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Abstract: ORCAE (Online Resource for Community Annotation of Eukaryotes) is a public genome
annotation curation resource. ORCAE-AOCC is a branch that is dedicated to the genomes published
as part of the African Orphan Crops Consortium (AOCC). The motivation behind the development of
the ORCAE platform was to create a knowledge-based website where the research-community can
make contributions to improve genome annotations. All changes to any given gene-model or gene
description are stored, and the entire annotation history can be retrieved. Genomes can either be set
to “public” or “restricted” mode; anonymous users can browse public genomes but cannot make any
changes. Aside from providing a user- friendly interface to view genome annotations, the platform
also includes tools and information (such as gene expression evidence) that enables authorized users to
edit and validate genome annotations. The ORCAE-AOCC platform will enable various stakeholders
from around the world to coordinate their efforts to annotate and study underutilized crops.
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1. Introduction

According to the United Nations (2019), the number of undernourished people has increased in
the past three years, with more than 820 million people still facing starvation. Moreover, the majority
of these people live in developing countries. As the global population continues to grow, it is predicted
that there will be 9 billion people by 2050, and the demand for food will be 70% greater than it is
today [1]. Currently, out of the estimated 50,000 edible plant species, just three of them (maize, rice,
and wheat) provide two-thirds of the world’s food energy intake. Technological innovations such as
the development and selection of high-yield varieties, improvement of pesticide and fertilizer use,
mechanization, and irrigation facilities have contributed to a global increase in the production of
these grains. However, these innovations are often not readily available to the subsistence farmers
throughout Africa.

Apart from maize, rice, and wheat, which are all important for Africa and African farmers, there
are many other crops that are currently underutilized but have great potential for Africa. These
underutilized or so-called “orphan-crops”, are ancient, neglected, or indigenous crops with limited
cultivation at a global scale, and their use ranges from food, fodder, to derivatives such as oil and
medicine. In addition, orphan crops are promising solutions for nutritional diversity and can reduce
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over-reliance on major-crops and certain agricultural practices that have a negative environmental
impact, as discussed by Mayes et al. [2]. In order to fast-track the improvement of orphan-crops, either
by selective breeding or genetic modification, it is essential to have reliable information about their
genetic makeup.

The African Orphan Crop Consortium (AOCC) was established in 2011 to tackle hunger and
malnutrition in Africa [3]. AOCC aims to facilitate the development of locally available crops to
supply nutritious and high yielding varieties. AOCC has committed itself to sequence, annotate, and
analyze the genomes of 101 mostly indigenous and some introduced crops [3]. Given that orphan
crops are expected to advance healthy food systems, as well as genetic resources for future crops, and
agricultural sustainability under climate change [4], it is anticipated that the comprehensively selected
101 species in AOCC will become an invaluable resource and broaden the diversity of our current
understanding of crop genomics (Figure 1).
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Figure 1. Diversity of currently sequenced, publicly available crop genomes (blue dots) and the orphan
crop species initially included in the African Orphan Crops Consortium list (red dots), some of which
are available on ORCAE already.

The availability of high-quality crop reference genomes has already proved to be valuable
to breeders, for example, by facilitating the identification of breeding targets in the genome [5].
Nevertheless, the complexity of many plant genomes, due to size, high repeat content, and polyploid
ancestry has rendered their de novo genome assemblies particularly difficult [6]. Furthermore, different
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sequencing platforms create different challenges in the downstream bioinformatics analyses of a Next
Generation Sequencing (NGS) project workflow [7–9]. On the other hand, long-read sequencing
techniques and the recent advances of assemblers have generally increased the quality of draft genomes.
However, fewer developments were made in terms of the genome annotation procedures, and some
even argue that the errors of genome annotations keep propagating [9]. Here, we present a genomic
resource called ORCAE-AOCC, a community-based genome annotation platform, and discuss its
potential value for the scientific community.

Genome annotation mainly consists of two phases. (1) Structural annotation aims to provide
information on the location of genes in the genome and the exact boundaries of exons and introns.
The process often involves making use of transcript evidence [10,11] and ab initio modeling that utilizes
statistical models to predict gene structures [11,12]. (2) Functional annotation aims to assign biological
functions to the genes. Functional annotation is often homology-based, which means that information
about the biological role of a gene in a new genome is inferred from genes with similar sequences from
other genomes, where the role of the gene has been described or predicted [11]. Hypothetical genes
(experimentally uncharacterized genes) or predicted gene models without any similarity found can
sometimes be species-specific and their functions can be hard to deduce [13–16]. However, as more
genomes are sequenced and annotated, it is becoming clear that some hypothetical genes are conserved
between species [13]. Experimental evidence has shown that many hypothetical genes are indeed
expressed and that they have critical biological roles [13,17–19]. Therefore, there is a need to focus
efforts toward understanding the roles of hypothetically functional genes. Furthermore, it is also
important to efficiently identify and exclude miss-annotated hypothetical genes [16].

Manual curation of genome annotations has been proven to be extremely valuable for building
accurate reference gene sets in model organisms but compared to automatic annotation methods it
is prohibitively expensive and is thus not widely done for non-model organisms [20]. Community-
based efforts, where different researchers working on the same genome can contribute new information
on gene structure and function have proven to be highly beneficial, e.g. in the case of the
Vertebrate Genome Annotation Database (VEGA, [21]), which is maintained by the human and
vertebrate analysis and annotation (Havana) team at the Wellcome Trust Sanger Institute (WTSI, [22]).
Some of the best known community annotation platforms for plants include: The Arabidopsis
Information Resource (TAIR) [23,24], the Maize Genetics and Genomics Database (Maize GDB) [25,26],
The Rice Annotation Project Database (RAP-DB) [27–29], the International Wheat Genome Sequencing
Consortium (IWGSC) [30,31] and Wheat@URGI [32,33]. Each of these platforms are dedicated to a
single species that is widely grown and well-studied. Typically, these genomes have been annotated
using automatic methods followed by manual curation steps [24,28]. Members of the scientific
community can provide the curators of the databases above with information on newly identified
genes and gene functions, which are then added when the genome annotations are updated.

2. ORCAE-AOCC and the Currently Deployed Genomes

Referred to as the Online Resource for Community Annotation of Eukaryotes, ORCAE [34]
was developed and launched in 2012 to facilitate the manual curation of gene models, functional
annotations, and improvement of annotation quality by genome consortia [35]. ORCAE was chosen
as a central platform for the annotation of the grapevine (Vitis vinifera) as part of the International
Grapevine Genome Project [36], In recent years, ORCAE has also been used by other communities
resulting in several high-profile publications including the genomes of the seagrass (Zostera marina) [37],
olive tree (Olea europaea var. sylvestris) [38], and sea lettuce (Ulva mutabilis) [39]. The system was
designed with a wiki-like style editing mode for the community to refine information about the gene
models, such as the gene structures and the definition of gene function. ORCAE also seamlessly
integrates with GenomeView [40] to allow manual editing of the structure of a given gene model,
with the aid of RNA-Seq or (expressed sequence tag) EST evidence. After editing the gene structures,
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the system will perform a number of checks in order to validate the modified gene structure before it is
committed back to the database.

On the gene page (Figure 2), ORCAE displays the alignment of homologs retrieved from other
public databases for a given gene, as well as other evidential information such as EST alignments and
expression profiles. The built-in backend utility will search the detail properties of the protein sequence
and provide protein domain information using InterProScan [41]. As an information collector, ORCAE
allows expert annotators from the consortium to assess and update the information of each gene.
Additionally, the functional description of each gene is transferred from the trusted reference database
by homology and summarized using tools such as Automated Assignment of Human Readable
Descriptions (AHRD) [42]. The system will automatically update the information of the gene after any
modification. The final quality of the annotation depends not only on the initial deployed ab initio
prediction but also on the effort of the consortium. Although it is hard to be scaled in all genome
projects, it still provides a way to improve the quality of gene prediction and avoid the propagation of
false positively predicted structures.

Figure 2. Part of the gene page in ORCAE-AOCC. Screenshot taken from [43].
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In order to incorporate the incoming genomes from the AOCC project into the ORCAE platform,
while maintaning focus on the project, we launched ORCAE-AOCC [43], a dedicated genome portal for
the AOCC consortium (Figure 3). ORCAE-AOCC currently contains five published genomes from the
consortium: Faidherbia albida, Moringa oleifera, Sclerocarya birrea, Lablab purpureus, and Vigna radiata [44]
the remaining genomes will be added as soon as their sequencing and annotation are complete. Apart
from the curation of functional and structural annotation, users can also visit the portal of the desired
genome in order to download the latest version of the annotations, the coding sequences (CDS) and the
predicted protein sequences. Users can also perform BLAST [45] searches against CDS, protein, or the
genomic sequence from within the portal. For on-going and restricted genome projects, one can request
an account from the coordinator of the genome project to join the curation process prior to publication.

Figure 3. An overview of the ORCAE-AOCC genome portal.

3. Concluding Remarks and Future Perspectives

ORCAE-AOCC is a platform that acts as a portal where the genomes that are sequenced as part of
the AOCC initiative can be accessed by the broader research community. It also facilities collaborative
efforts to improve the annotations and serves as a central repository for up to date versions of the
genomes. ORCAE-AOCC also contains functionalities such as BLAST (Basic Local Alignment Search
Tool) [46], the visualization of gene expression profiles, and pre-computed functional information.
Additional African orphan crop genomes will be added when they will become available.
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