Translational Control of Xenopus Oocyte Meiosis: Toward the Genomic Era
Abstract
:1. Introduction
2. The Early Oogenesis, a Growth Period That Sets the Stage for Meiosis Resumption
3. The Prophase-Arrest of Fully-Grown Oocytes Competent to Resume Meiosis
3.1. The Interplay between PKA and Protein Synthesis
3.2. The Substrates of PKA Mediating the Prophase Arrest
3.3. Genome-Wide Description of the Prophase Arrest of Fully-Grown Oocytes
4. The Release of the Prophase Block: The Unexplored Path That Connects PKA Downregulation to MPF Activation
4.1. De Novo Protein Translation: A Necessary Step for Meiosis Resumption
4.2. The Regulation of Translation by cis-Acting Elements and Trans-Acting Factors
4.3. A Genome-Wide Overview of the Early Translation Wave: A Challenge for the Future
5. Progression and Completion of Meiotic Maturation: Shedding Light on the Cytoplasmic Maturation
5.1. Genome-Wide Description of the Late Steps of Meiotic Maturation
5.2. The Role of Polyadenylation in the Control of the Late Wave of Translation
5.3. The RBP Network Controlling the Late Wave of Translation
5.4. De-Adenylation and RNA Degradation during Meiosis II
6. Conclusions and Perspectives
Methods—Analysis of Published Datasets
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Masui, Y.; Markert, C.L. Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J. Exp. Zool. 1971, 177, 129–145. [Google Scholar] [CrossRef] [PubMed]
- Dorée, M.; Hunt, T. From Cdc2 to Cdk1: When did the cell cycle kinase join its cyclin partner? J. Cell. Sci. 2002, 115, 2461–2464. [Google Scholar] [PubMed]
- Maller, J.L.; Butcher, F.R.; Krebs, E.G. Early effect of progesterone on levels of cyclic adenosine 3′:5′-monophosphate in Xenopus oocytes. J. Biol. Chem. 1979, 254, 579–582. [Google Scholar] [PubMed]
- Ozon, R.; Bellé, R.; Huchon, D.; Mulner, O. Roles of Cyclic AMP and Calcium in Maturation of Xenopus Laevis Oocytes. In Hormonal Steroids; Pergamon Press Ltd., Elsevier: Oxford, UK, 1979; pp. 709–713. ISBN 978-0-08-023796-1. [Google Scholar]
- Haccard, O.; Jessus, C. Redundant pathways for Cdc2 activation in Xenopus oocyte: Either cyclin B or Mos synthesis. EMBO Rep. 2006, 7, 321–325. [Google Scholar] [CrossRef] [Green Version]
- Wasserman, W.J.; Masui, Y. Effects of cycloheximide on a cytoplasmic factor initiating meiotic maturation in Xenopus oocytes. Exp. Cell Res. 1975, 91, 381–388. [Google Scholar] [CrossRef]
- Almonacid, M.; Al Jord, A.; El-Hayek, S.; Othmani, A.; Coulpier, F.; Lemoine, S.; Miyamoto, K.; Grosse, R.; Klein, C.; Piolot, T.; et al. Active Fluctuations of the Nuclear Envelope Shape the Transcriptional Dynamics in Oocytes. Dev. Cell 2019, 51, 145–157. [Google Scholar] [CrossRef]
- Ferby, I.; Blazquez, M.; Palmer, A.; Eritja, R.; Nebreda, A.R. A novel p34(cdc2)-binding and activating protein that is necessary and sufficient to trigger G(2)/M progression in Xenopus oocytes. Genes Dev. 1999, 13, 2177–2189. [Google Scholar] [CrossRef] [Green Version]
- Lenormand, J.-L. Speedy: A novel cell cycle regulator of the G2/M transition. EMBO J. 1999, 18, 1869–1877. [Google Scholar] [CrossRef] [Green Version]
- Sagata, N.; Oskarsson, M.; Copeland, T.; Brumbaugh, J.; Woude, G.F.V. Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature 1988, 335, 519–525. [Google Scholar] [CrossRef]
- Sagata, N.; Daar, I.; Oskarsson, M.; Showalter, S.; Vande Woude, G. The product of the mos proto-oncogene as a candidate “initiator” for oocyte maturation. Science 1989, 245, 643–646. [Google Scholar] [CrossRef]
- Yew, N.; Mellini, M.L.; Martinez, C.K.; Woude, G.F.V. Meiotic initiation by the mos protein in Xenopus. Nature 1992, 355, 649–652. [Google Scholar] [CrossRef] [PubMed]
- Furuno, N.; Nishizawa, M.; Okazaki, K.; Tanaka, H.; Iwashita, J.; Nakajo, N.; Ogawa, Y.; Sagata, N. Suppression of DNA replication via Mos function during meiotic divisions in Xenopus oocytes. EMBO J. 1994, 13, 2399–2410. [Google Scholar] [CrossRef] [PubMed]
- Gross, S.D.; Schwab, M.S.; Taieb, F.E.; Lewellyn, A.L.; Qian, Y.W.; Maller, J.L. The critical role of the MAP kinase pathway in meiosis II in Xenopus oocytes is mediated by p90(Rsk). Curr. Biol. 2000, 10, 430–438. [Google Scholar] [CrossRef] [Green Version]
- Dupre, A. Mos is not required for the initiation of meiotic maturation in Xenopus oocytes. EMBO J. 2002, 21, 4026–4036. [Google Scholar] [CrossRef] [Green Version]
- Frank-Vaillant, M.; Jessus, C.; Ozon, R.; Maller, J.L.; Haccard, O. Two Distinct Mechanisms Control the Accumulation of Cyclin B1 and Mos in Xenopus Oocytes in Response to Progesterone. MBoC 1999, 10, 3279–3288. [Google Scholar] [CrossRef] [Green Version]
- Perez, L.H.; Antonio, C.; Flament, S.; Vernos, I.; Nebreda, A.R. Xkid chromokinesin is required for the meiosis I to meiosis II transition in Xenopus laevis oocytes. Nat. Cell Biol. 2002, 4, 737–742. [Google Scholar] [CrossRef]
- Igea, A.; Méndez, R. Meiosis requires a translational positive loop where CPEB1 ensues its replacement by CPEB4. EMBO J. 2010, 29, 2182–2193. [Google Scholar] [CrossRef] [Green Version]
- Tunquist, B.J.; Schwab, M.S.; Chen, L.G.; Maller, J.L. The Spindle Checkpoint Kinase Bub1 and Cyclin E/Cdk2 Both Contribute to the Establishment of Meiotic Metaphase Arrest by Cytostatic Factor. Curr. Biol. 2002, 12, 1027–1033. [Google Scholar] [CrossRef] [Green Version]
- Ohe, M.; Inoue, D.; Kanemori, Y.; Sagata, N. Erp1/Emi2 is essential for the meiosis I to meiosis II transition in Xenopus oocytes. Dev. Biol. 2007, 303, 157–164. [Google Scholar] [CrossRef]
- Pascreau, G.; Eckerdt, F.; Lewellyn, A.L.; Prigent, C.; Maller, J.L. Phosphorylation of p53 Is Regulated by TPX2-Aurora A in Xenopus Oocytes. J. Biol. Chem. 2009, 284, 5497–5505. [Google Scholar] [CrossRef] [Green Version]
- Lemaître, J.-M.; Bocquet, S.; Méchali, M. Competence to replicate in the unfertilized egg is conferred by Cdc6 during meiotic maturation. Nature 2002, 419, 718–722. [Google Scholar] [CrossRef] [PubMed]
- Whitmire, E.; Khan, B.; Coué, M. Cdc6 synthesis regulates replication competence in Xenopus oocytes. Nature 2002, 419, 722–725. [Google Scholar] [CrossRef] [PubMed]
- Daldello, E.M.; Le, T.; Poulhe, R.; Jessus, C.; Haccard, O.; Dupré, A. Control of Cdc6 accumulation by Cdk1 and MAPK is essential for completion of oocyte meiotic divisions in Xenopus. J. Cell Sci. 2015, 128, 2482–2496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charlesworth, A.; Yamamoto, T.M.; Cook, J.M.; Silva, K.D.; Kotter, C.V.; Carter, G.S.; Holt, J.W.; Lavender, H.F.; MacNicol, A.M.; Ying Wang, Y.; et al. Xenopus laevis zygote arrest 2 (zar2) encodes a zinc finger RNA-binding protein that binds to the translational control sequence in the maternal Wee1 mRNA and regulates translation. Dev. Biol. 2012, 369, 177–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narasimhachar, Y.; Coué, M. Geminin Stabilizes Cdt1 during Meiosis in Xenopus Oocytes. J. Biol. Chem. 2009, 284, 27235–27242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilczynska, A.; Git, A.; Argasinska, J.; Belloc, E.; Standart, N. CPEB and miR-15/16 Co-Regulate Translation of Cyclin E1 mRNA during Xenopus Oocyte Maturation. PLoS ONE 2016, 11, e0146792. [Google Scholar] [CrossRef] [Green Version]
- Belloc, E.; Méndez, R. A deadenylation negative feedback mechanism governs meiotic metaphase arrest. Nature 2008, 452, 1017–1021. [Google Scholar] [CrossRef]
- Muggenhumer, D.; Vesely, C.; Nimpf, S.; Tian, N.; Yongfeng, J.; Jantsch, M.F. Drosha protein levels are translationally regulated during Xenopus oocyte maturation. MBoC 2014, 25, 2094–2104. [Google Scholar] [CrossRef] [Green Version]
- Lourim, D.; Kempf, A.; Krohne, G. Characterization and quantitation of three B-type lamins in Xenopus oocytes and eggs: Increase of lamin LI protein synthesis during meiotic maturation. J. Cell. Sci. 1996, 109, 1775–1785. [Google Scholar]
- Dumont, J.N. Oogenesis inXenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J. Morphol. 1972, 136, 153–179. [Google Scholar] [CrossRef]
- Huarte, J.; Stutz, A.; O’Connell, M.L.; Gubler, P.; Belin, D.; Darrow, A.L.; Strickland, S.; Vassalli, J.-D. Transient translational silencing by reversible mRNA deadenylation. Cell 1992, 69, 1021–1030. [Google Scholar] [CrossRef]
- Tian, B.; Graber, J.H. Signals for pre-mRNA cleavage and polyadenylation: Polyadenylation signals. WIREs RNA 2012, 3, 385–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.H.; Richter, J.D. Opposing Polymerase-Deadenylase Activities Regulate Cytoplasmic Polyadenylation. Mol. Cell 2006, 24, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Radford, H.E.; Meijer, H.A.; de Moor, C.H. Translational control by cytoplasmic polyadenylation in Xenopus oocytes. BBA Gene Regul. Mech. 2008, 1779, 217–229. [Google Scholar] [CrossRef] [Green Version]
- Christou-Kent, M.; Dhellemmes, M.; Lambert, E.; Ray, P.F.; Arnoult, C. Diversity of RNA-Binding Proteins Modulating Post-Transcriptional Regulation of Protein Expression in the Maturing Mammalian Oocyte. Cells 2020, 9, 662. [Google Scholar] [CrossRef] [Green Version]
- Session, A.M.; Uno, Y.; Kwon, T.; Chapman, J.A.; Toyoda, A.; Takahashi, S.; Fukui, A.; Hikosaka, A.; Suzuki, A.; Kondo, M.; et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 2016, 538, 336–343. [Google Scholar] [CrossRef] [Green Version]
- Opresko, L.K.; Wiley, H.S. Receptor-mediated endocytosis in Xenopus oocytes. I. Characterization of the vitellogenin receptor system. J. Biol. Chem. 1987, 262, 4109–4115. [Google Scholar]
- Jessus, C.; Ozon, R. How does Xenopus oocyte acquire its competence to undergo meiotic maturation? Biol. Cell 2004, 96, 187–192. [Google Scholar] [CrossRef]
- Karaiskou, A. Polo-like kinase confers MPF autoamplification competence to growing Xenopus oocytes. Development 2004, 131, 1543–1552. [Google Scholar] [CrossRef] [Green Version]
- Speaker, M.G.; Butcher, F.R. Cyclic nucleotide fluctuations during steroid induced meiotic maturation of frog oocytes. Nature 1977, 267, 848–850. [Google Scholar] [CrossRef]
- Maller, J.L.; Krebs, E.G. Progesterone-stimulated meiotic cell division in Xenopus oocytes. Induction by regulatory subunit and inhibition by catalytic subunit of adenosine 3′:5′-monophosphate-dependent protein kinase. J. Biol. Chem. 1977, 252, 1712–1718. [Google Scholar]
- Jessus, C.; Munro, C.; Houliston, E. Managing the Oocyte Meiotic Arrest—Lessons from Frogs and Jellyfish. Cells 2020, 9, 1150. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Cardona, D.; Ricardo-González, R.R.; Chawla, A.; Ferrell, J.E. A role for GPRx, a novel GPR3/6/12-related G-protein coupled receptor, in the maintenance of meiotic arrest in Xenopus laevis oocytes. Dev. Biol. 2008, 317, 380–388. [Google Scholar] [CrossRef] [Green Version]
- Huchon, D.; Ozon, R.; Fischer, E.H.; Demaille, J.G. The pure inhibitor of cAMP-dependent protein kinase initiates Xenopus laevis meiotic maturation: A 4-step scheme for meiotic maturation. Mol. Cell. Endocrinol. 1981, 22, 211–222. [Google Scholar] [CrossRef]
- Rime, H.; Huchon, D.; Smedt, V.D.; Thibier, C.; Galaktionov, K.; Jessus, C.; Ozon, R. Microinjection of Cdc25 protein phosphatase into Xenopus prophase oocyte activates MPF and arrests meiosis at metaphase I. Biol. Cell 1994, 82, 11–22. [Google Scholar] [CrossRef]
- Boyer, J.; Asselin, J.; Bellé, R.; Ozon, R. Progesterone and CAMP-Dependent Protein Kinase Regulate in Viva the Level of Phosphorylation of Two Proteins (Ad,20,000 and Ad,.32,000) in Xenopus Oocytes. Dev. Biol. 1986, 113, 9. [Google Scholar] [CrossRef]
- Dulubova, I.; Horiuchi, A.; Snyder, G.L.; Girault, J.-A.; Czernik, A.J.; Shao, L.; Ramabhadran, R.; Greengard, P.; Nairn, A.C. ARPP-16/ARPP-19: A highly conserved family of cAMP-regulated phosphoproteins. J. Neurochem. 2001, 77, 229–238. [Google Scholar] [CrossRef]
- Dupré, A.; Daldello, E.M.; Nairn, A.C.; Jessus, C.; Haccard, O. Phosphorylation of ARPP19 by protein kinase A prevents meiosis resumption in Xenopus oocytes. Nat. Commun 2014, 5, 3318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemonnier, T.; Daldello, E.M.; Pouhle, R.; Le, T.; Miot, M.; Jessus, C.; Dupré, A. The M-phase regulatory phosphatase PP2A-B55δ opposes protein kinase A on Arpp19 to initiate meiotic division. bioRxiv 2020. [Google Scholar]
- Lemonnier, T.; Dupré, A.; Jessus, C. The G2-to-M transition from a phosphatase perspective: A new vision of the meiotic division. Cell Div. 2020, 15, 9. [Google Scholar] [CrossRef]
- Dupre, A.; Buffin, E.; Roustan, C.; Nairn, A.C.; Jessus, C.; Haccard, O. The phosphorylation of ARPP19 by Greatwall renders the auto-amplification of MPF independently of PKA in Xenopus oocytes. J. Cell. Sci. 2013, 126, 3916–3926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupré, A.-I.; Haccard, O.; Jessus, C. The greatwall kinase is dominant over PKA in controlling the antagonistic function of ARPP19 in Xenopus oocytes. Cell Cycle 2017, 16, 1440–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupré, A.; Jessus, C. ARPP19 Phosphorylations by PKA and Greatwall: The Yin and the Yang of the Cell Decision to Divide. In Protein Phosphorylation; Prigent, C., Ed.; InTech: London, UK, 2017; ISBN 978-953-51-3625-5. [Google Scholar]
- Talarek, N.; Cameroni, E.; Jaquenoud, M.; Luo, X.; Bontron, S.; Lippman, S.; Devgan, G.; Snyder, M.; Broach, J.R.; De Virgilio, C. Initiation of the TORC1-Regulated G0 Program Requires Igo1/2, which License Specific mRNAs to Evade Degradation via the 5′-3′ mRNA Decay Pathway. Mol. Cell 2010, 38, 345–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemmings, H.C.; Greengard, P.; Tung, H.Y.L.; Cohen, P. DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature 1984, 310, 503–505. [Google Scholar] [CrossRef]
- Hemmings, H.C.; Williams, K.R.; Konigsberg, W.H.; Greengard, P. DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated neuronal phosphoprotein. I. Amino acid sequence around the phosphorylated threonine. J. Biol. Chem. 1984, 259, 14486–14490. [Google Scholar]
- Karaı̈skou, A.; Cayla, X.; Haccard, O.; Jessus, C.; Ozon, R. MPF Amplification inXenopusOocyte Extracts Depends on a Two-Step Activation of Cdc25 Phosphatase. Exp. Cell Res. 1998, 244, 491–500. [Google Scholar] [CrossRef]
- Huang, H.; Horiuchi, A.; Watanabe, T.; Shih, S.-R.; Tsay, H.-J.; Li, H.-C.; Greengard, P.; Nairn, A.C. Characterization of the Inhibition of Protein Phosphatase-1 by DARPP-32 and Inhibitor-2. J. Biol. Chem. 1999. [Google Scholar] [CrossRef] [Green Version]
- Huchon, D.; Ozon, R.; Demaille, J.G. Protein phosphatase-1 is involved in Xenopus oocyte maturation. Nature 1981, 294, 358–359. [Google Scholar] [CrossRef]
- Margolis, S.S.; Perry, J.A.; Weitzel, D.H.; Freel, C.D.; Yoshida, M.; Haystead, T.A.; Kornbluth, S. A Role for PP1 in the Cdc2/Cyclin B–mediated Positive Feedback Activation of Cdc25. MBoC 2006, 17, 1779–1789. [Google Scholar] [CrossRef] [Green Version]
- Han, S.J.; Chen, R.; Paronetto, M.P.; Conti, M. Wee1B Is an Oocyte-Specific Kinase Involved in the Control of Meiotic Arrest in the Mouse. Curr. Biol. 2005, 15, 1670–1676. [Google Scholar] [CrossRef] [Green Version]
- Duckworth, B.C.; Weaver, J.S.; Ruderman, J.V. G2 arrest in Xenopus oocytes depends on phosphorylation of cdc25 by protein kinase A. Proc. Natl. Acad. Sci. USA 2002, 99, 16794–16799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.J.; Conti, M. New Pathways from PKA to the Cdc2/cyclin B Complex in Oocytes: Wee1B as a Potential PKA Substrate. Cell Cycle 2006, 5, 227–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, C.-Y.; Graves, P.R.; Thoma, R.S.; Wu, Z.; Shaw, A.S.; Piwnica-Worms, H. Mitotic and G2 Checkpoint Control: Regulation of 14-3-3 Protein Binding by Phosphorylation of Cdc25C on Serine-216. Science 1997, 277, 1501–1505. [Google Scholar] [CrossRef] [PubMed]
- Nakajo, N.; Yoshitome, S.; Iwashita, J.; Iida, M.; Uto, K.; Ueno, S.; Okamoto, K.; Sagata, N. Absence of Wee1 ensures the meiotic cell cycle in Xenopus oocytes. Genes Dev. 2000, 14, 328–338. [Google Scholar]
- Okamoto, K.; Nakajo, N.; Sagata, N. The existence of two distinct Wee1 isoforms in Xenopus: Implications for the developmental regulation of the cell cycle. EMBO J. 2002, 21, 2472–2484. [Google Scholar] [CrossRef] [Green Version]
- Leise, W.F.; Mueller, P.R. Multiple Cdk1 Inhibitory Kinases Regulate the Cell Cycle during Development. Dev. Biol. 2002, 249, 156–173. [Google Scholar] [CrossRef] [Green Version]
- Jessus, C.; Beach, D. Oscillation of MPF is accompanied by periodic association between cdc25 and cdc2-cyclin B. Cell 1992, 68, 323–332. [Google Scholar] [CrossRef]
- Peuchen, E.H.; Cox, O.F.; Sun, L.; Hebert, A.S.; Coon, J.J.; Champion, M.M.; Dovichi, N.J.; Huber, P.W. Phosphorylation Dynamics Dominate the Regulated Proteome during Early Xenopus Development. Sci. Rep. 2017, 7, 15647. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, E.B.M.; Snel, M.; Guigas, B.; van der Zon, G.C.M.; Kriek, J.; Maassen, J.A.; Jazet, I.M.; Diamant, M.; Ouwens, D.M. Phosphorylation of PRAS40 on Thr246 by PKB/AKT facilitates efficient phosphorylation of Ser183 by mTORC1. Cell. Signal. 2010, 22, 961–967. [Google Scholar] [CrossRef]
- Yang, F.; Wang, W.; Cetinbas, M.; Sadreyev, R.; Blower, M. Genome-wide analysis identifies cis-acting elements regulating mRNA polyadenylation and translation during vertebrate oocyte maturation. RNA 2020, 324–344. [Google Scholar] [CrossRef]
- Brower, P.T.; Gizang, E.; Boreen, S.M.; Schultz, R.M. Biochemical studies of mammalian oogenesis: Synthesis and stability of various classes of RNA during growth of the mouse oocyte in vitro. Dev. Biol. 1981, 86, 373–383. [Google Scholar] [CrossRef]
- Reis, A.; Chang, H.-Y.; Levasseur, M.; Jones, K.T. APCcdh1 activity in mouse oocytes prevents entry into the first meiotic division. Nat. Cell Biol. 2006, 8, 539–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subtelny, A.O.; Eichhorn, S.W.; Chen, G.R.; Sive, H.; Bartel, D.P. Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 2014, 508, 66–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luong, X.G.; Daldello, E.M.; Rajkovic, G.; Yang, C.-R.; Conti, M. Genome-wide analysis reveals a switch in the translational program upon oocyte meiotic resumption. Nucleic Acids Res. 2020, 48, 3257–3276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hochegger, H.; Klotzbücher, A.; Kirk, J.; Howell, M.; le Guellec, K.; Fletcher, K.; Duncan, T.; Sohail, M.; Hunt, T. New B-type cyclin synthesis is required between meiosis I and II during Xenopus oocyte maturation. Development 2001, 128, 3795–3807. [Google Scholar] [PubMed]
- Daldello, E.M.; Luong, X.G.; Yang, C.-R.; Kuhn, J.; Conti, M. Cyclin B2 is required for progression through meiosis in mouse oocytes. Development 2019, 146, dev172734. [Google Scholar] [CrossRef] [Green Version]
- Verlhac, M.H.; Kubiak, J.Z.; Weber, M.; Géraud, G.; Colledge, W.H.; Evans, M.J.; Maro, B. Mos is required for MAP kinase activation and is involved in microtubule organization during meiotic maturation in the mouse. Development 1996, 122, 815–822. [Google Scholar]
- Araki, K.; Naito, K.; Haraguchi, S.; Suzuki, R.; Yokoyama, M.; Inoue, M.; Aizawa, S.; Toyoda, Y.; Sato, E. Meiotic Abnormalities of c-mos Knockout Mouse Oocytes: Activation after First Meiosis or Entrance into Third Meiotic Metaphase1. Biol. Reprod. 1996, 55, 1315–1324. [Google Scholar] [CrossRef]
- Tachibana, K.; Tanaka, D.; Isobe, T.; Kishimoto, T. c-Mos forces the mitotic cell cycle to undergo meiosis II to produce haploid gametes. Proc. Natl. Acad. Sci. USA 2000, 97, 14301–14306. [Google Scholar] [CrossRef] [Green Version]
- Mendez, R. Differential mRNA translation and meiotic progression require Cdc2-mediated CPEB destruction. EMBO J. 2002, 21, 1833–1844. [Google Scholar] [CrossRef] [Green Version]
- Fisher, D.L.; Brassac, T.; Galas, S.; Dorée, M. Dissociation of MAP kinase activation and MPF activation in hormone-stimulated maturation of Xenopus oocytes. Development 1999, 126, 4537–4546. [Google Scholar] [PubMed]
- Castro, A.; Peter, M.; Magnaghi-Jaulin, L.; Vigneron, S.; Galas, S.; Lorca, T.; Labbé, J.-C. Cyclin B/cdc2 Induces c-Mos Stability by Direct Phosphorylation in Xenopus Oocytes. MBoC 2001, 12, 2660–2671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stebbins-Boaz, B.; Hake, L.E.; Richter, J.D. CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus. EMBO J. 1996, 15, 2582–2592. [Google Scholar] [CrossRef] [PubMed]
- Charlesworth, A.; Cox, L.L.; MacNicol, A.M. Cytoplasmic Polyadenylation Element (CPE)- and CPE-binding Protein (CPEB)-independent Mechanisms Regulate Early Class Maternal mRNA Translational Activation in Xenopus Oocytes. J. Biol. Chem. 2004, 279, 17650–17659. [Google Scholar] [CrossRef] [Green Version]
- Strickland, S.; Huarte, J.; Belin, D.; Vassalli, A.; Rickles, R.; Vassalli, J. Antisense RNA directed against the 3′ noncoding region prevents dormant mRNA activation in mouse oocytes. Science 1988, 241, 680–684. [Google Scholar] [CrossRef] [PubMed]
- Kuge, H.; Inoue, A. Maturation of Xenopus laevis oocyte by progesterone requires poly(A) tail elongation of mRNA. Exp. Cell Res. 1992, 202, 52–58. [Google Scholar] [CrossRef]
- McGrew, L.L.; Dworkin-Rastl, E.; Dworkin, M.B.; Richter, J.D. Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dev. 1989, 3, 803–815. [Google Scholar] [CrossRef] [Green Version]
- Fox, C.A.; Sheets, M.D.; Wickens, M.P. Poly(A) addition during maturation of frog oocytes: Distinct nuclear and cytoplasmic activities and regulation by the sequence UUUUUAU. Genes Dev. 1989, 3, 2151–2162. [Google Scholar] [CrossRef] [Green Version]
- Nakahata, S.; Kotani, T.; Mita, K.; Kawasaki, T.; Katsu, Y.; Nagahama, Y.; Yamashita, M. Involvement of Xenopus Pumilio in the translational regulation that is specific to cyclin B1 mRNA during oocyte maturation. Mech. Dev. 2003, 120, 865–880. [Google Scholar] [CrossRef]
- Piqué, M.; López, J.M.; Foissac, S.; Guigó, R.; Méndez, R. A Combinatorial Code for CPE-Mediated Translational Control. Cell 2008, 132, 434–448. [Google Scholar] [CrossRef]
- Weill, L.; Belloc, E.; Castellazzi, C.L.; Méndez, R. Musashi 1 regulates the timing and extent of meiotic mRNA translational activation by promoting the use of specific CPEs. Nat. Struct. Mol. Biol. 2017, 24, 672–681. [Google Scholar] [CrossRef] [PubMed]
- Hake, L.E.; Richter, J.D. CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell 1994, 79, 617–627. [Google Scholar] [CrossRef]
- Charlesworth, A.; Wilczynska, A.; Thampi, P.; Cox, L.L.; MacNicol, A.M. Musashi regulates the temporal order of mRNA translation during Xenopus oocyte maturation. EMBO J. 2006, 25, 2792–2801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendez, R.; Hake, L.E.; Andresson, T.; Littlepage, L.E.; Ruderman, J.V.; Richter, J.D. Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature 2000, 404, 302–307. [Google Scholar] [CrossRef]
- Frank-Vaillant, M.; Haccard, O.; Thibier, C.; Ozon, R.; Arlot-Bonnemains, Y.; Prigent, C.; Jessus, C. Progesterone regulates the accumulation and the activation of Eg2 kinase in Xenopus oocytes. J. Cell. Sci. 2000, 113, 1127–1138. [Google Scholar]
- Maton, G.; Thibier, C.; Castro, A.; Lorca, T.; Prigent, C.; Jessus, C. Cdc2-Cyclin B Triggers H3 Kinase Activation of Aurora-A in Xenopus Oocytes. J. Biol. Chem. 2003, 278, 21439–21449. [Google Scholar] [CrossRef] [Green Version]
- Castro, A.; Mandart, E.; Lorca, T.; Galas, S. Involvement of Aurora A Kinase during Meiosis I-II Transition in Xenopus Oocytes. J. Biol. Chem. 2003, 278, 2236–2241. [Google Scholar] [CrossRef] [Green Version]
- Keady, B.T.; Kuo, P.; Martinez, S.E.; Yuan, L.; Hake, L.E. MAPK interacts with XGef and is required for CPEB activation during meiosis in Xenopus oocytes. J. Cell. Sci. 2007, 120, 1093–1103. [Google Scholar] [CrossRef] [Green Version]
- Komrskova, P.; Susor, A.; Malik, R.; Prochazkova, B.; Liskova, L.; Supolikova, J.; Hladky, S.; Kubelka, M. Aurora Kinase A Is Not Involved in CPEB1 Phosphorylation and cyclin B1 mRNA Polyadenylation during Meiotic Maturation of Porcine Oocytes. PLoS ONE 2014, 9, e101222. [Google Scholar] [CrossRef]
- Han, S.J.; Martins, J.P.S.; Yang, Y.; Kang, M.K.; Daldello, E.M.; Conti, M. The Translation of Cyclin B1 and B2 is Differentially Regulated during Mouse Oocyte Reentry into the Meiotic Cell Cycle. Sci. Rep. 2017, 7, 14077. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, K. Regulated Pumilio-2 binding controls RINGO/Spy mRNA translation and CPEB activation. Genes Dev. 2006, 20, 199–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arumugam, K.; MacNicol, M.C.; Wang, Y.; Cragle, C.E.; Tackett, A.J.; Hardy, L.L.; MacNicol, A.M. Ringo/Cyclin-dependent Kinase and Mitogen-activated Protein Kinase Signaling Pathways Regulate the Activity of the Cell Fate Determinant Musashi to Promote Cell Cycle Re-entry in Xenopus Oocytes. J. Biol. Chem. 2012, 287, 10639–10649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasserman, W.J.; Richter, J.D.; Smith, L.D. Protein synthesis during maturation promoting factor- and progesterone-induced maturation in Xenopus oocytes. Dev. Biol. 1982, 89, 152–158. [Google Scholar] [CrossRef]
- Richter, J.D.; Wasserman, W.J.; Smith, L.D. The mechanism for increased protein synthesis during Xenopus oocyte maturation. Dev. Biol. 1982, 89, 159–167. [Google Scholar] [CrossRef]
- Hyman, L.E.; Wormington, W.M. Translational inactivation of ribosomal protein mRNAs during Xenopus oocyte maturation. Genes Dev. 1988, 2, 598–605. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Melton, C.; Suh, N.; Oh, J.S.; Horner, K.; Xie, F.; Sette, C.; Blelloch, R.; Conti, M. Genome-wide analysis of translation reveals a critical role for deleted in azoospermia-like (Dazl) at the oocyte-to-zygote transition. Genes Dev. 2011, 25, 755–766. [Google Scholar] [CrossRef] [Green Version]
- Sheets, M.D.; Fox, C.A.; Hunt, T.; Vande Woude, G.; Wickens, M. The 3′-untranslated regions of c-mos and cyclin mRNAs stimulate translation by regulating cytoplasmic polyadenylation. Genes Dev. 1994, 8, 926–938. [Google Scholar] [CrossRef] [Green Version]
- Robbie, E.P.; Peterson, M.; Amaya, E.; Musci, T.J. Temporal regulation of the Xenopus FGF receptor in development: A translation inhibitory element in the 3′ untranslated region. Development 1995, 121, 1775–1785. [Google Scholar]
- Reverte, C.G.; Ahearn, M.D.; Hake, L.E. CPEB Degradation during Xenopus Oocyte Maturation Requires a PEST Domain and the 26S Proteasome. Dev. Biol. 2001, 231, 447–458. [Google Scholar] [CrossRef] [Green Version]
- Setoyama, D.; Yamashita, M.; Sagata, N. Mechanism of degradation of CPEB during Xenopus oocyte maturation. Proc. Natl. Acad. Sci. USA 2007, 104, 18001–18006. [Google Scholar] [CrossRef] [Green Version]
- Sha, Q.-Q.; Dai, X.-X.; Dang, Y.; Tang, F.; Liu, J.; Zhang, Y.-L.; Fan, H.-Y. A MAPK cascade couples maternal mRNA translation and degradation to meiotic cell cycle progression in mouse oocytes. Development 2017, 144, 452–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sha, Q.; Yu, J.; Guo, J.; Dai, X.; Jiang, J.; Zhang, Y.; Yu, C.; Ji, S.; Jiang, Y.; Zhang, S.; et al. CNOT 6L couples the selective degradation of maternal transcripts to meiotic cell cycle progression in mouse oocyte. EMBO J. 2018, 37. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Charlesworth, A.; Byrd, S.M.; Gregerson, R.; MacNicol, M.C.; MacNicol, A.M. A novel mRNA 3′ untranslated region translational control sequence regulates Xenopus Wee1 mRNA translation. Dev. Biol. 2008, 317, 454–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Y.-Q.; Sugiura, K.; Woo, Y.; Wigglesworth, K.; Kamdar, S.; Affourtit, J.; Eppig, J.J. Selective degradation of transcripts during meiotic maturation of mouse oocytes. Dev. Biol. 2007, 302, 104–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, D.; Dean, J. EXOSC10 sculpts the transcriptome during the growth-to-maturation transition in mouse oocytes. Nucleic Acids Res. 2020, gkaa249. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Ji, S.-Y.; Sha, Q.-Q.; Dang, Y.; Zhou, J.-J.; Zhang, Y.-L.; Liu, Y.; Wang, Z.-W.; Hu, B.; Sun, Q.-Y.; et al. BTG4 is a meiotic cell cycle–coupled maternal-zygotic-transition licensing factor in oocytes. Nat. Struct. Mol. Biol. 2016, 23, 387–394. [Google Scholar] [CrossRef]
- Ma, J.; Flemr, M.; Strnad, H.; Svoboda, P.; Schultz, R.M. Maternally Recruited DCP1A and DCP2 Contribute to Messenger RNA Degradation During Oocyte Maturation and Genome Activation in Mouse1. Biol. Reprod. 2013, 88. [Google Scholar] [CrossRef]
- Medvedev, S.; Yang, J.; Hecht, N.B.; Schultz, R.M. CDC2A (CDK1)-mediated phosphorylation of MSY2 triggers maternal mRNA degradation during mouse oocyte maturation. Dev. Biol. 2008, 321, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Medvedev, S.; Pan, H.; Schultz, R.M. Absence of MSY2 in Mouse Oocytes Perturbs Oocyte Growth and Maturation, RNA Stability, and the Transcriptome. Biol. Reprod. 2011, 85, 575–583. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, I.; Much, C.; Di Giacomo, M.; Azzi, C.; Morgan, M.; Moreira, P.N.; Monahan, J.; Carrieri, C.; Enright, A.J.; O’Carroll, D. The RNA m 6 A Reader YTHDF2 Is Essential for the Post-transcriptional Regulation of the Maternal Transcriptome and Oocyte Competence. Mol. Cell 2017, 67, 1059–1067. [Google Scholar] [CrossRef] [Green Version]
- Schier, A.F. The Maternal-Zygotic Transition: Death and Birth of RNAs. Science 2007, 316, 406–407. [Google Scholar] [CrossRef] [PubMed]
- Varnum, S.M.; Wormington, W.M. Deadenylation of maternal mRNAs during Xenopus oocyte maturation does not require specific cis-sequences: A default mechanism for translational control. Genes Dev. 1990, 4, 2278–2286. [Google Scholar] [CrossRef] [PubMed]
- Ingolia, N.T.; Ghaemmaghami, S.; Newman, J.R.S.; Weissman, J.S. Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling. Science 2009, 324, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Baek, D.; Villén, J.; Shin, C.; Camargo, F.D.; Gygi, S.P.; Bartel, D.P. The impact of microRNAs on protein output. Nature 2008, 455, 64–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwanhäusser, B.; Busse, D.; Li, N.; Dittmar, G.; Schuchhardt, J.; Wolf, J.; Chen, W.; Selbach, M. Global quantification of mammalian gene expression control. Nature 2011, 473, 337–342. [Google Scholar] [CrossRef] [Green Version]
Protein | Time of Translation | Classification |
---|---|---|
Speedy/RINGO | ? | Class I [8,9] |
Mos | Early | Class I [10,11,12,13,14,15] |
Cyclin B1 | Class I [5,16] | |
Xkid | Class II [17] | |
CPEB4 | Late | Class II [18] |
Bub1 | Class II [19] | |
Erp1/Emi2 | Class II [20] | |
TPX2 | ? | Class II [21] |
Cdc6 | Late | Class III [22,23,24] |
Wee1 | Class III [25] | |
Cdt1 | Class III [26] | |
Cyclin E1 | Class III [27] | |
Zfp36l2 | ? [28] | |
Drosha | ? | ? [29] |
Lamin L1 | ? | Class III [30] |
Ability to Block Meiotic Maturation When Phosphorylated by PKA | ||||
---|---|---|---|---|
Protein | Expressed in Xenopus Prophase I | Time of Dephosphorylation | Progesterone or PKI | MPF Transfer or OA Injection |
Inhibitor 1 (I1) | Unknown | Unknown | YES [60] | NO [60] |
Wee1 | NO [66] | Unknown | Unknown | |
Cdc25C | YES [69] | Late [63] | ||
MpP-32 | YES [47] | Late [47] | ||
Arpp19/MpP-20 | YES [47,49] | Early [47,49] | YES [49] | NO [49] |
Gene Names | Proteins | Predicted PKA Site | (STY) Probabilities | Fold Change (Pg90/ProI) | Protein Functions |
---|---|---|---|---|---|
akt1s1 | Proline rich substrate of Akt | DETSKFPS(237)PDLDRIA | 0.955 | 0.353 | Subunit of mTORC1, a master regulator of protein synthesis |
clspn | Claspin | ADNVKGHS(88)DNEENEE | 1 | 0.131 | Cell cycle checkpoints |
gly | Glycogensynthase | HRRSKKGS(700)IDATNSS | 0.271 | 0.401 | Metabolism of glycogen |
hadha | Hydroxyacyl-CoA dehydrogenase | NDKVKKKS(413)VTSFERD | 0.751 | 0.476 | Fatty acids metabolism |
rif1 | Replication timing regulatory factor 1 | SWRSKTKS(1484)IEKDDNV | 0.994 | 0.336 | Telomere-associated protein |
rps6 | Ribosomal protein S6 | IAKRRRLSS(236)LRAS(240)TSKSESS | 0.455/0.545/0.989 | 0.344 | Cell growth and proliferation through mRNA translation |
serpinA2 | SerpinA2 | FFNKKKLS(133)ELQVHEA | 0.986 | 0.301 | Inhibition of serine proteases |
spats2 | Spermatogenesis associated, serine rich 2 | NNKTTRSGS(218)LSSSSQSL | 0.461 | 0.227 | RNA binding protein involved in male meiosis |
ube2o | Ubiquitin ligase | SGTGRKKS(496)IPLSIRN | 1 | 0.393 | Ubiquitin-protein ligase |
Timing | Protein Accumulation | Effects on NEBD | ||||
---|---|---|---|---|---|---|
Polyadenylation | Protein Accumulation | Cdk1 Activity | Loss of Function | Gain of Function | Gain of Function + CHX | |
Class I | Early | Before NEBD | Not required | Delay/Block | Induction | Induction |
Cyclin B1 | Early [85] | Before NEBD [16] | Not required [16] | Delay [5] | Induction [5] | Induction [5] |
Mos | Early [86] | At NEBD [16] | Required [16] | Delay [5,14,15] | Induction [11] | No Induction [5] |
Speedy/Ringo | Unknown | Unknown | Unknown | Delay [67] | Induction [8,9] | Induction [8,9] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meneau, F.; Dupré, A.; Jessus, C.; Daldello, E.M. Translational Control of Xenopus Oocyte Meiosis: Toward the Genomic Era. Cells 2020, 9, 1502. https://doi.org/10.3390/cells9061502
Meneau F, Dupré A, Jessus C, Daldello EM. Translational Control of Xenopus Oocyte Meiosis: Toward the Genomic Era. Cells. 2020; 9(6):1502. https://doi.org/10.3390/cells9061502
Chicago/Turabian StyleMeneau, Ferdinand, Aude Dupré, Catherine Jessus, and Enrico Maria Daldello. 2020. "Translational Control of Xenopus Oocyte Meiosis: Toward the Genomic Era" Cells 9, no. 6: 1502. https://doi.org/10.3390/cells9061502
APA StyleMeneau, F., Dupré, A., Jessus, C., & Daldello, E. M. (2020). Translational Control of Xenopus Oocyte Meiosis: Toward the Genomic Era. Cells, 9(6), 1502. https://doi.org/10.3390/cells9061502