pH Mapping of Skeletal Muscle by Chemical Exchange Saturation Transfer (CEST) Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Model
2.2. MRI Measurements
2.3. CEST Imaging
2.4. 31P MRS
2.5. NMR Measurements of PCr and Cr Phantom Samples
2.6. Behavior Test
3. Results and Discussion
3.1. Subsection
3.1.1. CEST Cr and PCr
3.1.2. Quantification of Cr and PCr by CEST Imaging
3.1.3. pH Mapping of In Vivo Muscle Fatigue
3.1.4. Comparison of 31P MRS and Behavior Test
3.1.5. Correlation between Muscle Fatigue and pH Determined by CEST and 31P MRS
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wan, J.J.; Qin, Z.; Wang, P.Y.; Sun, Y.; Liu, X. Muscle fatigue: General understanding and treatment. Exp. Mol. Med. 2017, 49, e384. [Google Scholar] [CrossRef] [PubMed]
- Calderón, J.C.; Bolaños, P.; Caputo, C. The excitation-contraction coupling mechanism in skeletal muscle. Biophys. Rev. 2014, 6, 133–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aalkjaer, C.; Peng, H.L. pH and smooth muscle. Acta Physiol. Scand. 1997, 161, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Street, D.; Bangsbo, J.; Juel, C. Interstitial pH in human skeletal muscle during and after dynamic graded exercise. J. Physiol. 2001, 537, 993–998. [Google Scholar] [CrossRef]
- Sjøgaard, G.; Adams, R.P.; Saltin, B. Water and ion shifts in skeletal muscle of humans with intense dynamic knee extension. Am. J. Physiol. 1985, 248 Pt 2, R190–R196. [Google Scholar] [CrossRef]
- Bangsbo, J.; Johansen, L.; Graham, T.; Saltin, B. Lactate and H+ effluxes from human skeletal muscles during intense, dynamic exercise. J. Physiol. 1993, 462, 115–133. [Google Scholar] [CrossRef]
- Balog, E.M.; Fitts, R.H. Effects of depolarization and low intracellular pH on charge movement currents of frog skeletal muscle fibers. J. Appl. Physiol. 2001, 90, 228–234. [Google Scholar] [CrossRef] [Green Version]
- Knuth, S.T. Skeletal Muscle Fatigue: pH Effects on Contractile Function and Excitation-Contraction Coupling in Single Cells. Ph.D. Thesis, Marquette University, Milwaukee, WI, USA, 2000. [Google Scholar]
- Westerblad, H.; Allen, D.G.; Lännergren, J. Muscle fatigue: Lactic acid or inorganic phosphate the major cause? Physiology 2002, 17, 17–21. [Google Scholar] [CrossRef]
- Dean Deyle, G. The role of MRI in musculoskeletal practice: A clinical perspective. J. Man. Manip. Ther. 2011, 19, 152–161. [Google Scholar] [CrossRef]
- Aujla, R.S.; Patel, R. Creatine Phosphokinas; StatPearls Publishing: St. Petersburg, FL, USA, 2019. [Google Scholar]
- Guimarães-Ferreira, L. Role of the phosphocreatine system on energetic homeostasis in skeletal and cardiac muscles. Einstein (Sao Paulo) 2014, 12, 126–131. [Google Scholar] [CrossRef] [Green Version]
- Cairns, S.P. Lactic acid and exercise performance. Sports Med. 2006, 36, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Juel, C. Lactate/proton co-transport in skeletal muscle: Regulation and importance for pH homeostasis. Acta Physiol. Scand. 1996, 156, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Perng, W.-C.; Price, W.S.; Hsu, K.; Hwang, L.-P. The effects of hypothermia on the intracellular pH of erythrocytes studied using 31P NMR and endogenous compounds. Eur. J. Clin. Chem. Clin. Biochem. 1993, 31, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Rose, I.A. The state of magnesium in cells as estimated from the adenylate kinase equilibrium. Proc. Natl. Acad. Sci. USA 1968, 61, 1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mainwood, G.; Worsley-Brown, P.; Paterson, R. The metabolic changes in frog sartorius muscles during recovery from fatigue at different external bicarbonate concentrations. Canad. J. Physiol. Pharmacol. 1972, 50, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Siesjö, B.; Folbergrová, J.; MacMillan, V. The effect of hypercapnia upon intracellular pH in the brain, evaluated by the bicarbonate-carbonic acid method and from the creatine phosphokinase equilibrium. J. Neurochem. 1972, 19, 2483–2495. [Google Scholar] [CrossRef]
- Wu, B.; Warnock, G.; Zaiss, M.; Lin, C.; Chen, M.; Zhou, Z.; Mu, L.; Nanz, D.; Tuura, R.; Delso, G. An overview of CEST MRI for non-MR physicists. EJNMMI Phys. 2016, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Sun, P.Z.; Farrar, C.T.; Sorensen, A.G. Correction for artifacts induced by B0 and B1 field inhomogeneities in pH-sensitive chemical exchange saturation transfer (CEST) imaging. Magn. Reson. Med. 2007, 58, 1207–1215. [Google Scholar] [CrossRef]
- Zhou, J.; Payen, J.-F.; Wilson, D.A.; Traystman, R.J.; van Zijl, P.C. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat. Med. 2003, 9, 1085–1090. [Google Scholar] [CrossRef]
- Sun, P.Z.; Wang, E.; Cheung, J.S. Imaging acute ischemic tissue acidosis with pH-sensitive endogenous amide proton transfer (APT) MRI—correction of tissue relaxation and concomitant RF irradiation effects toward mapping quantitative cerebral tissue pH. NeuroImage 2012, 60, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Milne, J.S.; Mayne, L.; Englander, S.W. Primary structure effects on peptide group hydrogen exchange. Proteins Struct. Funct. Bioinform. 1993, 17, 75–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, K.; Balaban, R. Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn. Reson. Med. 2000, 44, 799–802. [Google Scholar] [CrossRef]
- Sun, P.Z. Demonstration of magnetization transfer and relaxation normalized pH-specific pulse-amide proton transfer imaging in an animal model of acute stroke. Magn. Reson. Med. 2020, 84, 1526–1533. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.Z.; Xiao, G.; Zhou, I.Y.; Guo, Y.; Wu, R. A method for accurate pH mapping with chemical exchange saturation transfer (CEST) MRI. Contrast Media Mol. Imaging 2016, 11, 195–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rerich, E.; Zaiss, M.; Korzowski, A.; Ladd, M.E.; Bachert, P. Relaxation-compensated CEST-MRI at 7 T for mapping of creatine content and pH–preliminary application in human muscle tissue in vivo. NMR Biomed. 2015, 28, 1402–1412. [Google Scholar] [CrossRef]
- Albatany, M.; Li, A.; Meakin, S.; Bartha, R. Dichloroacetate induced intracellular acidification in glioblastoma: In vivo detection using AACID-CEST MRI at 9.4 Tesla. J. Neuro Oncol. 2018, 136, 255–262. [Google Scholar] [CrossRef] [PubMed]
- McVicar, N.; Li, A.X.; Goncalves, D.F.; Bellyou, M.; Meakin, S.O.; Prado, M.A.; Bartha, R. Quantitative tissue pH measurement during cerebral ischemia using amine and amide concentration-independent detection (AACID) with MRI. J. Cereb. Blood Flow Metab. 2014, 34, 690–698. [Google Scholar] [CrossRef]
- Sheth, V.R.; Li, Y.G.; Chen, L.Q.; Howison, C.M.; Flask, C.A.; Pagel, M.D. Measuring in vivo tumor pHe with CEST-FISP MRI. Magn. Reson. Med. 2012, 67, 760–768. [Google Scholar] [CrossRef] [Green Version]
- Walker-Samuel, S.; Ramasawmy, R.; Torrealdea, F.; Rega, M.; Rajkumar, V.; Johnson, S.P.; Richardson, S.; Goncalves, M.; Parkes, H.G.; Arstad, E.; et al. In vivo imaging of glucose uptake and metabolism in tumors. Nat. Med. 2013, 19, 1067–1072. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.Y.; van Zijl, P.C.M. Chemical exchange saturation transfer imaging and spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 2006, 48, 109–136. [Google Scholar] [CrossRef]
- DeBrosse, C.; Nanga, R.P.R.; Bagga, P.; Nath, K.; Haris, M.; Marincola, F.; Schnall, M.D.; Hariharan, H.; Reddy, R. Lactate Chemical Exchange Saturation Transfer (LATEST) imaging in vivo: A biomarker for LDH activity. Sci. Rep. 2016, 6, 19157. [Google Scholar]
- Chen, L.; Barker, P.B.; Weiss, R.G.; van Zijl, P.C.; Xu, J. Creatine and phosphocreatine mapping of mouse skeletal muscle by a polynomial and Lorentzian line-shape fitting CEST method. Magn. Reson. Med. 2019, 81, 69–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, J.J.; Jin, T.; Lee, J.H.; Kim, S.G. Chemical exchange saturation transfer imaging of phosphocreatine in the muscle. Magn. Reson. Med. 2019, 81, 3476–3487. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Saito, S.; Kioka, H.; Araki, R.; Asano, Y.; Takashima, S.; Sakata, Y.; Yoshioka, Y. Mouse skeletal muscle creatine chemical exchange saturation transfer (CrCEST) imaging at 11.7 T MRI. J. Magn. Reason. Imaging 2020, 51, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Schär, M.; Chan, K.W.; Huang, J.; Wei, Z.; Lu, H.; Qin, Q.; Weiss, R.G.; van Zijl, P.C.; Xu, J. In vivo imaging of phosphocreatine with artificial neural networks. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Burke, R.E.; Levine, D.N.; Tsairis, P.; Zajac, F.E., III. Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J. Physiol. 1973, 234, 723–748. [Google Scholar] [CrossRef]
- Enoka, R.M.; Rankin, L.L.; Joyner, M.J.; Stuart, D.G. Fatigue-related changes in neuromuscular excitability of rat hindlimb muscles. Muscle Nerve 1988, 11, 1123–1132. [Google Scholar] [CrossRef]
- Valkeinen, H.; Häkkinen, A.; Alen, M.; Hannonen, P.; Kukkonen-Harjula, K.; Häkkinen, K. Physical fitness in postmenopausal women with fibromyalgia. Int. J. Sports Med. 2008, 29, 408–413. [Google Scholar] [CrossRef]
- Vassilakos, G.; James, R.S.; Cox, V.M. Effect of stimulation frequency on force, net power output, and fatigue in mouse soleus muscle in vitro. Can. J. Physiol. Pharmacol. 2009, 87, 203–210. [Google Scholar] [CrossRef]
- Yokoyama, T.; Lisi, T.L.; Moore, S.A.; Sluka, K.A. Muscle fatigue increases the probability of developing hyperalgesia in mice. J. Pain 2007, 8, 692–699. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.K.; Polders, D.; Hua, J.; Zhu, H.; Hoogduin, H.J.; Zhou, J.; Luijten, P.; van Zijl, P.C. In vivo three-dimensional whole-brain pulsed steady-state chemical exchange saturation transfer at 7 T. Magn. Reson. Med. 2012, 67, 1579–1589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, P.S.; Balaban, R.S. 31P imaging of in vivo creatine kinase reaction rates. J. Magn. Reason. 1987, 74, 574–579. [Google Scholar] [CrossRef]
- Cieslar, J.H.; Dobson, G.P. Free [ADP] and aerobic muscle work follow at least second order kinetics in rat gastrocnemius in vivo. J. Biol. Chem. 2000, 275, 6129–6134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wray, S. Smooth muscle intracellular pH: Measurement, regulation, and function. Am. J. Physiol. Cell Physiol. 1988, 254, C213–C225. [Google Scholar] [CrossRef]
- Xu, X.; Lee, J.S.; Jerschow, A. Ultrafast scanning of exchangeable sites by NMR spectroscopy. Angewandte Chemie 2013, 125, 8439–8442. [Google Scholar] [CrossRef] [Green Version]
- Yashiro, K.; Tonson, A.; Pecchi, É.; Vilmen, C.; Le Fur, Y.; Bernard, M.; Bendahan, D.; Giannesini, B. Capsiate supplementation reduces oxidative cost of contraction in exercising mouse skeletal muscle in vivo. PLoS ONE 2015, 10, e0128016. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-W.; Liu, H.-Q.; Wu, Q.-X.; Huang, Y.-H.; Tung, Y.-Y.; Lin, M.-H.; Lin, C.-H.; Chen, T.-C.; Lin, E.C.; Hwang, D.W. pH Mapping of Skeletal Muscle by Chemical Exchange Saturation Transfer (CEST) Imaging. Cells 2020, 9, 2610. https://doi.org/10.3390/cells9122610
Chen Y-W, Liu H-Q, Wu Q-X, Huang Y-H, Tung Y-Y, Lin M-H, Lin C-H, Chen T-C, Lin EC, Hwang DW. pH Mapping of Skeletal Muscle by Chemical Exchange Saturation Transfer (CEST) Imaging. Cells. 2020; 9(12):2610. https://doi.org/10.3390/cells9122610
Chicago/Turabian StyleChen, Yu-Wen, Hong-Qing Liu, Qi-Xuan Wu, Yu-Han Huang, Yu-Ying Tung, Ming-Huang Lin, Chia-Huei Lin, Tsai-Chen Chen, Eugene C. Lin, and Dennis W. Hwang. 2020. "pH Mapping of Skeletal Muscle by Chemical Exchange Saturation Transfer (CEST) Imaging" Cells 9, no. 12: 2610. https://doi.org/10.3390/cells9122610
APA StyleChen, Y. -W., Liu, H. -Q., Wu, Q. -X., Huang, Y. -H., Tung, Y. -Y., Lin, M. -H., Lin, C. -H., Chen, T. -C., Lin, E. C., & Hwang, D. W. (2020). pH Mapping of Skeletal Muscle by Chemical Exchange Saturation Transfer (CEST) Imaging. Cells, 9(12), 2610. https://doi.org/10.3390/cells9122610