GUN1 and Plastid RNA Metabolism: Learning from Genetics
Abstract
:1. Introduction
2. GUN1 and the “Δ-rpo Phenotype”
3. GUN1 and Plastid RNA Editing
4. Genetic Evidence for GUN1′s Interactions with the Plastid Protein Homeostasis Machinery
5. GUN1: A Major Checkpoint for the Control of Developmental Defects during Chloroplast Biogenesis and Mitigation of the Deleterious Effects of Stress
- GUN1 is present in very low amounts as long as chloroplast biogenesis proceeds normally, i.e., in the absence of stresses/dysfunction of developing plastids. As a matter of fact, the gun1 mutant is hardly distinguishable from wild-type plants under optimal chloroplast biogenesis conditions (Figure 2a).
- GUN1 protein levels increase when stresses and/or alterations of plastid functions occur during chloroplast biogenesis. Under these conditions, NEP activity is favored relative to PEP in the developing chloroplasts. This, together with the ensuing retrograde inhibition of photosynthesis-associated nuclear gene (PhANGs) expression, results in pale cotyledons and/or leaves in the best-case scenario. Therefore, the prevention of photo-oxidative damage seems to prevail over the optimal organization of the photosynthetic apparatus and its capacity for light absorption (Figure 2b).
- Lack of GUN1 disables, at least partially, retrograde signaling and its repressive influence on PhANGs and causes major alterations in plastid RNA metabolism, including reduced NEP activity and changes in editing levels of RNAs encoding subunits of the ATP-dependent Clp protease, the NDH complex, the ribosomes, photosystem II, and the core of the PEP enzyme (Figure 2c). When the gun1 mutation is introgressed into genetic backgrounds with defects in either the plastid protein homeostasis machinery (see as examples sca3-1, sg1, prpl11-1, prps1-1, ftsh5-3, prin2-1, bpg2-2, ftsh1-1; for further details, refer to Table 1), sugar sensing (sicy-192; for further details, refer to Table 2), or plastid osmosis (msl2 msl3; for further details, refer to Table 2), the corresponding higher-order mutants show a range of phenotypes. (i) In most cases, an exacerbated phenotype is observed, as a consequence of the fact that gun1-associated alterations are added to the impairments caused by the original mutant backgrounds as, for instance, in the case of sca3-1 gun1-102, prpl11-1 gun1-102, ftsh5-3 gun1-102 (for further details, see Table 1). (ii) In a few cases, no additive phenotype is detected, either because GUN1 activity is not required under that specific plastid perturbation, or is rather limited, as in the case of prin2-1 gun1-1, bpg2-2 gun1-101, ftsh1-1 gun1-102 (for further details, see Table 1). (iii) In a small minority of cases, a suppressor phenotype is observed as a consequence of the ability of gun1-associated alterations to mitigate the imbalances caused by the initial mutant backgrounds. This is the case of sg1 gun1-1 and prps1-1 gun1-102 double mutants and msl2 msl3 gun1-9 triple mutant.
6. Conclusions and Open Questions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Susek, R.E.; Ausubel, F.M.; Chory, J. Signal transduction mutants of arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell 1993, 74, 787–799. [Google Scholar] [CrossRef] [Green Version]
- Koussevitzky, S.; Nott, A.; Mockler, T.C.; Hong, F.; Sachetto-Martins, G.; Surpin, M.; Lim, J.; Mittler, R.; Chory, J. Signals from Chloroplasts Converge to Regulate Nuclear Gene Expression. Science 2007, 316, 715–719. [Google Scholar] [CrossRef]
- Bramley, P.M. Inhibition of carotenoid biosynthesis. In Carotenoids in Photosynthesis; Springer: Berlin/Heidelberg, Germany, 1993; pp. 127–159. [Google Scholar]
- Mulo, P.; Pursiheimo, S.; Hou, C.X.; Tyystjärvi, T.; Aro, E.M. Multiple effects of antibiotics on chloroplast and nuclear gene expression. Funct. Plant Biol. 2003, 30, 1097–1103. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.C.; Sullivan, J.A.; Wang, J.H.; Jerome, C.A.; MacLean, D.; Allen, J.F.; Horner, D.S.; Howe, C.J.; Lopez-Juez, E.; Herrmann, R.G.; et al. Coordination of plastid and nuclear gene expression. Philos. Trans. R. Soc. B Biol. Sci. 2003, 358, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Mathews, D.E.; Durbin, R.D. Tagetitoxin inhibits RNA synthesis directed by RNA polymerases from chloroplasts and Escherichia coli. J. Biol. Chem. 1990, 265, 493–498. [Google Scholar]
- Rapp, J.C.; Mullet, J.E. Chloroplast transcription is required to express the nuclear genes rbcS and cab. Plastid DNA copy number is regulated independently. Plant Mol. Biol. 1991, 17, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Allison, L.A. The role of sigma factors in plastid transcription. Biochimie 2000, 82, 537–548. [Google Scholar] [CrossRef]
- Lysenko, E.A. Plant sigma factors and their role in plastid transcription. Plant Cell Rep. 2007, 26, 845–859. [Google Scholar] [CrossRef] [PubMed]
- Chi, W.; He, B.; Mao, J.; Jiang, J.; Zhang, L. Plastid sigma factors: Their individual functions and regulation in transcription. Biochim. Biophys. Acta Bioenerg. 2015, 1847, 770–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodson, J.D.; Perez-Ruiz, J.M.; Schmitz, R.J.; Ecker, J.R.; Chory, J. Sigma factor-mediated plastid retrograde signals control nuclear gene expression. Plant J. 2013, 73, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Huang, J.; Chory, J. GUN1 interacts with MORF2 to regulate plastid RNA editing during retrograde signaling. Proc. Natl. Acad. Sci. USA 2019, 116, 10162–10167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loudya, N.; Okunola, T.; He, J.; Jarvis, P.; López-Juez, E. Retrograde signalling in a virescent mutant triggers an anterograde delay of chloroplast biogenesis that requires GUN1 and is essential for survival. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190400. [Google Scholar] [CrossRef] [PubMed]
- Tadini, L.; Peracchio, C.; Trotta, A.; Colombo, M.; Mancini, I.; Jeran, N.; Costa, A.; Faoro, F.; Marsoni, M.; Vannini, C.; et al. GUN1 influences the accumulation of NEP-dependent transcripts and chloroplast protein import in Arabidopsis cotyledons upon perturbation of chloroplast protein homeostasis. Plant J. 2020, 101, 1198–1220. [Google Scholar] [CrossRef] [PubMed]
- Tadini, L.; Jeran, N.; Peracchio, C.; Masiero, S.; Colombo, M.; Pesaresi, P. The plastid transcription machinery and its coordination with the expression of nuclear genome: Plastid-Encoded Polymerase, Nuclear-Encoded Polymerase and the Genomes Uncoupled 1-mediated retrograde communication. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190399. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Huang, J.; Chory, J. Unraveling the Linkage between Retrograde Signaling and RNA Metabolism in Plants. Trends Plant Sci. 2020, 25, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Tadini, L.; Pesaresi, P.; Kleine, T.; Rossi, F.; Guljamow, A.; Sommer, F.; Mühlhaus, T.; Schroda, M.; Masiero, S.; Pribil, M.; et al. GUN1 Controls Accumulation of the Plastid Ribosomal Protein S1 at the Protein Level and Interacts with Proteins Involved in Plastid Protein Homeostasis. Plant Physiol. 2016, 170, 1817–1830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allison, L.A.; Simon, L.D.; Maliga, P. Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J. 1996, 15, 2802–2809. [Google Scholar] [CrossRef]
- Hajdukiewicz, P.T.J.; Allison, L.A.; Maliga, P. The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J. 1997, 16, 4041–4048. [Google Scholar] [CrossRef] [Green Version]
- De Santis-Maciossek, G.; Kofer, W.; Bock, A.; Schoch, S.; Maier, R.M.; Wanner, G.; Rüdiger, W.; Koop, H.U.; Herrmann, R.G. Targeted disruption of the plastid RNA polymerase genes rpoA, B and C1: Molecular biology, biochemistry and ultrastructure. Plant J. 1999, 18, 477–489. [Google Scholar] [CrossRef] [Green Version]
- Lerbs-Mache, S. Function of plastid sigma factors in higher plants: Regulation of gene expression or just preservation of constitutive transcription? Plant Mol. Biol. 2011, 76, 235–249. [Google Scholar] [CrossRef]
- Steiner, S.; Schroter, Y.; Pfalz, J.; Pfannschmidt, T. Identification of Essential Subunits in the Plastid-Encoded RNA Polymerase Complex Reveals Building Blocks for Proper Plastid Development. Plant Physiol. 2011, 157, 1043–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kindgren, P.; Kremnev, D.; Blanco, N.E.; de Dios Barajas López, J.; Fernández, A.P.; Tellgren-Roth, C.; Small, I.; Strand, Å. The plastid redox insensitive 2 mutant of Arabidopsis is impaired in PEP activity and high light-dependent plastid redox signalling to the nucleus. Plant J. 2012, 70, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Díaz, M.G.; Hernández-Verdeja, T.; Kremnev, D.; Crawford, T.; Dubreuil, C.; Strand, Å. Redox regulation of PEP activity during seedling establishment in Arabidopsis thaliana. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Zhang, L. The PPR protein PDM1 is involved in the processing of rpoA pre-mRNA in Arabidopsis thaliana. Chin. Sci. Bull. 2010, 55, 3485–3489. [Google Scholar] [CrossRef]
- Schweer, J.; Geimer, S.; Meurer, J.; Link, G. Arabidopsis mutants carrying chimeric sigma factor genes reveal regulatory determinants for plastid gene expression. Plant Cell Physiol. 2009, 50, 1382–1386. [Google Scholar] [CrossRef] [Green Version]
- Pfalz, J.; Liere, K.; Kandlbinder, A.; Dietz, K.J.; Oelmüller, R. pTAC2, -6, and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell 2006, 18, 176–197. [Google Scholar] [CrossRef] [Green Version]
- Pyo, Y.J.; Kwon, K.C.; Kim, A.; Cho, M.H. Seedling lethal1, a pentatricopeptide repeat protein lacking an E/E+ or DYW domain in Arabidopsis, is involved in plastid gene expression and early chloroplast development. Plant Physiol. 2013, 163, 1844–1858. [Google Scholar] [CrossRef] [Green Version]
- Myouga, F.; Hosoda, C.; Umezawa, T.; Iizumi, H.; Kuromori, T.; Motohashi, R.; Shono, Y.; Nagata, N.; Ikeuchi, M.; Shinozaki, K. A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in arabidopsis. Plant Cell 2008, 20, 3148–3162. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Cheng, Y.; Yap, A.; Chateigner-Boutin, A.L.; Delannoy, E.; Hammani, K.; Small, I.; Huang, J. The Arabidopsis gene YS1 encoding a DYW protein is required for editing of rpoB transcripts and the rapid development of chloroplasts during early growth. Plant J. 2009, 58, 82–96. [Google Scholar] [CrossRef]
- Ramos-Vega, M.; Guevara-García, A.; Llamas, E.; Sánchez-León, N.; Olmedo-Monfil, V.; Vielle-Calzada, J.P.; León, P. Functional analysis of the Arabidopsis thaliana CHLOROPLAST BIOGENESIS 19 pentatricopeptide repeat editing protein. New Phytol. 2015, 208, 430–441. [Google Scholar] [CrossRef]
- Small, I.D.; Schallenberg-Rüdinger, M.; Takenaka, M.; Mireau, H.; Ostersetzer-Biran, O. Plant organellar RNA editing: What 30 years of research has revealed. Plant J. 2020, 101, 1040–1056. [Google Scholar] [CrossRef]
- Kakizaki, T.; Yazu, F.; Nakayama, K.; Ito-Inaba, Y.; Inaba, T. Plastid signalling under multiple conditions is accompanied by a common defect in RNA editing in plastids. J. Exp. Bot. 2012, 63, 251–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Q.B.; Jiang, Y.; Chong, K.; Yang, Z.N. AtECB2, a pentatricopeptide repeat protein, is required for chloroplast transcript accd rna editing and early chloroplast biogenesis in arabidopsis thaliana. Plant J. 2009, 59, 1011–1023. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.C.; Sung, T.Y.; Li, Y.C.; Hsu, S.J.; Lin, C.L.; Hsieh, M.H. Editing of accD and ndhF chloroplast transcripts is partially affected in the Arabidopsis vanilla cream1 mutant. Plant Mol. Biol. 2010, 73, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Takenaka, M.; Zehrmann, A.; Verbitskiy, D.; Kugelmann, M.; Härtel, B.; Brennicke, A. Multiple organellar RNA editing factor (MORF) family proteins are required for RNA editing in mitochondria and plastids of plants. Proc. Natl. Acad. Sci. USA 2012, 109, 5104–5109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chateigner-Boutin, A.L.; Ramos-Vega, M.; Guevara-García, A.; Andrés, C.; Gutiérrez-Nava, M.D.L.L.; Cantero, A.; Delannoy, E.; Jiménez, L.F.; Lurin, C.; Small, I.; et al. CLB19, a pentatricopeptide repeat protein required for editing of rpoA and clpP chloroplast transcripts. Plant J. 2008, 56, 590–602. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Xu, F.; Guan, L.; Qian, P.; Liu, Y.; Zhang, H.; Huang, Y.; Hou, S. The tetratricopeptide repeat-containing protein slow green1 is required for chloroplast development in Arabidopsis. J. Exp. Bot. 2014, 65, 1111–1123. [Google Scholar] [CrossRef] [Green Version]
- Llamas, E.; Pulido, P.; Rodriguez-Concepcion, M. Interference with plastome gene expression and Clp protease activity in Arabidopsis triggers a chloroplast unfolded protein response to restore protein homeostasis. PLoS Genet. 2017, 13, e1007022. [Google Scholar] [CrossRef]
- Wang, J.; Xia, H.; Zhao, S.Z.; Hou, L.; Zhao, C.Z.; Ma, C.L.E.; Wang, X.J.; Li, P.C. A role of GUNs-Involved retrograde signaling in regulating Acetyl-CoA carboxylase 2 in Arabidopsis. Biochem. Biophys. Res. Commun. 2018, 505, 712–719. [Google Scholar] [CrossRef]
- Paieri, F.; Tadini, L.; Manavski, N.; Kleine, T.; Ferrari, R.; Morandini, P.; Pesaresi, P.; Meurer, J.; Leister, D. The DEAD-box RNA helicase RH50 is a 23S-4.5S rRNA maturation factor that functionally overlaps with the plastid signaling factor GUN1. Plant Physiol. 2018, 176, 634–648. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Xu, D.; Liu, Z.; Kleine, T.; Leister, D. Functional relationship between mTERF4 and GUN1 in retrograde signaling. J. Exp. Bot. 2016, 67, 3909–3924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marino, G.; Naranjo, B.; Wang, J.; Penzler, J.F.; Kleine, T.; Leister, D. Relationship of GUN1 to FUG1 in chloroplast protein homeostasis. Plant J. 2019, 99, 521–535. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.Z.; Meyer, E.H.; Richter, A.S.; Schuster, M.; Ling, Q.; Schöttler, M.A.; Walther, D.; Zoschke, R.; Grimm, B.; Jarvis, R.P.; et al. Control of retrograde signalling by protein import and cytosolic folding stress. Nat. Plants 2019, 5, 525–538. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Sakamoto, W. FtsH protease in the thylakoid membrane: Physiological functions and the regulation of protease activity. Front. Plant Sci. 2018, 9, 855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinti, G.; Hills, A.; Campbell, S.; Bowyer, J.R.; Mochizuki, N.; Chory, J.; López-Juez, E. Interactions between hy1 and gun mutants of Arabidopsis, and their implications for plastid/nuclear signalling. Plant J. 2008, 24, 883–894. [Google Scholar] [CrossRef]
- Mochizuki, N.; Brusslan, J.A.; Larkin, R.; Nagatani, A.; Chory, J. Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc. Natl. Acad. Sci. USA 2001, 98, 2053–2058. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.E.; Mixdorf, M.; Berg, R.H.; Haswell, E.S. Plastid osmotic stress influences cell differentiation at the plant shoot apex. Development 2016, 143, 3382–3393. [Google Scholar] [CrossRef] [Green Version]
- Maruta, T.; Miyazaki, N.; Nosaka, R.; Tanaka, H.; Padilla-Chacon, D.; Otori, K.; Kimura, A.; Tanabe, N.; Yoshimura, K.; Tamoi, M.; et al. A gain-of-function mutation of plastidic invertase alters nuclear gene expression with sucrose treatment partially via GENOMES UNCOUPLED1-mediated signaling. New Phytol. 2015, 206, 1013–1023. [Google Scholar] [CrossRef]
- Tameshige, T.; Fujita, H.; Watanabe, K.; Toyokura, K.; Kondo, M.; Tatematsu, K.; Matsumoto, N.; Tsugeki, R.; Kawaguchi, M.; Nishimura, M.; et al. Pattern Dynamics in Adaxial-Abaxial Specific Gene Expression Are Modulated by a Plastid Retrograde Signal during Arabidopsis thaliana Leaf Development. PLoS Genet. 2013, 9, e1003655. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.Z.; Chalvin, C.; Hoelscher, M.; Meyer, E.H.; Wu, X.N.; Bock, R. Control of retrograde signaling by rapid turnover of GENOMES UNCOUPLED1. Plant Physiol. 2018, 176, 2472–2495. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, S.; Bédard, J.; Hirano, M.; Hirabayashi, Y.; Oishi, M.; Imai, M.; Takase, M.; Ide, T.; Nakai, M. Uncovering the protein translocon at the chloroplast inner envelope membrane. Science 2013, 339, 571–574. [Google Scholar] [CrossRef]
- Ramundo, S.; Rochaix, J.D. Chloroplast unfolded protein response, a new plastid stress signaling pathway? Plant Signal. Behav. 2014, 9, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Ramundo, S.; Casero, D.; Muhlhaus, T.; Hemme, D.; Sommer, F.; Crevecoeur, M.; Rahire, M.; Schroda, M.; Rusch, J.; Goodenough, U.; et al. Conditional Depletion of the Chlamydomonas Chloroplast ClpP Protease Activates Nuclear Genes Involved in Autophagy and Plastid Protein Quality Control. Plant Cell 2014, 26, 2201–2222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perlaza, K.; Toutkoushian, H.; Boone, M.; Lam, M.; Iwai, M.; Jonikas, M.C.; Walter, P.; Ramundo, S. The mars1 kinase confers photoprotection through signaling in the chloroplast unfolded protein response. eLife 2019, 8. [Google Scholar] [CrossRef]
- Miki, D.; Zhang, W.; Zeng, W.; Feng, Z.; Zhu, J.K. CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef]
- Colombo, M.; Tadini, L.; Peracchio, C.; Ferrari, R.; Pesaresi, P. GUN1, a Jack-Of-All-Trades in Chloroplast Protein Homeostasis and Signaling. Front. Plant. Sci. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Locus | Function | Single Mutant Name and Phenotype | Double Mutant Phenotype | Additive (A) or Suppressor (S) Effect | Physical Interaction | Ref. |
---|---|---|---|---|---|---|
Plastid Transcription | ||||||
At2g24120 | NEP: Nucleus- encoded RNA polymerase | sca3-1d: pale cotyledons; reduced growth | albino-seedling lethal | A | Yes | [14] |
At1g08540 | SIG2: determines PEP promoter specificity | sig2-2b: pale cotyledons; reduced growth | paler green/yellow cotyledons and young leaves | A | No | [11] |
At2g36990 | SIG6: determines PEP promoter specificity | sig6-1b: identical to WT | yellow/white cotyledons | A | No | [11] |
At3g18420 | SG1: chloroplast-localized, tetratricopeptide repeat-containing protein required for chloroplast development; involved in the regulation of plastid gene expression | sg1a: slow green1—newly formed albino leaves gradually turn pale-green and are fully green at 3 weeks after germination; reduced growth | the delayed-greening phenotype of the sg1 single mutant is alleviated; leaves of sg1 gun1 are of similar green color to the leaves of WT plants | S | No | [38] |
At1g10522 | PRIN2: regulates PEP activity | prin2-1a: yellow/white cotyledons; reduced growth | identical to prin2-1 single mutant | No effect | No | [23] |
Plastid Transcript Maturation/Editing | ||||||
Unknown | Cab-underexpressed 8 (Cue8): chloroplast development | cue8a: virescent-delayed greening; reduced growth; altered RNA editing | albino-seedling lethal | A | Unknown | [13] |
At3g03710 | RIF10: exoribonuclease—processing of plastid RNA | rif10-2c: green cotyledons and pale true leaves; reduced growth | albino-seedling lethal | A | No | [39] |
At3g57180 | BPG2: regulates ribosomal RNA maturation | bpg2-2c: pale green/yellow cotyledons | identical to bpg2-2 single mutant | No effect | No | [40] |
At3g06980 | RH50: modulates RNA secondary structure | rh50-1d: identical to WT | marked reduction of growth rate | A | No | [41] |
At4g02990 | mTERF4: processing of plastid transcripts | coe1/mterf4e: pale-yellow cotyledons and leaves; reduced growth | more severe pale-yellow phenotype; reduced growth | A | No | [42] |
Plastid Translation | ||||||
At1g17220 | FUG1: chloroplast translation initiation factor | fug1-3e: pale-green cotyledons and leaves; reduced growth | yellow cotyledons and leaves; enhanced reduction of growth rate and photosynthesis performance | A | Yes | [17,43] |
At1g32990 | PRPL11: plastid ribosomal protein L11 | prpl11-1d: pale-green cotyledons and leaves; reduced growth | albino-seedling lethal | A | No | [17] |
At5g30510 | PRPS1: plastid ribosomal protein S1 | prps1-1d: pale green cotyledons and leaves; reduced growth | less severe pale cotyledons and leaves; increased growth | S | Yes | [17] |
At3g27160 | PRPS21: plastid ribosomal protein S21 | prps21-1d: pale green cotyledons and leaves; reduced growth | identical to prps21-1 single mutant | No effect | No | [17] |
At5g54600 | PRPL24: plastid ribosomal protein L24 | prpl24-1d: pale green cotyledons and leaves; reduced growth | albino-seedling lethal | A | No | [41] |
At1g79850 | PRPS17: plastid ribosomal protein S17 | prps17-1d: pale green cotyledons and leaves; reduced growth | albino-seedling lethal | A | No | [41] |
Plastid Protein Import | ||||||
At5g16620 | Tic40: subunit of the plastid protein import apparatus | tic40-4c: pale-green cotyledons and leaves; reduced growth | embryo-lethal | A | No | [44] |
At4g02510 | Toc159: plastid protein import receptor | ppi2-2c: albino-seedling lethal | embryo-lethal | A | No | [33] |
At4g24280 | cpHSC70-1: plastid protein import and folding | cphsc70-1c,d: altered cotyledon and leaf shape; slight variegation | much smaller cotyledons; larger variegation; reduced growth | A | Yes | [14,44] |
At5g50920 | CLPC1: protein import into chloroplast stroma | clpc1-1c: pale-green cotyledons and leaves; reduced growth | reduced photosynthetic performance; reduced growth | A | Yes | [44] |
Plastid Protein Degradation | ||||||
At1g50250 | FTSH1: subunit of the thylakoid-associated heteromeric FTSH protease | ftsh1-1d: cotyledons identical to WT | identical to ftsh1-1 single mutant | No effect | No | [14] |
At2g30950 | FTSH2: subunit of the thylakoid-associated heteromeric FTSH protease | ftsh2-3b: pale-green and small cotyledons, reduced growth | albino-seedling lethal | A | No | [14] |
At5g42270 | FTSH5: subunit of the thylakoid-associated heteromeric FTSH protease | ftsh5-3d: cotyledons identical to WT | severely variegated cotyledons | A | No | [14] |
At1g06430 | FTSH8: subunit of the thylakoid-associated heteromeric FTSH protease | ftsh8-1d: cotyledons identical to WT | identical to ftsh8-1 single mutant | No effect | No | [14] |
At1g49970 | CLPR1: subunit of the chloroplastic endopeptidase Clp complex | clpr1c: pale-green and small cotyledons; reduced growth | albino-seedling lethal | A | No | [39] |
Locus | Function | Single Mutant Name and Phenotype | Double Mutant Phenotype | Additive (A), Suppressor (S) Effect | Physical Interaction | Ref. |
---|---|---|---|---|---|---|
Tetrapyrrole Biosynthesis | ||||||
At2g26670 | GUN2: heme oxygenase | gun2a: long hypocotyl; pale green cotyledons; reduced growth | identical to gun2 | No effect | No | [46] |
At3g59400 | GUN4: regulates Mg-chelatase | gun4a: pale green cotyeldons and leves; reduced growth | identical to gun4 | No effect | No | [47] |
At5g13630 | GUN5: ChlH subunit of Mg-chelatase | gun5a: pale green cotyledons and leaves; reduced growth | identical to gun5 | No effect | No | [47] |
Other Plastid Functions | ||||||
At5g10490; At1g58200 | MSL2 and MSL3: two members of the MscS-like family of mechanosensitive ion channels. They are localized in the plastid envelope and are required for normal plastid size and shape | msl2 msl3b: enlarged and deformed plastids in the shoot apical meristem; develop a mass of callus tissue at the shoot apex | abolished callus formation at the shoot apex; larger, greener, and more normally shaped true leaves | S | No | [48] |
At5g22510 | INV-E: a chloroplast-targeted alkaline/neutral invertase that is implicated in the development of the photosynthetic apparatus | sicy-192c: sugar-inducible cotyledon yellow-192 mutant: yellow cotyledons upon treatment with sucrose; gain of function mutant of plastid invertase | enhanced cotyledon phenotype due to a further decrease of chlorophyll content | A | No | [49] |
At1g31410 | ENF2: a chloroplast-targeted protein similar to bacterial polyamine transporters; important for plastid gene expression | enf2-1a: enlarged fil expression domain2 mutant—mature leaves are pale green, more serrated, and narrower than WT; in less than 1% of cases, enf2-1 forms needle-like leaves; chloroplast development is delayed | albino-seedling lethal | A | No | [50] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tadini, L.; Jeran, N.; Pesaresi, P. GUN1 and Plastid RNA Metabolism: Learning from Genetics. Cells 2020, 9, 2307. https://doi.org/10.3390/cells9102307
Tadini L, Jeran N, Pesaresi P. GUN1 and Plastid RNA Metabolism: Learning from Genetics. Cells. 2020; 9(10):2307. https://doi.org/10.3390/cells9102307
Chicago/Turabian StyleTadini, Luca, Nicolaj Jeran, and Paolo Pesaresi. 2020. "GUN1 and Plastid RNA Metabolism: Learning from Genetics" Cells 9, no. 10: 2307. https://doi.org/10.3390/cells9102307
APA StyleTadini, L., Jeran, N., & Pesaresi, P. (2020). GUN1 and Plastid RNA Metabolism: Learning from Genetics. Cells, 9(10), 2307. https://doi.org/10.3390/cells9102307