collagen meniscus implant: A systematic review. Knee Surgery, Sport. Traumatol. Arthrosc. 2015, 23, 3228–3237. [Google Scholar] [CrossRef]
- Krych, A.J.; Lorich, D.G.; Kelly, B.T. Treatment of Focal Osteochondral Defects of the Acetabulum with Osteochondral Allograft Transplantation. Orthopedics 2011, 34, e307–e311. [Google Scholar] [CrossRef]
- Monllau, J.C.; Gelber, P.E.; Abat, F.; Pelfort, X.; Abad, R.; Hinarejos, P.; Tey, M. Outcome after partial medial meniscus substitution with the collagen meniscal implant at a minimum of 10 years’ follow-up. Arthroscopy 2011, 27, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Makris, E.A.; Hadidi, P.; Athanasiou, K.A. The knee meniscus: Structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 2011, 32, 7411–7431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, D. The healing of semilunar cartilages. 1936. Clin. Orthop. Relat. Res. 1990, 252, 4–7. [Google Scholar]
- Mauck, R.L.; Burdick, J.A. From Repair to Regeneration: Biomaterials to Reprogram the Meniscus Wound Microenvironment. Ann. Biomed. Eng. 2015, 43, 529–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osawa, A.; Harner, C.D.; Gharaibeh, B.; Matsumoto, T.; Mifune, Y.; Kopf, S.; Ingham, S.J.M.; Schreiber, V.; Usas, A.; Huard, J. The use of blood vessel-derived stem cells for meniscal regeneration and repair. Med. Sci. Sports Exerc. 2013, 45, 813–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusayama, T.; Harner, C.D.; Carlin, G.J.; Xerogeanes, J.W.; Smith, B.A. Anatomical and biomechanical characteristics of human meniscofemoral ligaments. Knee Surgery, Sport. Traumatol. Arthrosc. 1994, 2, 234–237. [Google Scholar] [CrossRef] [PubMed]
- Laprade, C.M.; Ellman, M.B.; Rasmussen, M.T.; James, E.W.; Wijdicks, C.A.; Engebretsen, L.; Laprade, R.F. Anatomy of the anterior root attachments of the medial and lateral menisci: A quantitative analysis. Am. J. Sports Med. 2014, 42, 2386–2392. [Google Scholar] [CrossRef]
- Andrews, S.H.J.; Adesida, A.B.; Abusara, Z.; Shrive, N.G. Current concepts on structure–function relationships in the menisci. Connect. Tissue Res. 2017, 58, 271–281. [Google Scholar] [CrossRef]
- Andrews, S.H.J.; Ronsky, J.L.; Rattner, J.B.; Shrive, N.G.; Jamniczky, H.A. An evaluation of meniscal collagenous structure using optical projection tomography. BMC Med. Imaging 2013, 13, 21. [Google Scholar] [CrossRef] [Green Version]
- Melrose, J.; Smith, S.; Cake, M.; Read, R.; Whitelock, J. Comparative spatial and temporal localisation of perlecan, aggrecan and type I, II and IV collagen in the ovine meniscus: An ageing study. Histochem. Cell Biol. 2005, 124, 225–235. [Google Scholar] [CrossRef]
- Doral, M.N.; Bilge, O.; Huri, G.; Turhan, E.; Verdonk, R. Modern treatment of meniscal tears. EFORT Open Rev. 2018, 3, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, M.; Evans, E.; Donthineni Rao, R.; Findlay, J.; Pepberton, D. Quantitative differences in the histology of the attachemnt zones of tghe mesiscal horns in the knee joint of man. J. Anat. 1991, 177, 127–134. [Google Scholar] [PubMed]
- Herwig, J.; Egner, E.; Buddecke, E. Chemical changes of human knee joint menisci in various stages of degeneration. Ann. Rheum. Dis. 1984, 43, 635–640. [Google Scholar] [CrossRef] [Green Version]
- Cheung, H.S. Distribution of type I, II, III and v in the pepsin solubilized collagens in bovine menisci. Connect. Tissue Res. 1987, 16, 343–356. [Google Scholar] [CrossRef]
- Nakano, T.; Dodd, C.M.; Scott, P.G. Glycosaminoglycans and proteoglycans from different zones of the porcine knee meniscus. J. Orthop. Res. 1997, 15, 213–220. [Google Scholar] [CrossRef]
- Swann, D.A.; Silver, F.H.; Slayter, H.S.; Stafford, W.; Shore, E. The molecular structure and lubricating activity of lubricin isolated from bovine and human synovial fluids. Biochem. J. 1985, 225, 195–201. [Google Scholar] [CrossRef]
- Peters, T.J.; Smillie, I.S. Studies on the chemical composition of the menisci of the knee joint with special reference to the horizontal cleavage lesion. Clin. Orthop. Relat. Res. 1972, 86, 245–252. [Google Scholar] [CrossRef]
- McDevitt, C.A.; Mukherjee, S.; Kambic, H.; Parker, R. Emerging concepts of the cell biology of the meniscus. Curr. Opin. Orthop. 2002, 13, 345–350. [Google Scholar] [CrossRef]
- Verdonk, P.C.M.; Forsyth, R.G.; Wang, J.; Almqvist, K.F.; Verdonk, R.; Veys, E.M.; Verbruggen, G. Characterisation of human knee meniscus cell phenotype. Osteoarthr. Cartil. 2005, 13, 548–560. [Google Scholar] [CrossRef]
- Le Graverand, M.P.H.; Ou, Y.C.; Schield-Yee, T.; Barclay, L.; Hart, D.; Natsume, T.; Rattner, J.B. The cells of the rabbit meniscus: Their arrangement, interrelationship, morphological variations and cytoarchitecture. J. Anat. 2001, 198, 525–535. [Google Scholar] [CrossRef]
- Van der Bracht, H.; Verdonk, R.; Verbruggen, D.; Elewaut, D.; Verdonk, P. Cell-based meniscus tissue engineering. In Topics in Tissue Engineering; Ashammakhi, N., Reis, R.L., Chiellini, E., Eds.; Biomaterials and Tissue Engineering Group (BTE): London, UK, 2007; Volume 3. [Google Scholar]
- Cameron, H.U.; Macnab, I. The structure of the meniscus of the human knee joint. Clin. Orthop. Relat. Res. 1972, 89, 215–219. [Google Scholar] [CrossRef]
- Proctor, C.S.; Schmidt, M.B.; Whipple, R.R.; Kelly, M.A.; Mow, V.C. Material properties of the normal medial bovine meniscus. J. Orthop. Res. 1989, 7, 771–782. [Google Scholar] [CrossRef]
- Voloshin, A.S.; Wosk, J. Shock absorption of meniscectomized and painful knees: A comparative in vivo study. J. Biomed. Eng. 1983, 5, 157–161. [Google Scholar] [CrossRef]
- Walker, P.S.; Erkman, M.J. The role of the menisci in force transmission across the knee. Clin. Orthop. 1975, 109, 184–192. [Google Scholar] [CrossRef]
- Hoshino, A.; Wallace, W.A. Impact-absorbing properties of the human knee. J. Bone Jt. Surg. 1987, 69, 807–811. [Google Scholar] [CrossRef]
- Markolf, K.L.; Mensch, J.S.; Amstutz, H.C. Stiffness and laxity of the knee—The contributions of the supporting structures. J. Bone Jt. Surg. Am. 1976, 58, 583–594. [Google Scholar] [CrossRef]
- Bird, M.D.T.; Sweet, M.B.E. Canals in the semilunar meniscus: Brief report. J. Bone Jt. Surg. 1988, 70, 839. [Google Scholar] [CrossRef]
- Arnoczky, S.P.; Warren, R.F.; Spivak, J.M. Meniscal repair using an exogenous fibrin clot. An experimental study in dogs. J. Bone Jt. Surg. 1988, 70, 1209–1217. [Google Scholar] [CrossRef]
- Skinner, H.B.; Barrack, R.L.; Cook, S.D. Age related decline in proprioception. Clin. Orthop. Relat. Res. 1984, 184, 208–211. [Google Scholar] [CrossRef]
- Reider, B.; Arcand, M.A.; Diehl, L.H.; Mroczek, K.; Abulencia, A.; Stroud, C.C.; Palm, M.; Gilbertson, J.; Staszak, P. Proprioception of the knee before and after anterior cruciate ligament reconstruction. Arthroscopy 2003, 19, 2–12. [Google Scholar] [CrossRef]
- Kennedy, J.C.; Alexander, I.J.; Hayes, K.C. Nerve supply of the human knee and its functional importance. Am. J. Sports Med. 1982, 10, 329–335. [Google Scholar] [CrossRef]
- Bhattacharyya, T.; Gale, D.; Dewire, P.; Totterman, S.; Gale, M.E.; McLaughlin, S.; Einhorn, T.A.; Felson, D.T. The clinical importance of meniscal tears demonstrated by magnetic resonance imaging in osteoarthritis of the knee. J. Bone Jt. Surg. 2003, 85, 4–9. [Google Scholar] [CrossRef]
- Link, T.M.; Steinbach, L.S.; Ghosh, S.; Ries, M.; Lu, Y.; Lane, N.; Majumdar, S. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology 2003, 226, 373–381. [Google Scholar] [CrossRef]
- Boks, S.S.; Vroegindeweij, D.; Koes, B.W.; Hunink, M.M.G.M.; Bierma-Zeinstra, S.M.A. Magnetic resonance imaging abnormalities in symptomatic and contralateral knees: Prevalence and associations with traumatic history in general practice. Am. J. Sports Med. 2006, 34, 1984–1991. [Google Scholar] [CrossRef]
- Ding, C.; Martel-Pelletier, J.; Pelletier, J.P.; Abram, F.; Raynauld, J.P.; Cicuttini, F.; Jones, G. Meniscal tear as an osteoarthritis risk factor in a largely non-osteoarthritic cohort: A cross-sectional study. J. Rheumatol. 2007, 34, 776–784. [Google Scholar]
- Noble, J.; Hamblen, D.L. The pathology of the degenerate meniscus lesion. J. Bone Jt. Surg. 1975, 57, 180–186. [Google Scholar] [CrossRef]
- Englund, M.; Roemer, F.W.; Hayashi, D.; Crema, M.D.; Guermazi, A. Meniscus pathology, osteoarthritis and the treatment controversy. Nat. Rev. Rheumatol. 2012, 22, 412–419. [Google Scholar] [CrossRef]
- Kenny, C. Radial displacement of the medial meniscus and Fairbank’s signs. Clin. Orthop. Relat. Res. 1997, 339, 163–173. [Google Scholar] [CrossRef]
- Rauscher, I.; Stahl, R.; Cheng, J.; Li, X.; Huber, M.B.; Luke, A.; Majumdar, S.; Link, T.M. Meniscal measurements of T1 p and T2 at MR imaging in healthy subjects and patients with osteoarthritis. Radiology 2008, 249, 591–600. [Google Scholar] [CrossRef] [Green Version]
- Hunter, D.J.; Buck, R.; Vignon, E.; Eckstein, F.; Brandt, K.; Mazzuca, S.A.; Wyman, B.T.; Otterness, I.; Hellio Le Graverand, M.P. Relation of regional articular cartilage morphometry and meniscal position by MRI to joint space width in knee radiographs. Osteoarthr. Cartil. 2009, 17, 1170–1176. [Google Scholar] [CrossRef] [Green Version]
- Forriol, F. Growth factors in cartilage and meniscus repair. Injury 2009, 40, S12–S16. [Google Scholar] [CrossRef]
- Hunter, D.J.; Zhang, Y.Q.; Niu, J.B.; Tu, X.; Amin, S.; Clancy, M.; Guermazi, A.; Grigorian, M.; Gale, D.; Felson, D.T. The association of meniscal pathologic changes with cartilage loss in symptomatic knee osteoarthritis. Arthritis Rheum. 2006, 54, 795–801. [Google Scholar] [CrossRef]
- Berthiaume, M.J.; Raynauld, J.P.; Martel-Pelletier, J.; Labonté, F.; Beaudoin, G.; Bloch, D.A.; Choquette, D.; Haraoui, B.; Altman, R.D.; Hochberg, M.; et al. Meniscal tear and extrusion are strongly associated with progression of symptomatic knee osteoarthritis as assessed by quantitative magnetic resonance imaging. Ann. Rheum. Dis. 2005, 64, 556–563. [Google Scholar] [CrossRef] [Green Version]
- Kraus, V.B.; Feng, S.; Wang, S.C.; White, S.; Ainslie, M.; Brett, A.; Holmes, A.; Charles, H.C. Trabecular morphometry by fractal signature analysis is a novel marker of osteoarthritis progression. Arthritis Rheum. 2009, 60, 3711–3722. [Google Scholar] [CrossRef]
- Wolski, M.; Podsiadlo, P.; Stachowiak, G.W.; Lohmander, L.S.; Englund, M. Differences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by directional fractal signature method. Osteoarthr. Cartil. 2010, 18, 684–690. [Google Scholar] [CrossRef] [Green Version]
- Hunter, D.J.; Zhang, Y.Q.; Tu, X.; LaValley, M.; Niu, J.B.; Amin, S.; Guermazi, A.; Genant, H.; Gale, D.; Felson, D.T. Change in joint space width: Hyaline articular cartilage loss or alteration in meniscus? Arthritis Rheum. 2006, 54, 2488–2495. [Google Scholar] [CrossRef]
- Englund, M.; Guermazi, A.; Roemer, F.W.; Yang, M.; Zhang, Y.; Nevitt, M.C.; Lynch, J.A.; Lewis, C.E.; Torner, J.; Felson, D.T. Meniscal pathology on MRI increases the risk for both incident and enlarging subchondral bone marrow lesions of the knee: The MOST study. Ann. Rheum. Dis. 2010, 69, 1796–1802. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 25, 663–676. [Google Scholar] [CrossRef] [Green Version]
- Ullah, I.; Subbarao, R.B.; Rho, G.J. Human mesenchymal stem cells - current trends and future prospective. Biosci. Rep. 2015, 28, 35. [Google Scholar] [CrossRef]
- Fan, J.; Varshney, R.R.; Ren, L.; Cai, D.; Wang, D.A. Synovium-derived mesenchymal stem cells: A new cell source for musculoskeletal regeneration. Tissue Eng. 2009, 15, 75–86. [Google Scholar] [CrossRef]
- Friedenstein, A.J.; Gorskaja, U.F.; Kulagina, N.N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol. 1976, 4, 267–274. [Google Scholar]
- Fraser, J.K.; Wulur, I.; Alfonso, Z.; Hedrick, M.H. Fat tissue: An underappreciated source of stem cells for biotechnology. Trends Biotechnol. 2006, 24, 150–154. [Google Scholar] [CrossRef]
- Sakaguchi, Y.; Sekiya, I.; Yagishita, K.; Muneta, T. Comparison of human stem cells derived from various mesenchymal tissues: Superiority of synovium as a cell source. Arthritis Rheum. 2005, 52, 2521–2529. [Google Scholar] [CrossRef]
- Cao, C.; Dong, Y.; Dong, Y. Study on culture and in vitro osteogenesis of blood-derived human mesenchymal stem cells. Chin. J. Repar. Reconstruct. Surg. 2005, 19, 642–647. [Google Scholar]
- Yoshimura, H.; Muneta, T.; Nimura, A.; Yokoyama, A.; Koga, H.; Sekiya, I. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res. 2007, 327, 449–462. [Google Scholar] [CrossRef]
- Shirasawa, S.; Sekiya, I.; Sakaguchi, Y.; Yagishita, K.; Ichinose, S.; Muneta, T. In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: Optimal condition and comparison with bone marrow-derived cells. J. Cell. Biochem. 2006, 97, 84–97. [Google Scholar] [CrossRef]
- Mochizuki, T.; Muneta, T.; Sakaguchi, Y.; Nimura, A.; Yokoyama, A.; Koga, H.; Sekiya, I. Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: Distinguishing properties of mesenchymal stem cells in humans. Arthritis Rheum. 2006, 54, 848–853. [Google Scholar] [CrossRef]
- Banfi, A.; Muraglia, A.; Dozin, B.; Mastrogiacomo, M.; Cancedda, R.; Quarto, R. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: Implications for their use in cell therapy. Exp. Hematol. 2000, 28, 707–715. [Google Scholar] [CrossRef]
- Aust, L.; Devlin, B.; Foster, S.J.; Halvorsen, Y.D.C.; Hicok, K.; du Laney, T.; Sen, A.; Willingmyre, G.D.; Gimble, J.M. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 2004, 6, 7–14. [Google Scholar] [CrossRef]
- Im, G.I.; Shin, Y.W.; Lee, K.B. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthr. Cartil. 2005, 13, 845–853. [Google Scholar] [CrossRef] [Green Version]
- De Albornoz, P.M.; Forriol, F. The meniscal healing process. Muscles Ligaments Tendons J. 2012, 2, 10–18. [Google Scholar] [PubMed]
- Guisasola, I.; Vaquero, J.; Forriol, F. Knee immobilization on meniscal healing after suture: An experimental study in sheep. Clin. Orthop. Relat. Res. 2002, 395, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Caplan, A.I.; Dennis, J.E. Mesenchymal stem cells as trophic mediators. J. Cell. Biochem. 2006, 98, 1076–1084. [Google Scholar] [CrossRef] [PubMed]
- Dehaven, K.E.; Lohrer, W.A.; Lovelock, J.E. Long-Term Results of Open Meniscal Repair. Am. J. Sports Med. 1995, 23, 524–530. [Google Scholar] [CrossRef]
- Matsukura, Y.; Muneta, T.; Tsuji, K.; Koga, H.; Sekiya, I. Mesenchymal stem cells in synovial fluid increase after meniscus injury. Clin. Orthop. Relat. Res. 2014, 472, 1357–1364. [Google Scholar] [CrossRef] [Green Version]
- King, T.V.; Vallee, B.L. Neovascularisation of the meniscus with angiogenin: An experimental study in rabbits. J. Bone Jt. Surg. 1991, 73, 587–590. [Google Scholar] [CrossRef]
- Zhongran, Z.; Kaiyuan, T.; Yinkan, X.; Wenming, Z.; Zhentian, L.; Shihuan, O. Treatment of longitudinal injuries in avascular area of meniscus in dogs by trepanation. Arthrosc. J. Arthrosc. Relat. Surg. 1988, 4, 151–159. [Google Scholar] [CrossRef]
- Arnoczky, S.P.; Warren, R.F. The microvasculature of the meniscus and its response to injury: An experimental study in the dog. Am. J. Sports Med. 1983, 11, 131–141. [Google Scholar] [CrossRef]
- Cabaud, H.E.; Rodkey, W.G.; Fitzwater, J.E. Medial meniscus repairs. An experimental and morphologic study. Am. J. Sports Med. 1981, 9, 129–134. [Google Scholar] [CrossRef]
- Heatley, F.W. The meniscus—Can it be repaired? An experimental investigation in rabbits. J. Bone Jt. Surg. 1980, 62, 397–402. [Google Scholar] [CrossRef]
- Hofer, H.R.; Tuan, R.S. Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Res. Ther. 2016, 7, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagawa, Y.; Fortier, L.A.; Mao, J.J.; Lee, C.H.; Goodale, M.B.; Koff, M.F.; Uppstrom, T.J.; Croen, B.; Wada, S.; Carballo, C.B.; et al. Long-term Evaluation of Meniscal Tissue Formation in 3-dimensional–Printed Scaffolds with Sequential Release of Connective Tissue Growth Factor and TGF-β3 in an Ovine Model. Am. J. Sports Med. 2019, 47, 2596–2607. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Rodeo, S.A.; Fortier, L.A.; Lu, C.; Erisken, C.; Mao, J.J. Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep. Sci. Transl. Med. 2014, 6, 266ra171. [Google Scholar] [CrossRef] [Green Version]
- Bray, R.C.; Smith, J.A.; Eng, M.K.; Leonard, C.A.; Sutherland, C.A.; Salo, P.T. Vascular response of the meniscus to injury: Effects of immobilization. J. Orthop. Res. 2001, 19, 384–390. [Google Scholar] [CrossRef]
- Dowdy, P.A.; Miniaci, A.; Arnoczky, S.P.; Fowler, P.J.; Boughner, D.R. The Effect of Cast Immobilization on Meniscal Healing: An Experimental Study in the Dog. Am. J. Sports Med. 1995, 23, 721–728. [Google Scholar] [CrossRef]
- McNulty, A.L.; Guilak, F. Mechanobiology of the meniscus. J. Biomech. 2015, 48, 1469–1478. [Google Scholar] [CrossRef]
- Koga, H.; Muneta, T.; Nagase, T.; Nimura, A.; Ju, Y.J.; Mochizuki, T.; Sekiya, I. Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: Suitable conditions for cell therapy of cartilage defects in rabbit. Cell Tissue Res. 2008, 333, 207–215. [Google Scholar] [CrossRef]
- Nimura, A.; Muneta, T.; Koga, H.; Mochizuki, T.; Suzuki, K.; Makino, H.; Umezawa, A.; Sekiya, I. Increased proliferation of human synovial mesenchymal stem cells with autologous human serum: Comparisons with bone marrow mesenchymal stem cells and with fetal bovine serum. Arthritis Rheum. 2008, 58, 501–510. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Muneta, T.; Kondo, S.; Mizuno, M.; Takakuda, K.; Ichinose, S.; Tabuchi, T.; Koga, H.; Tsuji, K.; Sekiya, I. Synovial mesenchymal stem cells promote healing after meniscal repair in microminipigs. Osteoarthr. Cartil. 2015, 23, 1007–1017. [Google Scholar] [CrossRef] [Green Version]
- Hatsushika, D.; Muneta, T.; Nakamura, T.; Horie, M.; Koga, H.; Nakagawa, Y.; Tsuji, K.; Hishikawa, S.; Kobayashi, E.; Sekiya, I. Repetitive allogeneic intraarticular injections of synovial mesenchymal stem cells promote meniscus regeneration in a porcine massive meniscus defect model. Osteoarthr. Cartil. 2014, 22, 941–950. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Ibán, M.N.; Díaz-Heredia, J.; García-Gómez, I.; Gonzalez-Lizán, F.; Elías-Martín, E.; Abraira, V. The effect of the addition of adipose-derived mesenchymal stem cells to a meniscal repair in the avascular zone: An experimental study in rabbits. Arthroscopy 2011, 27, 1688–1696. [Google Scholar] [CrossRef] [PubMed]
- Ferris, D.J.; Frisbie, D.D.; Kisiday, J.D.; Mcilwraith, C.W.; Hague, B.A.; Major, M.D.; Schneider, R.K.; Zubrod, C.J.; Kawcak, C.E.; Goodrich, L.R. Clinical outcome after intra-articular administration of bone marrow derived mesenchymal stem cells in 33 horses with stifle injury. Vet. Surg. 2014, 43, 255–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Hamid, M.; Hussein, M.R.; Ahmad, A.F.; Elgezawi, E.M. Enhancement of the repair of meniscal wounds in the red-white zone (middle third) by the injection of bone marrow cells in canine animal model. Int. J. Exp. Pathol. 2005, 86, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo Perea, S.; Lyons, L.P.; Nishimuta, J.F.; Weinberg, J.B.; McNulty, A.L. Evaluation of culture conditions for in vitro meniscus repair model systems using bone marrow-derived mesenchymal stem cells. Connect. Tissue Res. 2019, 29, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Thomas Vangsness, J.; Burke, W.S.; Narvy, S.J.; MacPhee, R.D.; Fedenko, A.N. Human knee synovial fluid cytokines correlated with grade of knee osteoarthritis: A pilot study. Bull. NYU Hosp. Jt. Dis. 2011, 69, 122–127. [Google Scholar]
- Hennerbichler, A.; Moutos, F.T.; Hennerbichler, D.; Weinberg, J.B.; Guilak, F. Interleukin-1 and tumor necrosis factor alpha inhibit repair of the porcine meniscus in vitro. Osteoarthr. Cartil. 2007, 15, 1053–1060. [Google Scholar] [CrossRef] [Green Version]
- McNulty, A.L.; Moutos, F.T.; Weinberg, J.B.; Guilak, F. Enhanced integrative repair of the porcine meniscus in vitro by inhibition of interleukin-1 or tumor necrosis factor α. Arthritis Rheum. 2007, 56, 3033–3042. [Google Scholar] [CrossRef]
- Upton, M.L.; Guilak, F.; Laursen, T.A.; Setton, L.A. Finite element modeling predictions of region-specific cell-matrix mechanics in the meniscus. Biomech. Model. Mechanobiol. 2006, 5, 140–149. [Google Scholar] [CrossRef]
- Zhang, H.; Leng, P.; Zhang, J. Enhanced meniscal repair by overexpression of hIGF-1 in a full-thickness model. Clin. Orthop. Relat. Res. 2009, 467, 3165–3174. [Google Scholar] [CrossRef] [Green Version]
- Moriguchi, Y.; Tateishi, K.; Ando, W.; Shimomura, K.; Yonetani, Y.; Tanaka, Y.; Kita, K.; Hart, D.A.; Gobbi, A.; Shino, K.; et al. Repair of meniscal lesions using a scaffold-free tissue-engineered construct derived from allogenic synovial MSCs in a miniature swine model. Biomaterials 2013, 34, 2185–2193. [Google Scholar] [CrossRef]
- Kondo, S.; Muneta, T.; Nakagawa, Y.; Koga, H.; Watanabe, T.; Tsuji, K.; Sotome, S.; Okawa, A.; Kiuchi, S.; Ono, H.; et al. Transplantation of autologous synovial mesenchymal stem cells promotes meniscus regeneration in aged primates. J. Orthop. Res. 2017, 35, 1274–1282. [Google Scholar] [CrossRef] [PubMed]
- Desando, G.; Giavaresi, G.; Cavallo, C.; Bartolotti, I.; Sartoni, F.; Nicoli Aldini, N.; Martini, L.; Parrilli, A.; Mariani, E.; Fini, M.; et al. Autologous Bone Marrow Concentrate in a Sheep Model of Osteoarthritis: New Perspectives for Cartilage and Meniscus Repair. Tissue Eng. 2016, 22, 608–619. [Google Scholar] [CrossRef] [PubMed]
- Marcacci, M.; Berruto, M.; Brocchetta, D.; Delcogliano, A.; Ghinelli, D.; Gobbi, A.; Kon, E.; Pederzini, L.; Rosa, D.; Sacchetti, G.L.; et al. Articular cartilage engineering with Hyalograft® C: 3-Year clinical results. Clin. Orthop. Relat. Res. 2005, 435, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, P.G.; Magna, H.A.; Reeves, L.M.; Lopresti-Morrow, L.L.; Yocum, S.A.; Rosner, P.J.; Geoghegan, K.F.; Hambor, J.E. Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J. Clin. Investig. 1996, 97, 761–768. [Google Scholar] [CrossRef] [Green Version]
- Mengshol, J.A. IL-1 induces collagenase-3 (MMP-13) promoter activity in stably transfected chondrocytic cells: Requirement for Runx-2 and activation by p38 MAPK and JNK pathways. Nucleic Acids Res. 2001, 29, 4361–4372. [Google Scholar] [CrossRef] [Green Version]
- Massoud, D.; Jian, Y.Q. The interleukin 1beta pathway in the pathogenesis of osteoarthritis. J. Rheumatol. 2008, 35, 2306–2312. [Google Scholar]
- Vangsness, C.T.; Farr, J.; Boyd, J.; Dellaero, D.T.; Mills, C.R.; LeRoux-Williams, M. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy A Randomized, Double-Blind, Controlled Study. J. Bone Jt. Surg. 2014, 96, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Pak, J.; Lee, J.H.; Lee, S.H. Regenerative repair of damaged meniscus with autologous adipose tissue-derived stem cells. BioMed Res. Int. 2014, 2014, 436029. [Google Scholar] [CrossRef]
- Centeno, C.J.; Busse, D.; Kisiday, J.; Keohan, C.; Freeman, M.; Karli, D. Regeneration of meniscus cartilage in a knee treated with percutaneously implanted autologous mesenchymal stem cells. Med. Hypotheses 2008, 71, 900–908. [Google Scholar] [CrossRef]
- Onoi, Y.; Hiranaka, T.; Nishida, R.; Takase, K.; Fujita, M.; Hida, Y.; Fujishiro, T.; Okamoto, K. Second-look arthroscopic findings of cartilage and meniscus repair after injection of adipose-derived regenerative cells in knee osteoarthrits: Report of two cases. Regen. Ther. 2019, 11, 212–216. [Google Scholar] [CrossRef]
- Sekiya, I.; Koga, H.; Otabe, K.; Nakagawa, Y.; Katano, H.; Ozeki, N.; Mizuno, M.; Horie, M.; Kohno, Y.; Katagiri, K.; et al. Additional Use of Synovial Mesenchymal Stem Cell Transplantation Following Surgical Repair of a Complex Degenerative Tear of the Medial Meniscus of the Knee: A Case Report. Cell Transplant. 2019, 28, 1445–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitehouse, M.R.; Howells, N.R.; Parry, M.C.; Austin, E.; Kafienah, W.; Brady, K.; Goodship, A.E.; Eldridge, J.D.; Blom, A.W.; Hollander, A.P. Repair of torn avascular meniscal cartilage using undifferentiated autologous mesenchymal stem cells: From in vitro optimization to a first-in-human study. Stem Cells Transl. Med. 2017, 6, 1237–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivos-Meza, A.; Pérez Jiménez, F.J.; Granados-Montiel, J.; Landa-Solís, C.; Cortés González, S.; Jiménez Aroche, C.A.; Valdez Chávez, M.; Renán León, S.; Gomez-Garcia, R.; Martínez-López, V.; et al. First Clinical Application of Polyurethane Meniscal Scaffolds with Mesenchymal Stem Cells and Assessment of Cartilage Quality with T2 Mapping at 12 Months. Cartilage 2019. [Google Scholar] [CrossRef] [PubMed]
MSC Source | Osteogenic | Chondrogenic | Adipogenic | Clinical Advantage | Clinical Disadvantage |
---|---|---|---|---|---|
Bone marrow | +++ | +++ | ++ | Aspiration can be done under L/A | Invasive, Painful, Low yield |
Adipose | + | + | +++ | Less painful than marrow aspiration and high yield | L/A toxic to ASCs therefore harvest preferable under GA |
Synovium | +++ | +++ | +++ | Painless, Minimally invasive and Minimal tissue requirement | Staged surgery, cells require expansion |
Author/Year | Animal/Defect Model | Source/Cell number/Method of Delivery | Control | Outcome Measurement/Timeline | Results |
---|---|---|---|---|---|
Nakagawa et al. [90]/2015 | Micro minipig/Medial Meniscal full thickness longitudinal tear | Allogeneic Synovial MSCs/20 × 106/Suture repair +MSC suspension injection | Suture repair + Acellular suspension | Macro and Histo analysis, IMHC, TEM, MRI, Biomechanical analysis/12 weeks | Macroscopy: Scores were better in MSC group at all time points compared to control. Histology: Scores were higher in MSC group at all time points compared to control. TEM: dense collagen fibrils in MSC group, none in control. MRI: MSCs group has T1rho values closer to intact meniscus than control. Higher tensile strength in MSC group |
Hatsushika et al. [91]/2014 | Pig/Medial meniscus anterior half resection | Allogeneic Synovial MSCs/50 × 106 × 3/IA injections x3 with 2-week gaps of synovial MSCs | PBS injection | Macro and Histo analysis. IMHC TEM MRI/16 weeks | Macro: regeneration of anterior medial meniscus in both groups. Histo: better Safranin-O staining in MSC group, COL I and II staining showed larger representation in MSC group. Mod Pauli’s score was higher in MSC group. MRI: regenerate area appeared more organized in MSC group |
Ferris et al. [93]/2014 | Horse/Meniscal tear | Autologous BMSCs/15–20 × 106/Arthroscopy + IA injection of BMSCs | Previous surgical data | Return to work/24 months | 18/24 (75%) horses with meniscal lesions returned to work. 9 returned to previous level of activity |
Abdel-Hamid et al. [94]/2005 | Dog/Longitudinal full thickness meniscal tear | Autologous BMSCs/2-4ml aspirate/Injection at tear site | Tear with no treatment | Histo, IMHC/12 weeks | Better healing response in injected group compared to control. Histo: angiogenesis, collagen deposition and fibroblast proliferation in injected compared to control |
Author/Year | Animal/Defect Model | Source/Cell number/Method of Delivery | Control | Outcome Measurement/Timeline | Results |
---|---|---|---|---|---|
Zhang et al. [100]/2009 | Goat/full thickness defect in medial meniscus anterior horn | BMMSC with transfection of hIGF-1/30 × 106/mL/Calcium alginate gel into defect | Defect with nil treatment | Histo, TEM, GAG Assay MRI/16 weeks | BMMSC w/hIGF-1 group had better repair tissue without clear margin. Large number of well aligned cells within repair defect. TEM showed round oval like chondrocyte like cells. MRI: smooth continuous anterior horn Higher GAG content to control |
Moriguchi et al. [101]/2013 | Pig/4 mm cylindrical defect in medial meniscus | Synovial MSC/0.2 × 106 cells—3 weeks culture/3D matrix construct (TEC) | Nil treatment | Gross morphology Histo/6 months | TEC implanted defects showed fibrocartilaginous repair and integration compared to control. Histo: cartilage like cells with nuclei in lacuna |
Kondo et al. [102]/2017 | Monkey/Anterior horn of medial meniscus Partial Meniscectomy | Synovial MSCs/0.25 × 106/Aggregates | Nil aggerate | Macro and Histo analysis MRI/8 weeks (n = 3) 16 weeks (n = 4) | Macro: Regeneration in control and MSCs groups with MSC showed larger medial meniscus at 8 and 16 weeks. Histo: Safranin-O slight staining at 8 weeks, positive at 16 weeks. No staining in control MRI: MSC groups closer resembled intact menisci compared to control. |
Desando et al. [103]/2016 | Sheep/Unilateral medial meniscectomy | Bone marrow concentrate or BMSCs/BMC:39 × 106 BMSCs: 6 × 106/Arthrotomy Bone marrow or BMMSC in HA mesh | Nil treatment | Gross morphology Microtomography Histo Immunohistology/12 weeks | Meniscal tissue regeneration greatest in BMC + HA group. Both BMC and BMSCs group showed good cell density and proteoglycan content compared to control. BMC+ HA group had higher expression of Col II than I compared to BMSCs group. |
Author/Year | Study type/Patient number | Source/Cell Number | Method of Delivery | Outcome/Follow Up | Results |
---|---|---|---|---|---|
Vangsness et al. [108]/2014 | Randomized control trial/55 | Allogeneic MSCs derived from BMAC/A:50 × 106 B:150 × 106 | Percutaneous knee injection | MRI VAS Lysholm knee score/2 years | Significant improvement in scores at 3 months. 12-month MRI at 12 months: significant increase in meniscal volume in MSC groups compared to control |
Pak et al. [109]/2014 | Case control/1 | Abdominal liposuction/Not reported | Percutaneous knee injection | VAS, Functional rating index, ROM, MRI/18 months | At 3 months MRI showed no evidence of meniscal tear, Symptoms improved and asymptomatic at 18 months |
Centeno CJ et al. [110]/2008 | Case control/1 | Iliac crest BMAC/45.6 × 106 | Percutaneous knee injection | VAS, Functional rating index, MRI/3 months | Increased meniscus volume on MRI. Decreased VAS Score from 3.33 to 0.13 |
Onoi et al. [111]/2019 | Case report/2 | Liposuction from thigh/5.5 × 106 | Percutaneous knee injection | MRI KOOS Arthroscopy/6 months | Both patients reported better scores at 6 months follow up. 2nd look arthroscopy showed meniscal tear healing |
Sekiya et al. [112]/2019 | Case series/5 | Arthroscopically harvested Synovial Tissue/32–70 × 106 | Arthroscopic transplantation of autologous synovial MSC suspension to sutured meniscal lesion | Lysholm knee score KOOS NRS 3D MRI/24 months | Significant improvement of Lysholm score by 1 year. Other scores significantly increased by 2 years 3D MRI: Tears were indistinguishable |
Author/Year | Study Type/Patient Number | Source/Cell Number | Method of Delivery | Outcome/Follow Up | Results |
---|---|---|---|---|---|
Whitehouse et al. [113]/2017 | Case Series/5 | Iliac crest BMAC/1 × 106/cm2 | Arthroscopic MSC injection into Collagen Scaffold | IKDC Score Lysholm Score. ROM MRI/2 years | 3 patients reported significantly improved clinical outcomes and MRI imaging |
Olivos-Meza [114]/2019 | Case Series/17 | s/c G-CSF x 3 blood draws. Cell separation isolation and culture CD 90+ cells/20 × 106 | Arthroscopic implantation of MSC cell seeded polyurethane scaffold vs. acellular polyurethane scaffold | Lysholm Score MRI/12 months | Both groups improved in Lysholm scores. No intergroup difference was noted. MRI Cartigram: Improved in cell seeded scaffold at 9 months but reduced to initial value at 12 months |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacob, G.; Shimomura, K.; Krych, A.J.; Nakamura, N. The Meniscus Tear: A Review of Stem Cell Therapies. Cells 2020, 9, 92. https://doi.org/10.3390/cells9010092
Jacob G, Shimomura K, Krych AJ, Nakamura N. The Meniscus Tear: A Review of Stem Cell Therapies. Cells. 2020; 9(1):92. https://doi.org/10.3390/cells9010092
Chicago/Turabian StyleJacob, George, Kazunori Shimomura, Aaron J. Krych, and Norimasa Nakamura. 2020. "The Meniscus Tear: A Review of Stem Cell Therapies" Cells 9, no. 1: 92. https://doi.org/10.3390/cells9010092
APA StyleJacob, G., Shimomura, K., Krych, A. J., & Nakamura, N. (2020). The Meniscus Tear: A Review of Stem Cell Therapies. Cells, 9(1), 92. https://doi.org/10.3390/cells9010092