Parallel Acquisition of Plasma Membrane Ultrastructure and Cytosolic Protein Localisation in Cultured Cells via Correlated Immunogold SEM
Abstract
:1. Introduction
2. Material and Methods
2.1. Holder and Sample Preparation
2.2. Fixation
2.3. Immunogold Labelling
2.4. Dehydration and Coating
2.5. Imaging
3. Results
3.1. Detection Depth of Back-Scattered Electrons
3.2. Validation of Localization Depth
3.3. Applications
4. Discussion
4.1. Comparison with Existing Methods
4.2. Limitations and Further Improvements of the Method
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Begemann, I.; Viplav, A.; Rasch, C.; Galic, M. Stochastic Micro-Pattern for Automated Correlative Fluorescence-Scanning Electron Microscopy. Sci. Rep. 2015, 5, 17973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deerinck, T.J.; Martone, M.E.; Lev-Ram, V.; Green, D.P.; Tsien, R.Y.; Spector, D.L.; Huang, S.; Ellisman, M.H. Fluorescence photooxidation with eosin: A method for high resolution immunolocalization and in situ hybridization detection for light and electron microscopy. J. Cell Biol. 1994, 126, 901–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svitkina, T.M.; Verkhovsky, A.B.; Borisy, G.G. Improved procedures for electron microscopic visualization of the cytoskeleton of cultured cells. J. Struct. Biol. 1995, 115, 290–303. [Google Scholar] [CrossRef] [PubMed]
- Sydor, A.M.; Czymmek, K.J.; Puchner, E.M.; Mennella, V. Super-Resolution Microscopy: From Single Molecules to Supramolecular Assemblies. Trends Cell Biol. 2015, 25, 730–748. [Google Scholar] [CrossRef] [Green Version]
- Orlando, M.; Ravasenga, T.; Petrini, E.M.; Falqui, A.; Marotta, R.; Barberis, A. Correlating Fluorescence and High-Resolution Scanning Electron Microscopy (HRSEM) for the study of GABAA receptor clustering induced by inhibitory synaptic plasticity. Sci. Rep. 2017, 7, 13768. [Google Scholar] [CrossRef]
- Suzuki, E. High-resolution scanning electron microscopy of immunogold-labelled cells by the use of thin plasma coating of osmium. J. Microsc. 2002, 208, 153–157. [Google Scholar] [CrossRef] [PubMed]
- De Harven, E.; Leung, R.; Christensen, H. A novel approach for scanning electron microscopy of colloidal gold-labeled cell surfaces. J. Cell Biol. 1984, 99, 53–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroeder-Reiter, E.; Houben, A.; Wanner, G. Immunogold labeling of chromosomes for scanning electron microscopy: A closer look at phosphorylated histone H3 in mitotic metaphase chromosomes of Hordeum vulgare. Chromosome Res. 2003, 11, 585–596. [Google Scholar] [CrossRef]
- Castejon, O.J. Contribution of conventional and high resolution scanning electron microscopy and cryofracture technique to the study of cerebellar synaptic junctions. Scanning Microsc. 1996, 10, 177–186. [Google Scholar]
- Castejon, O.J.; Caraballo, A.J. Application of cryofracture and SEM to the study of human cerebellar cortex. Scanning Electron Microsc. 1980, 4, 197–207. [Google Scholar]
- Svitkina, T.M.; Bulanova, E.A.; Chaga, O.Y.; Vignjevic, D.M.; Kojima, S.; Vasiliev, J.M.; Borisy, G.G. Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell Biol. 2003, 160, 409–421. [Google Scholar] [CrossRef] [PubMed]
- Lang, T. Imaging SNAREs at work in ‘unroofed’ cells—Approaches that may be of general interest for functional studies on membrane proteins. Biochem. Soc. Trans. 2003, 31, 861–864. [Google Scholar] [CrossRef] [PubMed]
- Richards, R.G.; Gwynn, I.A. Backscattered electron imaging of the undersurface of resin-embedded cells by field-emission scanning electron microscopy. J. Microsc. 1995, 177, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Lea, P.; Lee, L.M.; Shi, Q.W.; Takahashi, M.; Youn, W.; Jackowski, G. Advantages of backscatter electron imaging scanning electron microscopy for intracellular localization of cardiac analytes by gold conjugated antibody. Scanning 1996, 18, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Peter, B.J.; Kent, H.M.; Mills, I.G.; Vallis, Y.; Butler, P.J.; Evans, P.R.; McMahon, H.T. BAR domains as sensors of membrane curvature: The amphiphysin BAR structure. Science 2004, 303, 495–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanishneva-Konovalova, T.B.; Derkacheva, N.I.; Polevova, S.V.; Sokolova, O.S. The Role of BAR Domain Proteins in the Regulation of Membrane Dynamics. Acta Naturae 2016, 8, 60–69. [Google Scholar] [CrossRef]
- Safari, F.; Suetsugu, S. The BAR Domain Superfamily Proteins from Subcellular Structures to Human Diseases. Membranes 2012, 2, 91–117. [Google Scholar] [CrossRef] [Green Version]
- Suetsugu, S.; Toyooka, K.; Senju, Y. Subcellular membrane curvature mediated by the BAR domain superfamily proteins. Semin. Cell Dev. Biol. 2010, 21, 340–349. [Google Scholar] [CrossRef]
- Begemann, I.; Saha, T.; Lamparter, L.; Rathmann, I.; Grill, D.; Golbach, L.; Rasch, C.; Keller, U.; Trappmann, B.; Matis, M.; et al. Mechanochemical self-organization determines search pattern in migratory cells. Nat. Phys. 2019, 15, 848–857. [Google Scholar] [CrossRef]
- Lea, P.; Gross, D.K. Effective diameters of protein A-gold and goat anti-rabbit-gold conjugates visualized by field emission scanning electron microscopy. J. Histochem. Cytochem. Off. J. Histochem. Soc. 1992, 40, 751–758. [Google Scholar] [CrossRef] [Green Version]
- Simunovic, M.; Voth, G.A. Membrane tension controls the assembly of curvature-generating proteins. Nat. Commun. 2015, 6, 7219. [Google Scholar] [CrossRef] [PubMed]
- Simunovic, M.; Voth, G.A.; Callan-Jones, A.; Bassereau, P. When Physics Takes Over: BAR Proteins and Membrane Curvature. Trends Cell Biol. 2015, 25, 780–792. [Google Scholar] [CrossRef] [Green Version]
- Kelley, C.F.; Messelaar, E.M.; Eskin, T.L.; Wang, S.; Song, K.; Vishnia, K.; Becalska, A.N.; Shupliakov, O.; Hagan, M.F.; Danino, D.; et al. Membrane Charge Directs the Outcome of F-BAR Domain Lipid Binding and Autoregulation. Cell Rep. 2015, 13, 2597–2609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Michelot, A.; Koskela, E.V.; Tkach, V.; Stamou, D.; Drubin, D.G.; Lappalainen, P. Membrane-sculpting BAR domains generate stable lipid microdomains. Cell Rep. 2013, 4, 1213–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokota, S.; Okada, Y. Effect of fixation with reduced osmium tetroxide upon the antigenicity of liver catalase and erythrocyte esterase D. Acta Histochem Cytochem. 1996, 29, 335–338. [Google Scholar] [CrossRef] [Green Version]
- Erlandsen, S.L.; Macechko, P.T.; Frethem, C. High resolution backscatter electron (BSE) imaging of immunogold with in-lens and below-the-lens field emission scanning electron microscopes. Scanning Microsc. 1999, 13, 43–54. [Google Scholar]
- Hermann, R.; Walther, P.; Muller, M. Immunogold labeling in scanning electron microscopy. Histochem. Cell Biol. 1996, 106, 31–39. [Google Scholar] [CrossRef]
- Reimer, L.; Hagemann, P. Recording of mass thickness in scanning transmission electron microscopy. Ultramicroscopy 1977, 2, 297–301. [Google Scholar] [CrossRef]
- Reimer, L.; Gadacz, H. On control of layer thickness in electron microscope oblique shadow methods]. Zeitschrift fur wissenschaftliche Mikroskopie und mikroskopische. Technik 1961, 65, 105–112. [Google Scholar]
- Ridler, T.W.; Calvard, S. Picture Thresholding Using an Iterative Selection Method. IEEE Tran. Syst. Man Cybern. 1978, 8, 630–632. [Google Scholar] [CrossRef]
- De Goede, M.; Johlin, E.; Sciacca, B.; Boughorbelb, F. and Garnett, E.C. 3D multi-energy deconvolution electron microscopy. Nanoscale Res. Lett. 2017, 9, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Minsky, M. Memoir on Inventing the Confocal Scanning Microscope. Scanning 1988, 10, 128–138. [Google Scholar] [CrossRef]
- Hell, S.W.; Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994, 19, 780–782. [Google Scholar] [CrossRef] [PubMed]
- Vernon-Parry, K.D. Scanning Electron Microscopy: An Introduction. III-Vs Rev. 2000, 13, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Murata, K.; Wolf, M. Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. Biochim. Biophys. Acta. Gen. Subj. 2018, 1862, 324–334. [Google Scholar] [CrossRef]
- Griffiths, G.; Lucocq, J.M. Antibodies for immunolabeling by light and electron microscopy: Not for the faint hearted. Histochem. Cell Boil. 2014, 142, 347–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kijanka, M.; van Donselaar, E.G.; Muller, W.H.; Dorresteijn, B.; Popov-Celeketic, D.; El Khattabi, M.; Verrips, C.T.; van Bergen En Henegouwen, P.M.P.; Post, J.A. A novel immuno-gold labeling protocol for nanobody-based detection of HER2 in breast cancer cells using immuno-electron microscopy. J. Struct. Biol. 2017, 199, 1–11. [Google Scholar] [CrossRef]
- Opazo, F.; Levy, M.; Byrom, M.; Schafer, C.; Geisler, C.; Groemer, T.W.; Ellington, A.D.; Rizzoli, S.O. Aptamers as potential tools for super-resolution microscopy. Nat. Methods 2012, 9, 938–939. [Google Scholar] [CrossRef]
- Ries, J.; Kaplan, C.; Platonova, E.; Eghlidi, H.; Ewers, H. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat. Methods 2012, 9, 582–584. [Google Scholar] [CrossRef]
- Goldenthal, K.L.; Hedman, K.; Chen, J.W.; August, J.T.; Willingham, M.C. Postfixation detergent treatment for immunofluorescence suppresses localization of some integral membrane proteins. J. Histochem. Cytochem. Off. J. Histochem. Soc. 1985, 33, 813–820. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Begemann, I.; Keller, U.; Nüsse, H.; Klingauf, J.; Galic, M. Parallel Acquisition of Plasma Membrane Ultrastructure and Cytosolic Protein Localisation in Cultured Cells via Correlated Immunogold SEM. Cells 2020, 9, 1329. https://doi.org/10.3390/cells9061329
Begemann I, Keller U, Nüsse H, Klingauf J, Galic M. Parallel Acquisition of Plasma Membrane Ultrastructure and Cytosolic Protein Localisation in Cultured Cells via Correlated Immunogold SEM. Cells. 2020; 9(6):1329. https://doi.org/10.3390/cells9061329
Chicago/Turabian StyleBegemann, Isabell, Ulrike Keller, Harald Nüsse, Jürgen Klingauf, and Milos Galic. 2020. "Parallel Acquisition of Plasma Membrane Ultrastructure and Cytosolic Protein Localisation in Cultured Cells via Correlated Immunogold SEM" Cells 9, no. 6: 1329. https://doi.org/10.3390/cells9061329
APA StyleBegemann, I., Keller, U., Nüsse, H., Klingauf, J., & Galic, M. (2020). Parallel Acquisition of Plasma Membrane Ultrastructure and Cytosolic Protein Localisation in Cultured Cells via Correlated Immunogold SEM. Cells, 9(6), 1329. https://doi.org/10.3390/cells9061329