Cells in Cardiovascular Disease: Using Diversity to Confront Adversity
Funding
Conflicts of Interest
References
- Truby, L.K.; Rogers, J.G. Advanced heart failure: Epidemiology, diagnosis, and therapeutic approaches. JACC Heart Fail. 2020, 8, 523–536. [Google Scholar] [CrossRef] [PubMed]
- Kutsche, H.S.; Schreckenberg, R.; Weber, M.; Hirschhäuser, C.; Rohrbach, S.; Li, L.; Niemann, B.; Schulz, R.; Schlüter, K.-D. Alterations in glucose metabolism during the transition to heart failure: The contribution of UCP-2. Cells 2020, 9, 552. [Google Scholar] [CrossRef] [Green Version]
- García, R.; Salido-Medina, A.B.; Gil, A.; Merino, D.; Gómez, J.; Villar, A.V.; González-Vílchez, F.; Hurlé, M.A.; Nistal, J.F. Sex-specific regulation of miR-29b in the myocardium under pressure overload is associated with differential molecular, structural and functional remodeling patterns in mice and patients with aortic stenosis. Cells 2020, 9, 833. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, B.; Zhao, R.; Zhang, S.; Yu, X.Y.; Li, Y. The influence of sex on cardiac physiology and cardiovascular diseases. J. Cardiovasc. Transl. Res. 2020, 13, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-González, S.; Marín-Royo, G.; Jurado-López;, R.; Bartolomé, M.V.; Romero-Miranda, A.; Luaces, M.; Islas, F.; Nieto, M.L.; Martínez-Martínez, E.; Cachofeiro, V. The crosstalk between cardiac lipotoxicity and mitochondrial oxidative stress in the cardiac alterations in diet-induced obesity in rats. Cells 2020, 9, 451. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.J.; Cummins, C.; Radhakrishnan, R.S. Sildenafil Recovers Burn-Induced Cardiomyopathy. Cells 2020, 9, 1393. [Google Scholar] [CrossRef]
- Matilla, L.; Arrieta, V.; Jover, E.; Garcia-Peña, A.; Martinez-Martinez, E.; Sadaba, R.; Alvarez, V.; Navarro, A.; Fernandez-Celis, A.; Gainza, A.; et al. Soluble St2 induces cardiac fibroblast activation and collagen synthesis via neuropilin-1. Cells 2020, 9, 1667. [Google Scholar] [CrossRef]
- Homsak, E.; Gruson, D. Soluble ST2: A complex and diverse role in several diseases. Clin. Chim. Acta 2020, 507, 75–87. [Google Scholar] [CrossRef]
- Martin, R.; Gutierrez, B.; Cordova, C.; San Roman, A.; Alvarez, Y.; Hernandez, M.; Cachofeiro, V.; Nieto, M.L. Secreted phospholipase A2-IIA modulates transdifferentiation of cardiac fibroblast through EGFR transactivation: An inflammation-fibrosis link. Cells 2020, 9, 396. [Google Scholar] [CrossRef] [Green Version]
- Valls-Lacalle, L.; Negre-Pujol, C.; Rodríguez, C.; Varona, S.; Valera-Cañellas, A.; Consegal, M.; Martínez-González, J.; Rodríguez-Sinovas, A. Opposite effects of moderate and extreme Cx43 deficiency in conditional Cx43-deficient mice on angiotensin ii-induced cardiac fibrosis. Cells 2019, 8, 1299. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, C.; Martínez-González, J. The role of lysyl oxidase enzymes in cardiac function and remodeling. Cells 2019, 8, 1483. [Google Scholar] [CrossRef] [Green Version]
- Gallardo-Vara, E.; Gamella-Pozuelo, L.; Perez-Roque, L.; Bartha, J.L.; Garcia-Palmero, I.; Casal, J.I.; López-Novoa, J.M.; Pericacho, M.; Bernabeu, C. Potential role of circulating endoglin in hypertension via the upregulated expression of BMP4. Cells 2020, 9, 988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batlle, M.; Recarte-Pelz, P.; Roig, E.; Castel, M.A.; Cardona, M.; Farrero, M.; Ortiz, J.T.; Campos, B.; Pulgarín, M.J.; Ramírez, J.; et al. AXL receptor tyrosine kinase is increased in patients with heart failure. Int. J. Cardiol. 2014, 173, 402–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, I.M.; Wu, J.C. Generation of endothelial cells from human pluripotent stem cells. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1317–1329. [Google Scholar] [CrossRef]
- Poh, K.K.; Lee, P.S.S.; Djohan, A.H.; Galupo, M.J.; Songco, G.G.; Yeo, T.C.; Tan, H.C.; Richards, A.M.; Ye, L. Transplantation of endothelial progenitor cells in obese diabetic rats following myocardial infarction: Role of thymosin beta-4. Cells 2020, 9, 949. [Google Scholar] [CrossRef] [Green Version]
- Kutikhin, A.G.; Tupikin, A.E.; Matveeva, V.G.; Shishkova, D.K.; Antonova, L.V.; Kabilov, M.R.; Velikanova, E.A. Human peripheral blood-derived endothelial colony-forming cells are highly similar to mature vascular endothelial cells yet demonstrate a transitional transcriptomic signature. Cells 2020, 9, 876. [Google Scholar] [CrossRef] [Green Version]
- Kalucka, J.; de Rooij, R.P.; Goveia, J.; Rohlenova, K.; Dumas, S.J.; Meta, E.; Conchinha, N.V.; Taverna, F.; Teuwen, L.A.; Veys, K.; et al. Single-cell transcriptome atlas of murine endothelial cells. Cell 2020, 180, 764–779. [Google Scholar] [CrossRef]
- Alexandru, N.; Andrei, E.; Safciuc, F.; Dragan, E.; Balahura, A.M.; Badila, E.; Georgescu, A. Intravenous administration of allogenic cell-derived microvesicles of healthy origins defends against atherosclerotic cardiovascular disease development by a direct action on endothelial progenitor cells. Cells 2020, 9, 423. [Google Scholar] [CrossRef] [Green Version]
- Park, H.-J.; Kim, Y.; Kim, M.-K.; Hwang, J.J.; Kim, H.J.; Bae, S.-K.; Bae, M.-K. Inhibition of gastrin-releasing peptide attenuates phosphate-induced vascular calcification. Cells 2020, 9, 737. [Google Scholar] [CrossRef] [Green Version]
- Del Campo, L.; Sánchez-López, A.; González-Gómez, C.; Andrés-Manzano, M.J.; Dorado, B.; Andrés, V. Vascular smooth muscle cell-specific progerin expression provokes contractile impairment in a mouse model of Hutchinson-Gilford progeria syndrome that is ameliorated by nitrite treatment. Cells 2020, 9, 656. [Google Scholar] [CrossRef] [Green Version]
- Hamczyk, M.R.; del Campo, L.; Andrés, V. Aging in the Cardiovascular System: Lessons from Hutchinson-Gilford Progeria Syndrome. Annu. Rev. Physiol. 2018, 80, 27–48. [Google Scholar] [CrossRef] [PubMed]
- Marqués, J.; Cortés, A.; Pejenaute, Á.; Ansorena, E.; Abizanda, G.; Prósper, F.; Martínez-Irujo, J.J.; Miguel, C.; Zalba, G. Induction of cyclooxygenase-2 by overexpression of the human NADPH oxidase 5 (NOX5) gene in aortic endothelial cells. Cells 2020, 9, 637. [Google Scholar] [CrossRef] [Green Version]
- Actis Dato, V.; Benitez-Amaro, A.; de Gonzalo-Calvo, D.; Vazquez, M.; Bonacci, G.; Llorente-Cortés, V.; Chiabrando, G.A. LRP1-mediated aggLDL endocytosis promotes cholesteryl ester accumulation and impairs insulin response in HL-1 cells. Cells 2020, 9, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puig, N.; Montolio, L.; Camps-Renom, P.; Navarra, L.; Jiménez-Altayó, F.; Jiménez-Xarrié, E.; Sánchez-Quesada, J.L.; Benitez, S. Electronegative LDL promotes inflammation and triglyceride accumulation in macrophages. Cells 2020, 9, 583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Ramos, S.; Fernández-García, V.; Recalde, M.; Rodríguez, C.; Martínez González, J.; Andrés, V.; Martín, P.; Boscá, L. NOD1 activation compromises plaque stability and favors atherothrombosis in advanced atherogenesis. Cells 2020, 9, 2067. [Google Scholar] [CrossRef]
- González-Ramos, S.; Paz-García, M.; Rius, C.; Del Monte-Monge, A.; Rodríguez, C.; Fernández-García, V.; Andrés, V.; Martínez-González, J.; Lasunción, M.A.; Martín-Sanz, P.; et al. Endothelial NOD1 directs myeloid cell recruitment in atherosclerosis through VCAM-1. FASEB J. 2019, 33, 3912–3921. [Google Scholar] [CrossRef]
- Poels, K.; van Leent, M.; Reiche, M.E.; Kusters, P.; Huveneers, S.; de Winther, M.; Mulder, W.; Lutgens, E.; Seijkens, T.P. Antibody-mediated Inhibition of CTLA4 aggravates atherosclerotic plaque inflammation and progression in hyperlipidemic mice. Cells. 2020, 9, 1987. [Google Scholar] [CrossRef]
- Méndez-Barbero, N.; Gutiérrez-Muñoz, C.; Blázquez-Serra, R.; Martín-Ventura, J.L.; Blanco-Colio, L.M. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor-inducible 14 (Fn14) axis in cardiovascular diseases: Progress and challenges. Cells 2020, 9, 405. [Google Scholar] [CrossRef] [Green Version]
- Aluganti Narasimhulu, C.; Singla, D.K. The role of bone morphogenetic protein 7 (BMP-7) in inflammation in heart diseases. Cells 2020, 9, 280. [Google Scholar] [CrossRef] [Green Version]
- Singla, D.K.; Johnson, T.A.; Tavakoli Dargani, Z. Exosome treatment enhances anti-inflammatory M2 macrophages and reduces inflammation-induced pyroptosis in doxorubicin-induced cardiomyopathy. Cells 2019, 8, 1224. [Google Scholar] [CrossRef] [Green Version]
- Meeuwsen, J.A.; de Vries, J.; Zoet, G.A.; Franx, A.; Fauser, B.C.J.M.; Maas, A.H.E.M.; Velthuis, B.K.; Appelman, Y.E.; Visseren, F.L.; Pasterkamp, G.; et al. Circulating neutrophils do not predict subclinical coronary artery disease in women with former preeclampsia. Cells 2020, 9, 468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wernly, B.; Paar, V.; Aigner, A.; Pilz, P.M.; Podesser, B.K.; Förster, M.; Jung, C.; Pinon Hofbauer, J.; Tockner, B.; Wimmer, M.; et al. Anti-CD3 antibody treatment reduces scar formation in a rat model of myocardial infarction. Cells 2020, 9, 295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-González, J.; García de Frutos, P. Cells in Cardiovascular Disease: Using Diversity to Confront Adversity. Cells 2020, 9, 2192. https://doi.org/10.3390/cells9102192
Martínez-González J, García de Frutos P. Cells in Cardiovascular Disease: Using Diversity to Confront Adversity. Cells. 2020; 9(10):2192. https://doi.org/10.3390/cells9102192
Chicago/Turabian StyleMartínez-González, José, and Pablo García de Frutos. 2020. "Cells in Cardiovascular Disease: Using Diversity to Confront Adversity" Cells 9, no. 10: 2192. https://doi.org/10.3390/cells9102192
APA StyleMartínez-González, J., & García de Frutos, P. (2020). Cells in Cardiovascular Disease: Using Diversity to Confront Adversity. Cells, 9(10), 2192. https://doi.org/10.3390/cells9102192