Dysbindin deficiency Alters Cardiac BLOC-1 Complex and Myozap Levels in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Genotyping
2.3. Antibodies
2.4. Protein Isolation and Western Blotting
2.5. RNA Isolation and qRT-PCR
2.6. Transverse Aortic Constriction, Phenylephrine (PE) Osmotic Pump Implantation and Echocardiography
2.7. Electron Microscopy
2.8. Statistical Analyses
3. Results
3.1. Dysbindin-Deficient Mice do not Exhibit Altered Cardiac Phenotype at Baseline
3.2. Dysbindin Deficiency Does not Alter Cardiac Hypertrophy Due to Pressure Overload
3.3. Dysbindin Deficiency Does not Alter Cardiac Hypertrophy Due to Phenylephrine (PE) Treatment
3.4. Myozap and BLOC-1 Complex Are Dysregulated after Knock-Out of Dysbindin
4. Discussion
5. Summary
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nakamura, M.; Sadoshima, J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat. Rev. Cardiol. 2018, 15, 387–407. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, B.C.; Weeks, K.L.; Pretorius, L.; McMullen, J.R. Molecular distinction between physiological and pathological cardiac hypertrophy: Experimental findings and therapeutic strategies. Pharmacol. Ther. 2010, 128, 191–227. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, I.; Minamino, T. Physiological and pathological cardiac hypertrophy. J. Mol. Cell. Cardiol. 2016, 97, 245–262. [Google Scholar] [CrossRef] [PubMed]
- Yalcin, F.; Kucukler, N.; Cingolani, O.; Mbiyangadu, B.; Sorensen, L.; Pinherio, A.; Abraham, M.R.; Abraham, T.P. Evolution of ventricular hypertrophy and myocardial mechanics in physiological and pathological hypertrophy. J. Appl. Physiol. 2019, 126, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Li, A.; Zhang, S.X.; Schwartz, R.J. Serum response factor micromanaging cardiogenesis. Curr. Opin. Cell Biol. 2007, 19, 618–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Jardin, B.D.; Zhou, P.; Sethi, I.; Akerberg, B.N.; Toepfer, C.N.; Ai, Y.; Li, Y.; Ma, Q.; Guatimosim, S.; et al. Hierarchical and stage-specific regulation of murine cardiomyocyte maturation by serum response factor. Nat. Commun. 2018, 9, 3837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frey, N.; Olson, E.N. Cardiac hypertrophy: The good, the bad, and the ugly. Annu. Rev. Physiol. 2003, 65, 45–79. [Google Scholar] [CrossRef]
- Seeger, T.S.; Frank, D.; Rohr, C.; Will, R.; Just, S.; Grund, C.; Lyon, R.; Luedde, M.; Koegl, M.; Sheikh, F.; et al. Myozap, a novel intercalated disc protein, activates serum response factor-dependent signaling and is required to maintain cardiac function in vivo. Circ. Res. 2010, 106, 880–890. [Google Scholar] [CrossRef]
- Borlepawar, A.; Rangrez, A.Y.; Bernt, A.; Christen, L.; Sossalla, S.; Frank, D.; Frey, N. TRIM24 protein promotes and TRIM32 protein inhibits cardiomyocyte hypertrophy via regulation of dysbindin protein levels. J. Biol. Chem. 2017, 292, 10180–10196. [Google Scholar] [CrossRef] [Green Version]
- Kluge, A.; Rangrez, A.Y.; Kilian, L.S.; Pott, J.; Bernt, A.; Frauen, R.; Rohrbeck, A.; Frey, N.; Frank, D. Rho-family GTPase 1 (Rnd1) is a biomechanical stress-sensitive activator of cardiomyocyte hypertrophy. J. Mol. Cell. Cardiol. 2019, 129, 130–143. [Google Scholar] [CrossRef]
- Rangrez, A.Y.; Bernt, A.; Poyanmehr, R.; Harazin, V.; Boomgaarden, I.; Kuhn, C.; Rohrbeck, A.; Frank, D.; Frey, N. Dysbindin is a potent inducer of RhoA-SRF-mediated cardiomyocyte hypertrophy. J. Cell Biol. 2013, 203, 643–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langemeyer, L.; Ungermann, C. BORC and BLOC-1: Shared subunits in trafficking complexes. Dev. Cell. 2015, 33, 121–122. [Google Scholar] [CrossRef] [Green Version]
- Dell’Angelica, E.C. The building BLOC(k)s of lysosomes and related organelles. Curr. Opin. Cell Biol. 2004, 16, 458–464. [Google Scholar] [CrossRef]
- John Peter, A.T.; Lachmann, J.; Rana, M.; Bunge, M.; Cabrera, M.; Ungermann, C. The BLOC-1 complex promotes endosomal maturation by recruiting the Rab5 GTPase-activating protein Msb3. J. Cell Biol. 2013, 201, 97–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghiani, C.A.; Starcevic, M.; Rodriguez-Fernandez, I.A.; Nazarian, R.; Cheli, V.T.; Chan, L.N.; Malvar, J.S.; de Vellis, J.; Sabatti, C.; Dell’Angelica, E.C. The dysbindin-containing complex (BLOC-1) in brain: Developmental regulation, interaction with SNARE proteins and role in neurite outgrowth. Mol. Psychiatry 2010, 15, 204–215. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.H.; Nemecek, D.; Schindler, C.; Smith, W.J.; Ghirlando, R.; Steven, A.C.; Bonifacino, J.S.; Hurley, J.H. Assembly and architecture of biogenesis of lysosome-related organelles complex-1 (BLOC-1). J. Biol. Chem. 2012, 287, 5882–5890. [Google Scholar] [CrossRef] [Green Version]
- Starcevic, M.; Dell’Angelica, E.C. Identification of snapin and three novel proteins (BLOS1, BLOS2, and BLOS3/reduced pigmentation) as subunits of biogenesis of lysosome-related organelles complex-1 (BLOC-1). J. Biol. Chem. 2004, 279, 28393–28401. [Google Scholar] [CrossRef] [Green Version]
- Arnold, S.E.; Talbot, K.; Hahn, C.G. Neurodevelopment, neuroplasticity, and new genes for schizophrenia. Prog. Brain Res. 2005, 147, 319–345. [Google Scholar] [PubMed]
- Fei, E.K.; Ma, X.; Zhu, C.; Xue, T.; Yan, J.; Xu, Y.; Zhou, J.; Wng, G. Nucleocytoplasmic Shuttling of Dysbindin-1, a Schizophrenia-related Protein, Regulates Synapsin I Expression. J. Biol. Chem. 2010, 285, 38630–38640. [Google Scholar] [CrossRef] [Green Version]
- Ghiani, C.A.; Dell’Angelica, E.C. Dysbindin-containing complexes and their proposed functions in brain: From zero to (too) many in a decade. Asn. Neuro. 2011, 3, 109–124. [Google Scholar] [CrossRef]
- Carlson, G.C.; Talbot, K.; Halene, T.B.; Gandal, M.J.; Kazi, H.A.; Schlosser, L.; Phung, Q.H.; Gur, R.E.; Arnold, S.E.; Siegel, S.J. Dysbindin-1 mutant mice implicate reduced fast-phasic inhibition as a final common disease mechanism in schizophrenia. Proc. Natl. Acad. Sci. USA 2011, 108, E962–E970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talbot, K. The sandy (sdy) mouse: A dysbindin-1 mutant relevant to schizophrenia research. Prog. Brain Res. 2009, 179, 87–94. [Google Scholar] [PubMed]
- Papaleo, F.; Yang, F.; Garcia, S.; Chen, J.; Lu, B.; Crawley, J.N.; Weinberger, D.R. Dysbindin-1 modulates prefrontal cortical activity and schizophrenia-like behaviors via dopamine/D2 pathways. Mol. Psychiatry. 2012, 17, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Falcon-Perez, J.M.; Starcevic, M.; Gautam, R.; Dell’Angelica, E.C. BLOC-1, a novel complex containing the pallidin and muted proteins involved in the biogenesis of melanosomes and platelet-dense granules. J. Biol. Chem. 2002, 277, 28191–28199. [Google Scholar] [CrossRef] [Green Version]
- Benson, M.A.; Newey, S.E.; Martin-Rendon, E.; Hawkes, R.; Blake, D.J. Dysbindin, a novel coiled-coil-containing protein that interacts with the dystrobrevins in muscle and brain. J. Biol. Chem. 2001, 276, 24232–24241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owen, M.J.; Williams, N.M.; O’Donovan, M.C. Dysbindin-1 and schizophrenia: From genetics to neuropathology. J. Clin. Investig. 2004, 113. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhang, X.; Gross, S.; Houser, S.R.; Soboloff, J. Acetylation of SERCA2a, Another Target for Heart Failure Treatment? Circ. Res. 2019, 124, 1285–1287. [Google Scholar] [CrossRef]
- Gorski, P.A.; Jang, S.P.; Jeong, D.; Lee, A.; Lee, P.; Oh, J.G.; Chepurko, V.; Yang, D.K.; Kwak, T.H.; Eom, S.H.; et al. Role of SIRT1 in Modulating Acetylation of the Sarco-Endoplasmic Reticulum Ca(2+)-ATPase in Heart Failure. Circ. Res. 2019, 124, e63–e80. [Google Scholar] [CrossRef]
- Hayward, C.; Patel, H.; Lyon, A. Gene therapy in heart failure. SERCA2a as a therapeutic target. Circ. J. 2014, 78, 2577–2587. [Google Scholar] [CrossRef] [Green Version]
- Shareef, M.A.; Anwer, L.A.; Poizat, C. Cardiac SERCA2A/B: Therapeutic targets for heart failure. Eur. J. Pharmacol. 2014, 724, 1–8. [Google Scholar] [CrossRef]
- Teng, A.C.; Miyake, T.; Yokoe, S.; Zhang, L.; Rezende, L.M.; Sharma, P.; MacLennan, D.H.; Liu, P.P.; Gramolini, A.O. Metformin increases degradation of phospholamban via autophagy in cardiomyocytes. Proc. Natl. Acad. Sci. USA 2015, 112, 7165–7170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwadlo, C.; Borlak, J. Disease-associated changes in the expression of ion channels, ion receptors, ion exchangers and Ca(2+)-handling proteins in heart hypertrophy. Toxicol Appl Pharm. 2005, 207, 244–256. [Google Scholar] [CrossRef]
- Gerrish, A.; Williams, H.; Moskvina, V.; Owen, M.J.; O’Donovan, M.C.; Williams, N.M. An examination of MUTED as a schizophrenia susceptibility gene. Schizophr. Res. 2009, 107, 110–111. [Google Scholar] [CrossRef]
- Iizuka, Y.; Sei, Y.; Weinberger, D.R.; Straub, R.E. Evidence that the BLOC-1 protein dysbindin modulates dopamine D2 receptor internalization and signaling but not D1 internalization. J. Neurosci. 2007, 27, 12390–12395. [Google Scholar] [CrossRef] [PubMed]
- Larimore, J.; Zlatic, S.A.; Gokhale, A.; Tornieri, K.; Singleton, K.S.; Mullin, A.P.; Tang, J.; Talbot, K.; Faundez, V. Mutations in the BLOC-1 subunits dysbindin and muted generate divergent and dosage-dependent phenotypes. J. Biol. Chem. 2014, 289, 14291–14300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheggia, D.; Mastrogiacomo, R.; Mereu, M.; Sannino, S.; Straub, R.E.; Armando, M.; Manago, F.; Guadagna, S.; Piras, F.; Zhang, F.; et al. Variations in Dysbindin-1 are associated with cognitive response to antipsychotic drug treatment. Nat. Commun. 2018, 9, 2265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Numakawa, T.; Yagasaki, Y.; Ishimoto, T.; Okada, T.; Suzuki, T.; Iwata, N.; Ozaki, N.; Taguchi, T.; Tatsumi, M.; Kamijima, K.; et al. Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Hum. Mol. Genet. 2004, 13, 2699–2708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furst, B.A.; Champion, K.M.; Pierre, J.M.; Wirshing, D.A.; Wirshing, W.C. Possible association of QTc interval prolongation with co-administration of quetiapine and lovastatin. Biol. Psychiatry. 2002, 51, 264–265. [Google Scholar] [CrossRef]
- Kang, U.G.; Kwon, J.S.; Ahn, Y.M.; Chung, S.J.; Ha, J.H.; Koo, Y.J.; Kim, Y.S. Electrocardiographic abnormalities in patients treated with clozapine. J. Clin. Psychiatry. 2000, 61, 441–446. [Google Scholar] [CrossRef]
- Di Pietro, S.M.; Falcon-Perez, J.M.; Tenza, D.; Setty, S.R.; Marks, M.S.; Raposo, G.; Dell’Angelica, E.C. BLOC-1 interacts with BLOC-2 and the AP-3 complex to facilitate protein trafficking on endosomes. Mol. Biol. Cell. 2006, 17, 4027–4038. [Google Scholar] [CrossRef] [Green Version]
- Nazarian, R.; Falcon-Perez, J.M.; Dell’Angelica, E.C. Biogenesis of lysosome-related organelles complex 3 (BLOC-3): A complex containing the Hermansky-Pudlak syndrome (HPS) proteins HPS1 and HPS4. Proc. Natl. Acad. Sci. USA 2003, 100, 8770–8775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dennis, M.K.; Mantegazza, A.R.; Snir, O.L.; Tenza, D.; Acosta-Ruiz, A.; Delevoye, C.; Zorger, R.; Sitaram, A.; Jesus-Rojas, W.; Ravichandran, K.; et al. BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery. J. Cell Biol. 2015, 209, 563–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rangrez, A.Y.; Eden, M.; Poyanmehr, R.; Kuhn, C.; Stiebeling, K.; Dierck, F.; Bernt, A.; Lellmann-Rauch, R.; Weiler, H.; Kirchof, P.; et al. Myozap Deficiency Promotes Adverse Cardiac Remodeling via Differential Regulation of Mitogen-activated Protein Kinase/Serum-response Factor and beta-Catenin/GSK-3beta Protein Signaling. J. Biol. Chem. 2016, 291, 4128–4143. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borlepawar, A.; Schmiedel, N.; Eden, M.; Christen, L.; Rosskopf, A.; Frank, D.; Lüllmann-Rauch, R.; Frey, N.; Rangrez, A.Y. Dysbindin deficiency Alters Cardiac BLOC-1 Complex and Myozap Levels in Mice. Cells 2020, 9, 2390. https://doi.org/10.3390/cells9112390
Borlepawar A, Schmiedel N, Eden M, Christen L, Rosskopf A, Frank D, Lüllmann-Rauch R, Frey N, Rangrez AY. Dysbindin deficiency Alters Cardiac BLOC-1 Complex and Myozap Levels in Mice. Cells. 2020; 9(11):2390. https://doi.org/10.3390/cells9112390
Chicago/Turabian StyleBorlepawar, Ankush, Nesrin Schmiedel, Matthias Eden, Lynn Christen, Alexandra Rosskopf, Derk Frank, Renate Lüllmann-Rauch, Norbert Frey, and Ashraf Yusuf Rangrez. 2020. "Dysbindin deficiency Alters Cardiac BLOC-1 Complex and Myozap Levels in Mice" Cells 9, no. 11: 2390. https://doi.org/10.3390/cells9112390
APA StyleBorlepawar, A., Schmiedel, N., Eden, M., Christen, L., Rosskopf, A., Frank, D., Lüllmann-Rauch, R., Frey, N., & Rangrez, A. Y. (2020). Dysbindin deficiency Alters Cardiac BLOC-1 Complex and Myozap Levels in Mice. Cells, 9(11), 2390. https://doi.org/10.3390/cells9112390