Analysis of the Full-Length Pyriform Spidroin Gene Sequence
Abstract
:1. Introduction
2. Materials and Methods
2.1. PySp1 Degenerate PCR
2.2. Long-Distance PCR for Full-length PySp1 Gene
2.3. Sequencing and Assembly
2.4. Sequence Analysis
3. Results
3.1. PySp1 Primary Structure
3.2. N- and C-Terminal Regions
3.3. Distinctive N-linker Region
3.4. Core Repetitive Region
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vollrath, F.; Knight, D. Biology and Technology of Silk Production; Wiley-VCH: Weinheim, Germany, 2005; pp. 26–30. [Google Scholar]
- Lucas, F. Spiders and their silks. Discovery 1964, 25, 20–26. [Google Scholar]
- Blackledge, T.A.; Hayashi, C.Y. Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775). J. Exp. Boil. 2006, 209, 2452–2461. [Google Scholar] [CrossRef] [PubMed]
- Vollrath, F.; Knight, D.P. Liquid crystalline spinning of spider silk. Nature 2001, 410, 541. [Google Scholar] [CrossRef] [PubMed]
- Gosline, J.M.; A Guerette, P.; Ortlepp, C.S.; Savage, K.N. The mechanical design of spider silks: from fibroin sequence to mechanical function. J. Exp. Boil. 1999, 202, 3295–3303. [Google Scholar]
- Xu, M.; Lewis, R.V. Structure of a protein superfiber: Spider dragline silk. Proc. Natl. Acad. Sci. USA 1990, 87, 7120–7124. [Google Scholar] [CrossRef] [PubMed]
- Gosline, J.M.; Demont, M.; Denny, M.W. The structure and properties of spider silk. Endeavour 1986, 10, 37–43. [Google Scholar] [CrossRef]
- Guerette, P.A.; Ginzinger, D.G.; Weber, B.H.; Gosline, J.M. Silk Properties Determined by Gland-Specific Expression of a Spider Fibroin Gene Family. Science 1996, 272, 112–115. [Google Scholar] [CrossRef]
- Colgin, M.A.; Lewis, R.V. Spider minor ampullate silk proteins contain new repetitive sequences and highly conserved non-silk-like "spacer regions". Protein Sci. 1998, 7, 667–672. [Google Scholar] [CrossRef]
- Hayashi, C.Y.; Lewis, R.V. Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. J. Mol. Boil. 1998, 275, 773–784. [Google Scholar] [CrossRef]
- Gellynck, K.; Verdonk, P.; Forsyth, R.; Almqvist, K.F.; Van Nimmen, E.; Gheysens, T.; Mertens, J.; Van Langenhove, L.; Kiekens, P.; Verbruggen, G.; et al. Biocompatibility and biodegradability of spider egg sac silk. J. Mater. Sci. Mater. Med. 2008, 19, 2963–2970. [Google Scholar] [CrossRef]
- Tian, M.; Lewis, R.V. Molecular characterization and evolutionary study of spider tubuliform (egg case) silk protein. Biochemistry 2005, 44, 8006–8012. [Google Scholar] [CrossRef] [PubMed]
- Foelix, R.F. Biology of Spiders; Oxford University Press: New York, NY, USA, 1996. [Google Scholar]
- Hayashi, C.Y.; Blackledge, T.A.; Lewis, R.V. Molecular and Mechanical Characterization of Aciniform Silk: Uniformity of Iterated Sequence Modules in a Novel Member of the Spider Silk Fibroin Gene Family. Mol. Boil. Evol. 2004, 21, 1950–1959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vollrath, F.; Fairbrother, W.J.; Williams, R.J.P.; Tillinghast, E.K.; Bernstein, D.T.; Gallagher, K.S.; Townley, M.A. Compounds in the Droplets of the Orb Spider Ciscid Spiral. Nature 1990, 345, 526–528. [Google Scholar] [CrossRef]
- Choresh, O.; Bayarmagnai, B.; Lewis, R.V. Spider Web Glue: Two Proteins Expressed from Opposite Strands of the Same DNA Sequence. Biomacromolecules 2009, 10, 2852–2856. [Google Scholar] [CrossRef] [PubMed]
- Sahni, V.; Harris, J.; Blackledge, T.A.; Dhinojwala, A. Cobweb-weaving spiders produce different attachment discs for locomotion and prey capture. Nat. Commun. 2012, 3, 1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolff, J.O.; Grawe, I.; Wirth, M.; Karsted, A.; Gorb, S.N. Spider’s super-glue: thread anchors are composite adhesives with synergistic hierarchical organization. Soft Matter 2015, 11, 2394–2403. [Google Scholar] [CrossRef] [PubMed]
- Ortlepp, C.; Gosline, J.M. The scaling of safety factor in spider draglines. J. Exp. Boil. 2008, 211, 2832–2840. [Google Scholar] [CrossRef] [Green Version]
- Grawe, I.; Wolff, J.O.; Gorb, S.N. Composition and substrate-dependent strength of the silken attachment discs in spiders. J. R. Soc. Interface. 2014, 11, 20140477. [Google Scholar] [CrossRef] [Green Version]
- Geurts, P.; Zhao, L.; Hsia, Y.; Gnesa, E.; Tang, S.; Jeffery, F.; La Mattina, C.; Franz, A.; Larkin, L.; Vierra, C. Synthetic Spider Silk Fibers Spun from Pyriform Spidroin 2, A Glue Silk Protein Discovered in Orb-Weaving Spider Attachment Discs. Biomacromolecules 2010, 11, 3495–3503. [Google Scholar] [CrossRef]
- Blasingame, E.; Tuton-Blasingame, T.; Larkin, L.; Falick, A.M.; Zhao, L.; Fong, J.; Vaidyanathan, V.; Visperas, A.; Geurts, P.; Hu, X.; et al. Pyriform Spidroin 1, a Novel Member of the Silk Gene Family That Anchors Dragline Silk Fibers in Attachment Discs of the Black Widow Spider, Latrodectushesperus*. J. Boil. Chem. 2009, 284, 29097–29108. [Google Scholar] [CrossRef]
- Chen, G.; Liu, X.; Zhang, Y.; Lin, S.; Yang, Z.; Johansson, J.; Rising, A.; Meng, Q. Full-length minor ampullatespidroin gene sequence. PLoS ONE 2012, 7, e52293. [Google Scholar]
- Wen, R.; Liu, X.; Meng, Q. Characterization of full-length tubuliformspidroin gene from Araneusventricosus. Int. J. Boil. Macromol. 2017, 105, 702–710. [Google Scholar] [CrossRef]
- Ayoub, N.A.; Garb, J.E.; Tinghitella, R.M.; Collin, M.A.; Hayashi, C.Y. Blueprint for a High-Performance Biomaterial: Full-Length Spider Dragline Silk Genes. PLOS ONE 2007, 2, e514. [Google Scholar] [CrossRef]
- Chaw, R.C.; Saski, C.A.; Hayashi, C.Y. Complete gene sequence of spider attachment silk protein (pysp1) reveals novel linker regions and extreme repeat homogenization. Insect. Biochem. Mol. Biol. 2017, 81, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Perry, D.J.; Bittencourt, D.; Siltberg-liberles, J.; Rech, E.L.; Lewis, R.V. Pyriform Spider Silk Sequences Reveal Unique Repetitive Elements. Biomacromolecules 2010, 11, 3000–3006. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Petersen, T.N.; Brunak, S.; Von Heijne, G.; Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 2011, 8, 785–786. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Boil. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
- Kyte, J.; Doolittle, R. A simple method for displaying the hydropathi character of a protein. J. Mol. Biol. 1982, 157, 105–132. [Google Scholar] [CrossRef]
- Jones, D.T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Boil. 1999, 292, 195–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterton, H.-G.; Graves, S. DNAssist: the integrated editing and analysis of molecular biology sequences in Windows. Bioinformatics 2000, 16, 652–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mita, K.; Ichimura, S.; Zama, M.; James, T.C. Specific codon usage pattern and its implications on the secondary structure of silk fibroin mRNA. J. Mol. Boil. 1988, 203, 917–925. [Google Scholar] [CrossRef]
- Candelas, G.; Arroyo, G.; Carrasco, C.; Dompenciel, R. Spider silk glands contain a tissue-specific alanine tRNA that Acuumulates in vitro in response to the stimulus for silk protein synthesis. Dev. Biol. 1990, 140, 214–220. [Google Scholar] [CrossRef]
- Hayashi, C.Y.; Shipley, N.H.; Lewis, R.V. Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int. J. Boil. Macromol. 1999, 24, 271–275. [Google Scholar] [CrossRef]
- Ayoub, N.A.; Garb, J.E.; Kuelbs, A.; Hayashi, C.Y. Ancient preperties of spider silks revealed by the complete gene sequence of the prey-wrapping silk protein. Mol. Biol. Evol. 2012, 30, 589–601. [Google Scholar] [CrossRef]
- Chaw, R.C.; Zhao, Y.; Wei, J.; Ayoub, N.A.; Allen, R.; Atrushi, K.; Hayashi, C.Y. Intragenic homogenization and multiple copies of prey-wrapping silk genes in Argiope garden spiders. BMC Evol. Boil. 2014, 14, 31. [Google Scholar] [CrossRef]
- Gatesy, J. Extreme Diversity, Conservation, and Convergence of Spider Silk Fibroin Sequences. Science 2001, 291, 2603–2605. [Google Scholar] [CrossRef]
- Kuwana, Y.; Sezutsu, H.; Nakajima, K.; Tamada, Y.; Kojima, K. High-Toughness Silk Produced by a Transgenic Silkworm Expressing Spider (Araneusventricosus) Dragline Silk. PLoS ONE 2014, 9, e105325. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Z.; Sun, L.; Liu, Z.; Xia, X.; Tao, T.H. “Genetically Engineered” Biofunctional Triboelectric Nanogenerators Using Recombinant Spider Silk. Adv. Mater. 2018, 30, 1805722. [Google Scholar] [CrossRef]
- Xu, J.; Dong, Q.; Yu, Y.; Niu, B.; Ji, D.; Li, M.; Huang, Y.; Chen, X.; Tan, A. Mass spider silk production through targeted gene replacement in Bombyx mori. Proc. Natl. Acad. Sci. USA 2018, 115, 8757–8762. [Google Scholar] [CrossRef] [PubMed]
Primer Sequence (5′–3′) | |
---|---|
Degenerate forward primer in N-terminal region | AARTCNTGGGTNCAGGAC |
Gene-specific reversed primer | ACTCGCTATCGAATTGAGTGCAC |
Gene-specific forward primer | ATCAGGAACAGGAGTTGCAGG |
Degenerate reversed primer in C-terminal region | RTARTTNACYTGTCCTCC |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Wen, R.; Jia, Q.; Liu, X.; Xiao, J.; Meng, Q. Analysis of the Full-Length Pyriform Spidroin Gene Sequence. Genes 2019, 10, 425. https://doi.org/10.3390/genes10060425
Wang K, Wen R, Jia Q, Liu X, Xiao J, Meng Q. Analysis of the Full-Length Pyriform Spidroin Gene Sequence. Genes. 2019; 10(6):425. https://doi.org/10.3390/genes10060425
Chicago/Turabian StyleWang, Kangkang, Rui Wen, Qiupin Jia, Xiangqin Liu, Junhua Xiao, and Qing Meng. 2019. "Analysis of the Full-Length Pyriform Spidroin Gene Sequence" Genes 10, no. 6: 425. https://doi.org/10.3390/genes10060425
APA StyleWang, K., Wen, R., Jia, Q., Liu, X., Xiao, J., & Meng, Q. (2019). Analysis of the Full-Length Pyriform Spidroin Gene Sequence. Genes, 10(6), 425. https://doi.org/10.3390/genes10060425