Genomic Characterization of External Morphology Traits in Kelpies Does Not Support Common Ancestry with the Australian Dingo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Sequencing
2.2. Ethics
2.3. Bioinformatics
2.4. Variants
3. Results
3.1. Coat Color
3.2. Ear Morphology
3.3. Morphologic Concordance of Kelpie with Dingo
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arnott, E.R.; Peek, L.; Early, J.B.; Pan, A.Y.; Haase, B.; Chew, T.; McGreevy, P.D.; Wade, C.M. Strong selection for behavioural resilience in Australian stock working dogs identified by selective sweep analysis. Canine Genet. Epidemiol. 2015, 2, 6. [Google Scholar] [CrossRef] [PubMed]
- Early, J.B.; Arnott, E.A.; Mascord, L.; van Rooy, D.; McGreevy, P.D.; Wade, C.M. Work-type influences perceived livestock herding success in Australian Working Kelpies. Canine Genet. Epidemiol. 2018, 5, 5. [Google Scholar] [CrossRef]
- Hrckova Turnova, E.; Majchrakova, Z.; Bielikova, M.; Soltys, K.; Turna, J.; Dudas, A. A novel mutation in the TYRP1 gene associated with brown coat colour in the Australian Shepherd Dog Breed. Anim. Genet. 2017, 48, 626. [Google Scholar] [CrossRef]
- Schmutz, S.M.; Berryere, T.G.; Goldfinch, A.D. TYRP1 and MC1R genotypes and their effects on coat color in dogs. Mamm Genome 2002, 13, 380–387. [Google Scholar] [CrossRef]
- Candille, S.I.; Kaelin, C.B.; Cattanach, B.M.; Yu, B.; Thompson, D.A.; Nix, M.A.; Kerns, J.A.; Schmutz, S.M.; Millhauser, G.L.; Barsh, G.S. A -defensin mutation causes black coat color in domestic dogs. Science 2007, 318, 1418–1423. [Google Scholar] [CrossRef] [PubMed]
- Dreger, D.L.; Schmutz, S.M. A SINE insertion causes the black-and-tan and saddle tan phenotypes in domestic dogs. J. Hered. 2011, 102 (Suppl. 1), S11–S18. [Google Scholar] [CrossRef]
- Kerns, J.A.; Cargill, E.J.; Clark, L.A.; Candille, S.I.; Berryere, T.G.; Olivier, M.; Lust, G.; Todhunter, R.J.; Schmutz, S.M.; Murphy, K.E.; et al. Linkage and segregation analysis of black and brindle coat color in domestic dogs. Genetics 2007, 176, 1679–1689. [Google Scholar] [CrossRef] [PubMed]
- Berryere, T.G.; Kerns, J.A.; Barsh, G.S.; Schmutz, S.M. Association of an Agouti allele with fawn or sable coat color in domestic dogs. Mamm Genome 2005, 16, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Philipp, U.; Hamann, H.; Mecklenburg, L.; Nishino, S.; Mignot, E.; Gunzel-Apel, A.R.; Schmutz, S.M.; Leeb, T. Polymorphisms within the canine MLPH gene are associated with dilute coat color in dogs. BMC Genet. 2005, 6, 34. [Google Scholar] [CrossRef]
- Drogemuller, C.; Philipp, U.; Haase, B.; Gunzel-Apel, A.R.; Leeb, T. A noncoding melanophilin gene (MLPH) SNP at the splice donor of exon 1 represents a candidate causal mutation for coat color dilution in dogs. J. Hered. 2007, 98, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, E.K.; Baranowska, I.; Wade, C.M.; Salmon Hillbertz, N.H.; Zody, M.C.; Anderson, N.; Biagi, T.M.; Patterson, N.; Pielberg, G.R.; Kulbokas, E.J., 3rd; et al. Efficient mapping of mendelian traits in dogs through genome-wide association. Nat. Genet. 2007, 39, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Kelley, R.B. Sheep Dogs: Their Breeding, Maintenance and Training, 4th ed.; Angus and Robertson: Sydney, NSW, Australia, 1970; p. 238. [Google Scholar]
- Robertson, B. Origins of the Australian Kelpie: Exposing the Myths and Fabrications from the Past; Bill and Kerry Robertson: Ballan, VIC, Australia, 2015. [Google Scholar]
- Wyalong. The Origin of the Kelpie. In Australasian Saturday; 7 May 1921; p. 1. Available online: https://trove.nla.gov.au/ (accessed on 7 May 1921).
- Anonymous. Kelpie’s Origin: Collie-Dingo Cross? In Queensland Country Life; 28 September 1950; p. 1. Available online: https://trove.nla.gov.au (accessed on 28 September 1950).
- Vaysse, A.; Ratnakumar, A.; Derrien, T.; Axelsson, E.; Rosengren Pielberg, G.; Sigurdsson, S.; Fall, T.; Seppala, E.H.; Hansen, M.S.; Lawley, C.T.; et al. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping. PLoS Genet. 2011, 7, e1002316. [Google Scholar] [CrossRef] [PubMed]
- Webster, M.T.; Kamgari, N.; Perloski, M.; Hoeppner, M.P.; Axelsson, E.; Hedhammar, A.; Pielberg, G.; Lindblad-Toh, K. Linked genetic variants on chromosome 10 control ear morphology and body mass among dog breeds. BMC Genom. 2015, 16, 474. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.Y.H.; Wade, C.M.; Taylor, R.M.; Williamson, P. Exclusion of known gene loci for cerebellar abiotrophy in the Australian Working Kelpie. Anim. Genet. 2017, 48, 730–732. [Google Scholar] [CrossRef] [PubMed]
- Freedman, A.H.; Gronau, I.; Schweizer, R.M.; Ortega-Del Vecchyo, D.; Han, E.; Silva, P.M.; Galaverni, M.; Fan, Z.; Marx, P.; Lorente-Galdos, B.; et al. Genome sequencing highlights the dynamic early history of dogs. PLoS Genet. 2014, 10, e1004016. [Google Scholar] [CrossRef] [PubMed]
- Cairns, K.M.; Wilton, A.N. New insights on the history of canids in Oceania based on mitochondrial and nuclear data. Genetica 2016, 144, 553–565. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Faust, G.G.; Hall, I.M. SAMBLASTER: Fast duplicate marking and structural variant read extraction. Bioinformatics 2014, 30, 2503–2505. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Australian National Kennel Council. Breeds: Australian Kelpie. Available online: http://ankc.org.au/Breed/Detail/149 (accessed on 3 April 2019).
- Online Mendelian Inheritance in Animals, OMIA. Sydney School of Veterinary Science. Available online: http://omia.org/ (accessed on 4 April 2019).
- Little, C.C. The Inheritance of Coat Color in Dogs; Cornell University: New York, NY, USA, 1957. [Google Scholar]
- Dreger, D.L.; Parker, H.G.; Ostrander, E.A.; Schmutz, S.M. Identification of a mutation that is associated with the saddle tan and black-and-tan phenotypes in Basset Hounds and Pembroke Welsh Corgis. J. Hered. 2013, 104, 399–406. [Google Scholar] [CrossRef]
- Schmutz, S.M.; Berryere, T.G.; Ellinwood, N.M.; Kerns, J.A.; Barsh, G.S. MC1R studies in dogs with melanistic mask or brindle patterns. J. Hered. 2003, 94, 69–73. [Google Scholar] [CrossRef]
- Baranowska Korberg, I.; Sundstrom, E.; Meadows, J.R.; Rosengren Pielberg, G.; Gustafson, U.; Hedhammar, A.; Karlsson, E.K.; Seddon, J.; Soderberg, A.; Vila, C.; et al. A simple repeat polymorphism in the MITF-M promoter is a key regulator of white spotting in dogs. PLoS ONE 2014, 9, e104363. [Google Scholar] [CrossRef] [PubMed]
- Jagannathan, V.; Bannoehr, J.; Plattet, P.; Hauswirth, R.; Drogemuller, C.; Drogemuller, M.; Wiener, D.J.; Doherr, M.; Owczarek-Lipska, M.; Galichet, A.; et al. A mutation in the SUV39H2 gene in Labrador Retrievers with hereditary nasal parakeratosis (HNPK) provides insights into the epigenetics of keratinocyte differentiation. PLoS Genet. 2013, 9, e1003848. [Google Scholar] [CrossRef] [PubMed]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Soding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef] [PubMed]
Phene | Gene | OMIA Code |
---|---|---|
Coat color, agouti | ASIP | 000201-9615 |
Coat color, brown | TYRP1 | 001249-9615 |
Coat color, dilute | MLPH | 000031-9615 |
Coat color, dominant black | CBD103 | 001416-9613 |
Coat color, extension | MC1R | 001199-9615 |
Coat color, grizzle | MC1R | 001495-9615 |
Coat color, melanistic mask | MC1R | 001590-9615 |
Coat color, saddle tan vs. black-and-tan | RALY | 001806-9615 |
Coat color, white spotting | MITF | 000214-9615 |
Ears, folded | - | 000319-9615 |
Chromosome | Gene Name | Canfam 3.1 Reference Allele | Position in CanFam3.1 (Reference >Alternate) | Canis dingo_RKW13760 | ‡ AK-USCF305 (Brown) | USCF6182 | USCF6203 | ƛ AWK-USCF634 (Black and Tan) | USCF6343 | AWK-USCF635 (Black and Tan) | AWK-USCF636 (Black and Tan) | AWK-USCF639 (Black and Tan) | AWK-USCF640 (Black and Tan) | AWK-USCF6348 | AWK-USCF6350 | AWK-USCF6359 (Brown and Tan) | Variant Phenotype |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | MC1R | G | g.63694334G>A | G G | G A | G G | 0 0 | G A | G A | G G | 0 0 † | G G | G G | G G | G G | G G | Ginger (p.R306*) (recessive) (AA) |
5 | MC1R | C | g.63694460C>T | T T | T T | T T | T T | C T | T T | C C | T T | C C | C C | T T | T T | T T | Melanistic mask (p.M264V)(C -) |
11 | TYRP1 | T | g.33317810T>C | T T | T T | T T | T T | T T | T T | T T | T T | T T | T T | T T | T T | T T | Brown (p.C41S)(recessive) (C C) |
11 | TYRP1 | T | g.33319349T>G | T T | T T | T T | T T | T T | T T | T T | T T | T T | T T | T T | T T | T T | Brown (p.Tyr185*) (recessive) (G G) |
11 | TYRP1 | C | g.33326685C>T | C C | T T | T T | T T | C C | C C | C T | C T | 0 0 | C C | C T | T T | T T | Brown (p.Q331X) (recessive) (T T) |
11 | TYRP1 | ins | g.33326727 _33326729ins>del | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | Brown (p.345delP) (recessive) (del del) |
16 | CBD103 | ins | g.58965449 _58965451ins>del | ins/ins | del/del | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | Black (dominant) (del -) |
20 | MITF | ins | g.21836232 _21836427ins>del | ins/ins | del/del | del/del | del/del | del/del | del/del | del/del | del/del | del/del | del/del | del/del | del/del | del/del | SINE element insertion is associated with extreme white spotting (recessive) |
20 | MITF | 12C9A2G12A | g.21839321 _21839366 (indel) | 11C10A2G12A/11C10A2G12A | 10C9A2G12A/10C9A2G12A | 10C9A2G12A/10C9A2G12A | 10C9A2G12A/10C9A2G12A | 10C9A2G12A/10C9A2G12A | 10C9A2G12A/10C9A2G12A | 10C9A2G12A/10C9A2G12A | 10C9A2G12A/10C9A2G12A | 10C9A2G12A/10C9A2G12A | 10C8A2G11A/10C9A2G12A | 10C9A2G12A/10C9A2G12A | 10C9A2G12A/10C9A2G12A | 10C9A2G12A/10C9A2G12A | Various. Longer variants are associated with more white markings |
24 | RALY | del | g.23252754 _23252770dupCCCCAGGTCAGAGTTT | del/del | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | as (del -)/at (ins/ins) |
24 | ASIP | del | g.23365298ins239 | del/del | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | ins/ins | Ay (del -)/at (ins/ins) |
24 | ASIP | T | g.23393510T>G | T T | G G | G G | G G | G G | G G | G G | G G | G G | G G | G G | G G | G G | Sable/Fawn (Ay is T -) |
24 | ASIP | A | g.23393514A>G | A A | G G | G G | G G | G G | G G | G G | G G | G G | G G | G G | G G | G G | Sable/Fawn (Ay is A -) |
24 | ASIP | C | g.23393552C>T | C C | C C | C C | C C | C C | C C | C C | C C | C C | C C | C C | C C | C C | Black (recessive) (a is T T) |
Chromosome | Gene Name | Canfam 3.1 Reference Allele | Position in CanFam3.1 CanFam3.1 (Reference>Alternate) | Labrador_LA882 (Drop) | Canis dingo_RKW13760 (Prick) | ‡ AK-USCF305 (Prick) | ƛ AWK-USCF634 | AWK-USCF635 | AWK-USCF636 | AWK-USCF639 | AWK-USCF640 | AWK-USCF6348 | AWK-USCF6350 | AWK-USCF6359 (Prick) | USCF6182 | USCF6203 | USCF6343 | Variant Phenotype |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10 | MSRB3_UTR | del | g. 8038433del>insTTTATTTTAT g. 8038433del>insTTTAT | del/ | insTTTAT/ | ins/ | ins/ | ins/ | ins/ | ins/ | ins/ | ins/ | ins/ | ins/ | ins/ | ins/ | ins/ | Drop ears are del/del |
del | insTTTAT | ins | ins † | ins | ins | ins | ins | ins | ins | ins | ins | ins | ins | |||||
10 | Intergenic (MSRB3-HMGA2) | C | g.8085469C>T | C C | T T | T T | T C | T T | T T | T T | T T | T T | T T | T T | T T | T T | T T | Drop ears are C C |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chew, T.; Willet, C.E.; Haase, B.; Wade, C.M. Genomic Characterization of External Morphology Traits in Kelpies Does Not Support Common Ancestry with the Australian Dingo. Genes 2019, 10, 337. https://doi.org/10.3390/genes10050337
Chew T, Willet CE, Haase B, Wade CM. Genomic Characterization of External Morphology Traits in Kelpies Does Not Support Common Ancestry with the Australian Dingo. Genes. 2019; 10(5):337. https://doi.org/10.3390/genes10050337
Chicago/Turabian StyleChew, Tracy, Cali E. Willet, Bianca Haase, and Claire M. Wade. 2019. "Genomic Characterization of External Morphology Traits in Kelpies Does Not Support Common Ancestry with the Australian Dingo" Genes 10, no. 5: 337. https://doi.org/10.3390/genes10050337
APA StyleChew, T., Willet, C. E., Haase, B., & Wade, C. M. (2019). Genomic Characterization of External Morphology Traits in Kelpies Does Not Support Common Ancestry with the Australian Dingo. Genes, 10(5), 337. https://doi.org/10.3390/genes10050337