The Influence of Diet and Obesity on Gene Expression in SLE
Abstract
:1. Introduction
2. Diet and Gene Expression in SLE
2.1. PUFA
2.2. Polyphenols
2.3. Sodium Chloride (NaCl)/Salt Intake
2.4. Vitamins
2.5. Amino Acids and mTOR
3. Epigenetic Effects of Diet on SLE
4. Diet and Microbiome in SLE
5. Caloric Intake, Obesity and Gene Expression in SLE
6. Conclusions
Funding
Conflicts of Interest
References
- Ferretti, C.; La Cava, A. Overview of the pathogenesis of systemic lupus erythematosus. In Systemic Lupus Erythematosus. Basic, Applied and Clinical Aspects; Academic Press: Waltham, UK, 2015; pp. 55–62. [Google Scholar]
- Oaks, Z.; Perl, A. Metabolic control of the epigenome in systemic lupus erythematosus. Autoimmunity 2014, 47, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Pestka, J.J.; Vines, L.L.; Bates, M.A.; He, K.; Langohr, I. Comparative effects of n-3, n-6 and n-9 unsaturated fatty acid-rich diet consumption on lupus nephritis, autoantibody production and CD4+ T cell-related gene responses in the autoimmune NZBWF1 mouse. PLoS ONE 2014, 9, e100255. [Google Scholar]
- Dupont, J.; White, P.J.; Carpenter, M.P.; Schaefer, E.J.; Meydani, S.N.; E Elson, C.; Woods, M.; Gorbach, S.L. Food uses and health effects of corn oil. J. Am. Nutr. 1990, 9, 438–470. [Google Scholar] [CrossRef]
- Calder, P.C. N-3 Polyunsaturated fatty acids and immune cell function. Adv. Enzym. Regul. 1997, 37, 197–237. [Google Scholar]
- Walton, A.J.; Snaith, M.L.; Locniskar, M.; Cumberland, A.G.; Morrow, W.J.; Isenberg, D.A. Dietary fish oil and the severity of symptoms in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 1991, 50, 463–466. [Google Scholar] [CrossRef]
- Wright, S.A.; O’Prey, F.M.; McHenry, M.T.; Leahey, W.J.; Devine, A.B.; Duffy, E.M.; Johnston, D.G.; Finch, M.B.; Bell, A.L.; McVeigh, G.E. A randomised interventional trial of ω-3-polyunsaturated fatty acids on endothelial function and disease activity in systemic lupus erythematosus. Ann. Rheum. Dis. 2008, 67, 841–848. [Google Scholar] [CrossRef]
- Chandrasekar, B.; Fernandes, G. Decreased pro-inflammatory cytokines and increased antioxidant enzyme gene expression by ω-3 lipids in murine lupus nephritis. Biochem. Biophys. Res. Commun. 1994, 200, 893–898. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Kim, H.J.; No, J.K.; Chung, H.Y.; Fernandes, G. Anti-inflammatory action of dietary fish oil and calorie restriction. Life Sci. 2006, 78, 2523–2532. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.R.; Prickett, J.D.; Makoul, G.T.; Steinberg, A.D.; Colvin, R.B. Dietary fish oil reduces progression of established renal disease in (NZB x NZW)F1 mice and delays renal disease in BXSB and MRL/1 strains. Arthritis Rheum. 1986, 29, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Westberg, G.; Tarkowski, A.; Svalander, C. Effect of eicosapentaenoic acid rich menhaden oil and MaxEPA on the autoimmune disease of Mrl/l mice. Int. Arch. Appl. Immunol. 1989, 88, 454–461. [Google Scholar] [CrossRef]
- Yang, M.; Cook, M.E. Dietary CLA decreased weight loss and extended survival following the onset of kidney failure in NZB/W F1 mice. Lipids 2003, 38, 21–24. [Google Scholar] [CrossRef]
- Aparicio-Soto, M.; Sánchéz-Hidalgo, M.; Cárdeno, A.; Lucena, J.M.; Gonzáléz-Escribano, F.; Castillo, M.J.; Alarcón-de-la-Lastra, C. The phenolic fraction of extra virgin olive oil modulates the activation and the inflammatory response of T cells from patients with systemic lupus erythematosus and healthy donors. Mol. Nutr. Food Res. 2017, 61, 1601080. [Google Scholar] [CrossRef]
- Yang, X.; Yao, G.; Chen, W.; Tang, X.; Feng, X.; Sun, L. Exacerbation of lupus nephritis by high sodium chloride related to activation of SGK1 pathway. Int. Immunopharmacol. 2015, 29, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Huang, X.; Qiu, H.; Zhao, M.; Liao, W.; Yuan, S.; Xie, Y.; Dai, Y.; Chang, C.; Yoshimura, A.; et al. High salt promotes autoimmunity by TET2-induced DNA demethylation and driving the differentiation of Tfh cells. Sci. Rep. 2016, 6, 28065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco, A.S.; Freitas, T.Q.; Bernardo, W.M.; Pereira, R.M.R. Vitamin D supplementation and disease activity in patients with immune-mediated rheumatic diseases: A systematic review and meta-analysis. Medicine 2017, 96, e7024. [Google Scholar] [CrossRef] [PubMed]
- Andreoli, L.; Dall’Ara, F.; Piantoni, S.; Zanola, A.; Piva, N.; Cutolo, M.; Tincani, A. A 24-month prospective study on the efficacy and safety of two different monthly regimens of vitamin D supplementation in pre-menopausal women with systemic lupus erythematosus. Lupus 2015, 24, 499–506. [Google Scholar] [CrossRef]
- Handono, K.; Sidarta, Y.O.; Pradana, B.A.; Nugroho, R.A.; Hartono, I.A.; Kalim, H.; Endharti, A.T. Vitamin D prevents endothelial damage induced by increased neutrophil extracellular traps formation in patients with systemic lupus erythematosus. Acta Med. Indones 2014, 46, 189–198. [Google Scholar] [PubMed]
- Kinoshita, K.; Kishimoto, K.; Shimazu, H.; Nozaki, Y.; Sugiyama, M.; Ikoma, S.; Funauchi, M. Successful treatment with retinoids in patients with lupus nephritis. Am. J. Kidney Dis. 2010, 55, 344–347. [Google Scholar] [CrossRef]
- Kinoshita, K.; Yoo, B.-S.; Nozaki, Y.; Sugiyama, M.; Ikoma, S.; Ohno, M.; Funauchi, M.; Kanamaru, A. Retinoic acid reduces autoimmune renal injury and increases survival in NZB/W F1 mice. J. Immunol. 2003, 170, 5793–5798. [Google Scholar] [CrossRef]
- Perez de Lema, G.; Lucio-Cazana, F.J.; Molina, A.; Luckow, B.; Schmid, H.; de Wit, C.; Moreno-Manzano, V.; Banas, B.; Mampaso, F.; Schlöndorff, D. Retinoic acid treatment protects MRL/lpr lupus mice from the development of glomerular disease. Kidney Int. 2004, 66, 1018–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, A.C. Lupus erythematosus and nutrition: A review of the literature. J. Ren. Nutr. 2000, 10, 170–183. [Google Scholar] [CrossRef] [PubMed]
- Perl, A.; Hanczko, R.; Lai, Z.-W.; Oaks, Z.; Kelly, R.; Borsuk, R.; Asara, J.M.; Phillips, P.E. Comprehensive metabolome analyses reveal N-acetylcysteine-responsive accumulation of kynurenine in systemic lupus erythematosus: Implications for activation of the mechanistic target of rapamycin. Metabolomics 2015, 11, 1157–1174. [Google Scholar] [CrossRef]
- Bengtsson, A.A.; Trygg, J.; Wuttge, D.M.; Sturfelt, G.; Theander, E.; Donten, M.; Moritz, T.; Sennbro, C.-J.; Torell, F.; Lood, C.; et al. Metabolic profiling of systemic lupus erythematosus and comparison with primary Sjögren’s syndrome and systemic sclerosis. PLoS ONE 2016, 11, e0159384. [Google Scholar] [CrossRef] [PubMed]
- Lai, Z.W.; Hanczko, R.; Bonilla, E.; Caza, T.N.; Clair, B.; Bartos, A.; Miklossy, G.; Jimah, J.; Doherty, E.; Tily, H.; et al. N-acetylcysteine reduces disease activity by blocking mammalian target of rapamycin in T cells from systemic lupus erythematosus patients: A randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2012, 64, 2937–2946. [Google Scholar] [CrossRef] [PubMed]
- Lai, Z.-W.; Kelly, R.; Winans, T.; Marchena, I.; Shadakshari, A.; Yu, J.; Dawood, M.; Garcia, R.; Tily, H.; Francis, L.; et al. Sirolimus in patients with clinically active systemic lupus erythematosus resistant to, or intolerant of, conventional medications: A single-arm, open-label, phase 1/2 trial. Lancet 2018, 391, 1186–1196. [Google Scholar] [CrossRef]
- Procaccini, C.; De Rosa, V.; Galgani, M.; Carbone, F.; Cassano, S.; Greco, D.; Qian, K.; Auvinen, P.; Calì, G.; Stallone, G.; et al. Leptin-induced mTOR activation defines a specific molecular and transcriptional signature controlling CD4+ effector T cell responses. J. Immunol. 2012, 189, 2941–2953. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; La Cava, A. Epigenetic dysregulation in systemic lupus erythematosus. Autoimmunity 2014, 47, 215–219. [Google Scholar] [CrossRef]
- Chango, A.; Pogribny, I.P. Considering maternal dietary modulators for epigenetic regulation and programming of the fetal epigenome. Nutrients 2015, 7, 2748–2770. [Google Scholar] [CrossRef]
- Pufulete, M.; Al-Ghnaniem, R.; Khushal, A.; Appleby, P.; Harris, N.; Gout, S.; Emery, P.W.; Sanders, T.A.B.; Sanders, T. Effect of folic acid supplementation on genomic DNA methylation in patients with colorectal adenoma. Gut 2005, 54, 648–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacob, R.A.; Gretz, D.M.; Taylor, P.C.; James, S.J.; Pogribny, I.P.; Miller, B.J.; Henning, S.M.; Swendseid, M.E. Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal Women. J. Nutr. 1998, 128, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Xie, C.; Han, J.; Ye, Y.; Weiel, J.; Li, Q.; Blanco, I.; Ahn, C.; Olsen, N.; Putterman, C.; et al. Metabolic disturbances associated with systemic lupus erythematosus. PLoS ONE 2012, 7, e37210. [Google Scholar] [CrossRef]
- Strickland, F.M.; Hewagama, A.; Wu, A.; Sawalha, A.H.; Delaney, C.; Hoeltzel, M.F.; Yung, R.; Johnson, K.; Mickelson, B.; Richardson, B.C. Diet influences expression of autoimmune-associated genes and disease severity by epigenetic mechanisms in a transgenic mouse model of lupus. Arthritis Rheum. 2013, 65, 1872–1881. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.R.; Dai, R.; Heid, B.; E Cecere, T.; Khan, D.; Mu, Q.; Cowan, C.; Luo, X.M.; Ahmed, S.A. Commercial rodent diets differentially regulate autoimmune glomerulonephritis, epigenetics and microbiota in MRL/lpr mice. Int. Immunol. 2017, 29, 263–276. [Google Scholar] [CrossRef] [Green Version]
- Mu, Q.; Zhang, H.; Luo, X.M. SLE: Another autoimmune disorder influenced by microbes and diet? Front. Immunol. 2015, 6, 837. [Google Scholar] [CrossRef]
- Cuervo, A.; Hevia, A.; López, P.; Suárez, A.; Sánchez, B.; Margolles, A.; Gonzalez, S.; Lopez-Suarez, P. Association of polyphenols from oranges and apples with specific intestinal microorganisms in systemic lupus erythematosus patients. Nutrients 2015, 7, 1301–1317. [Google Scholar] [CrossRef]
- Greiling, T.M.; Dehner, C.; Chen, X.; Hughes, K.; Iñiguez, A.J.; Boccitto, M.; Ruiz, D.Z.; Renfroe, S.C.; Vieira, S.M.; Ruff, W.E.; et al. Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus. Sci. Transl. Med. 2018, 10, eaan2306. [Google Scholar] [CrossRef] [PubMed]
- Muthukumar, A.; Zaman, K.; Lawrence, R.; Barnes, J.L.; Fernandes, G. Food restriction and fish oil suppress atherogenic risk factors in lupus-prone (NZB x NZW)F1 mice. J. Clin. Immunol. 2003, 23. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Y.; Matarese, G.; La Cava, A. Cutting edge: Fasting-induced hypoleptinemia expands functional regulatory T cells in systemic lupus erythematosus. J. Immunol. 2012, 188, 2070–2073. [Google Scholar] [CrossRef]
- Hsieh, C.-C.; Lin, B.-F. Dietary factors regulate cytokines in murine models of systemic lupus erythematosus. Autoimmun. Rev. 2011, 11, 22–27. [Google Scholar] [CrossRef]
- Borges, M.C.; Santos, F.D.M.M.D.; Telles, R.W.; Lanna, C.C.D.; Correia, M.I.T. Nutritional status and food intake in patients with systemic lupus erythematosus. Nutrition 2012, 28, 1098–1103. [Google Scholar] [CrossRef] [Green Version]
- Oeser, A.; Chung, C.P.; Asanuma, Y.; Avalos, I.; Stein, C.M. Obesity is an independent contributor to functional capacity and inflammation in systemic lupus erythematosus. Arthritis Rheum. 2005, 52, 3651–3659. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; Przepiera-Będzak, H.; Sawicki, M.; Walecka, A.; Brzosko, I.; Brzosko, M. Serum IL-23 in Polish patients with systemic lupus erythematosus: Association with lupus nephritis, obesity, and peripheral vascular disease. Mediators Inflamm. 2017, 2017, 9401432. [Google Scholar] [CrossRef]
- Sinicato, N.A.; Postal, M.; Peres, F.A.; Peliçari, K.D.O.; Marini, R.; Santos, A.D.O.D.; Ramos, C.D.; Appenzeller, S. Obesity and cytokines in childhood-onset systemic lupus erythematosus. J. Immunol. 2014, 2014, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Lozovoy, M.; Simão, A.; Hohmann, M.; Simão, T.; Barbosa, D.; Morimoto, H.; Reiche, E.; Cecchini, R.; Dichi, I. Inflammatory biomarkers and oxidative stress measurements in patients with systemic lupus erythematosus with or without metabolic syndrome. Lupus 2011, 20, 1356–1364. [Google Scholar] [CrossRef]
- Aparicio-Soto, M.; Sánchez-Hidalgo, M.; Alarcón-De-La-Lastra, C. An update on diet and nutritional factors in systemic lupus erythematosus management. Nutr. Rev. 2017, 30, 118–137. [Google Scholar] [CrossRef]
Dietary Component | Model System | Target Gene/Protein | Physiopathological Process | Effects | Reference |
---|---|---|---|---|---|
n-3 PUFA | SLE patients | ↓ LTB4, IL-12, VLDL | ↑ endothelial function, ↓ESR | ↓ SLEDAI | [7] |
BW mice | ↓ IL-6, IL-12, IL-18, TNF-α, IL-1β | ↓ inflammation | ↓ lupus nephritis | [8,10] | |
↑ catalase, SOD, GPx | ↑ anti-oxidant enzymes | ||||
MRL/lpr mice | ↓ LTB4, IL-12, PGE2 | ↓ inflammation | ↓ disease | [10] | |
Extra virgin olive oil | SLE patients’ PBMC | ↓ IL-6, TNF-α, IL-1β, IFN-γ | ↓ inflammation | immune modulation | [13] |
NaCl | SLE patients | SPN, SH21A, TET2, TET3, MAP3K1, STAT5B | ↑ Tfh cells, DNA hypomethylation | ↑ inflammation | [15] |
MRL/lpr mice | SGK1 | ↑ Th1, Th17 cells | ↓ lifespan. ↑ disease | [14] | |
Vitamin A | SLE patients | ↓ inflammation | ↓ proteinuria | [19] | |
BW mice | ↓ IL-2, IL-12, IFN-γ | ↓ iNOS, MCP-1 | ↓ proteinuria, ↑ lifespan | [20] | |
MRL/lpr mice | TGF-β | modulation of cytokine expression, apoptosis | ↓ lupus nephritis | [21] | |
Vitamin D | SLE patients | MPO | NETosis | ↓ endothelial damage | [18] |
Phenylalanine, Tyrosine | BW mice | mTOR | secondary to amino acid metabolites | ↓ lifespan. ↑ anti-DNA Ab | [22,23] |
Methionine | C57BL/6 × SJL mice | LTB4, γ-GT, glutathione | transmethylation | ↓ anti-DNA Ab, nephritis | [33] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Cava, A. The Influence of Diet and Obesity on Gene Expression in SLE. Genes 2019, 10, 405. https://doi.org/10.3390/genes10050405
La Cava A. The Influence of Diet and Obesity on Gene Expression in SLE. Genes. 2019; 10(5):405. https://doi.org/10.3390/genes10050405
Chicago/Turabian StyleLa Cava, Antonio. 2019. "The Influence of Diet and Obesity on Gene Expression in SLE" Genes 10, no. 5: 405. https://doi.org/10.3390/genes10050405
APA StyleLa Cava, A. (2019). The Influence of Diet and Obesity on Gene Expression in SLE. Genes, 10(5), 405. https://doi.org/10.3390/genes10050405