GWEHS: A Genome-Wide Effect Sizes and Heritability Screener
Abstract
:1. Introduction
2. Methods
2.1. Data Processing
2.1.1. Data Acquisition and Processing the GWAS Catalog
2.1.2. Classifying Locus Effect Sizes and Inferring Beta-Coefficients from Odd Ratios
2.2. Analyses on Loci Effect Size and Heritability
2.2.1. Effect Sizes Distribution, and Contribution to Heritability
2.2.2. Inferring the Mean Effect Size and Missing Heritability
3. Examples of Application
3.1. Exploring the Genetic Architecture
3.2. Inferring the Change in Mean Effect Size and Heritability
3.3. Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Visscher, P.M.; Wray, N.R.; Zhang, Q.; Sklar, P.; McCarthy, M.I. 10 Years of GWAS discovery: Biology, function, and translation. Am. J. Hum. Genet. 2017, 101, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G. Rare and common variants: Twenty arguments. Nat. Rev. Genet. 2015, 13, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Timpson, N.J.; Greenwood, C.M.T.; Soranzo, N.; Lawson, D.J.; Richards, J.B. Genetic architecture: The shape of the genetic contribution to human traits and disease. Nat. Rev. Genet. 2018, 19, 110–124. [Google Scholar] [CrossRef] [PubMed]
- Manolio, T.A.; Collins, F.S.; Cox, N.J.; Goldstein, D.B.; Hindorff, L.A.; Hunter, J.D.; McCarthy, M.I.; Ramos, E.M.; Cordon, L.R.; Chakravarti, A.; et al. Finding the missing heritability of complex diseases. Nature 2009, 461, 747–753. [Google Scholar] [CrossRef] [Green Version]
- Nolte, I.M.; van der Most, P.J.; Alizadeh, B.Z.; de Bakker, P.I.; Boezen, H.M.; Bruinenberg, M.; Franke, L.; van der Harst, P.; Navis, G.; Postma, D.S.; et al. Missing heritability: Is the gap closing? An analysis of 32 complex traits in the Lifelines Cohort Study. Eur. J. Hum. Genet. 2017, 25, 877–885. [Google Scholar] [CrossRef]
- Wood, A.R.; Esko, T.; Yang, J.; Vedantam, S.; Pers, T.H.; Gustafsson, S.; Chu, A.Y.; Estrada, K.; Luan, J.; Kutalik, Z.; et al. Defining the role of common variants in the genomic and biological architecture of adult height. Nat. Genet. 2014, 46, 1173–1186. [Google Scholar] [CrossRef]
- Yengo, L.; Sidorenko, J.; Kemper, K.E.; Zheng, Z.; Wood, A.R.; Weedon, M.N.; Frayling, T.M.; Hirschhorn, J.; Yang, J.; Visscher, P.M.; et al. Meta-analysis of genome-wide association studies for height and body mass index in ~700,000 individuals of European ancestry. Hum. Mol. Genet. 2018, 27, 3641–3649. [Google Scholar] [CrossRef]
- Park, J.; Wacholder, S.; Gail, M.H.; Peters, U.; Jacobs, K.B.; Chanock, S.J.; Chatterjee, N. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat. Genet. 2010, 42, 570–575. [Google Scholar] [CrossRef] [Green Version]
- López-Cortegano, E.; Caballero, A. Inferring the nature of missing heritability in human traits using data from the GWAS Catalog. Genetics 2019, 212, 1–14. [Google Scholar] [CrossRef]
- Zuk, O.; Hechter, E.; Sunyaev, S.R.; Lander, E.S. The mystery of missing heritability: Genetic interactions create phantom heritability. Proc. Natl. Acad. Sci. USA 2012, 109, 1193–1198. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Bakshi, A.; Zhu, Z.; Hemani, G.; Vinkhuyzen, A.E.A.; Lee, S.H.; Robinson, M.R.; Perry, J.R.; Nolte, I.M.; van Vliet-Ostaptchouk, J.V.; et al. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat. Genet. 2015, 47, 1114–1120. [Google Scholar] [CrossRef] [PubMed]
- Ni, G.; van der Werf, J.; Zhou, X.; Hyppönen, E.; Wray, N.R.; Lee, H.S. Genotype-covariate correlation and interaction disentangled by a whole-genome multivariate reaction norm model. Nat. Commun. 2019, 10, 2239. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, G.; Gusev, A.; Loh, P.-R.; Vilhjálmsson, B.J.; Ripke, S.; Schizophrenia working group of the Psychiatric Genomics Consortium; Purcell, S.; Stahl, E.; Daly, M.; de Candia, T.R. Haplotypes of common SNPs can explain missing heritability of complex diseases. Biorxiv 2015. [Google Scholar] [CrossRef]
- Williams, A.L.; Jacobs, S.B.R.; Moreno-Macías, H.; Huerta-Chagoya, A.; Churchhouse, C.; Marquez-Luna, C.; Garcia-Ortiz, H.; Gomez-Vasquez, M.J.; Burtt, N.P.; Aguilar-Salinas, C.A.; et al. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature 2014, 506, 97–101. [Google Scholar] [PubMed]
- MacArthur, J.; Bowler, E.; Cerezo, M.; Gil, L.; Hall, P.; Hastings, E.; Junkins, H.; McMahon, A.; Milano, A.; Morales, J.; et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017, 45, D896–D901. [Google Scholar] [CrossRef]
- Buniello, A.; MacArthur, J.A.L.; Cerezo, M.; Harris, L.W.; Hayhurst, J.; Malangone, C.; McMahon, A.; Morales, J.; Mountjoy, E.; Sollis, E.; et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics. Nucleic Acids Res. 2019, 47, D1005–D1012. [Google Scholar] [CrossRef] [PubMed]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK Biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLOS Medicine 2015, 12. [Google Scholar] [CrossRef]
- Canela-Xandri, O.; Rawlik, K.; Tenesa, A. An atlas of genetic associations in UK Biobank. Nat. Genet. 2018, 50, 1593–1599. [Google Scholar] [CrossRef]
- Carey, V.J. Gwascat: Representing and modeling data in the EMBL-EBI GWAS catalog. Available online: https://bioconductor.org/packages/release/bioc/html/gwascat.html (accessed on 30 June 2019).
- Wang, L.; Oehlers, S.H.; Espenschied, S.T.; Rawls, J.F.; Tobin, D.M.; Ko, D.C. CPAG: Software for leveraging pleiotropy in GWAS to reveal similarity between human traits links plasma fatty acids and intestinal inflammation. Genome Biol. 2015, 16, 190. [Google Scholar] [CrossRef]
- Baker, M. 1500 scientists lift the lid on reproducibility. Nature 2016, 533, 452–454. [Google Scholar] [CrossRef]
- Langille, M.G.I.; Ravel, J.; Florian Fricke, W. ‘Available upon request’: not good enough for microbiome data! Microbiome 2018, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Bjornson, E. Reproducible research: Best practices and potential misuse. IEEE Signal Process. Mag. 2019, 36, 106–109. [Google Scholar] [CrossRef]
- Wickham, H.; Grolemund, G.R. Markdown. In R for Data Science: Import, Tidy, Transform, Visualize, and Model Data, 1st ed.; O’Reilly Media, Inc.: Sebastopol, Canada, 2016; pp. 423–438. [Google Scholar]
- R Core Team. R: A language and environment for statistical computing. Available online: https://www.R-project.org. (accessed on 30 June 2019).
- Allaire, J.J.; Xie, Y.; McPherson, J.; Luraschi, J.; Ushey, K.; Atkins, A.; Wickham, H.; Cheng, J.; Chang, W.; Iannone, R. R markdown: Dynamic documents for R. Available online: https://rmarkdiwn.rstudio.com. (accessed on 30 June 2019).
- Chang, W.; Cheng, J.; Allaire, J.J.; Xie, Y.; McPherson, J. Shiny: Web application framework for R. Available online: https://CRAN.R-project.org/package=shiny (accessed on 30 June 2019).
- GWEHS Repository at GitLab. Available online: https://gitlab.com/elcortegano/GWEHS (accessed on 30 June 2019).
- GWEHS Wiki. Available online: https://gitlab.com/elcortegano/GWEHS/wikis/home (accessed on 30 June 2019).
- NHGRI-EBI GWAS Catalog. Available online: https://www.ebi.ac.uk/gwas/ (accessed on 30 June 2019).
- So, H.; Gui, A.H.S.; Cherny, S.S.; Sham, P.C. Evaluating the heritability explained by known susceptibility variants: A survey of ten complex diseases. Genet. Epidemiol. 2011, 35, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Longman: Harlow, Essex, UK, 1996. [Google Scholar]
- Tsoi, L.C.; Stuart, P.E.; Tian, C.; Gudjonsson, J.E.; Das, S.; Zawistowski, M.; Ellinghaus, E.; Barker, J.N.; Chandran, V.; Dand, N.; et al. Large scale meta-analysis characterizes genetic architecture for common psoriasis associated values. Nat. Commun. 2017, 8, 15382. [Google Scholar] [CrossRef] [PubMed]
- Tukey, J.W. Exploratory Data Analysis, 1st ed.; Addison-Wesley: Reading, MA, USA, 1977; pp. 27–55. [Google Scholar]
- Delignette-Muller, M.L.; Dutang, C. fitdistrplus. An R package for fitting distributions. J. Stat. Softw. 2015, 64, 1–34. [Google Scholar] [CrossRef]
- Akaike, H.A. New look at the statistical model identification. IEEE Trans. Autom. Control. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Magno, R.; Maia, A. gwasrapidd: An R package to query, download and wrangle GWAS Catalog data. Biorxiv 2019. [Google Scholar] [CrossRef]
- Browning, S.R.; Browning, B.L. Population structure can inflate SNP-based heritability estimates. Am. J. Hum. Genet. 2011, 89, 191–193. [Google Scholar] [CrossRef]
- Zaitlen, N.; Pasaniuc, B.; Sankararaman, S.; Bhatia, G.; Zhang, J.; Gusev, A.; Young, T.; Tandon, A.; Pollack, S.; Vilhjálmsson, B.J.; et al. Leveraging population admixture to characterize the heritability of complex traits. Nat. Genet. 2014, 46, 1356–1362. [Google Scholar] [CrossRef] [Green Version]
- Vilhjálmsson, B.J.; Yang, J.; Finucane, H.K.; Gusev, A.; Lindström, S.; Ripke, S.; Genovese, G.; Loh, P.R.; Bhatia, G.; Do, R.; et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am. J. Hum. Genet. 2015, 97, 576–592. [Google Scholar] [CrossRef]
- Lohmueller, K.E.; Pearce, C.L.; Pike, M.; Lander, E.S.; Hirschhorn, J.N. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat. Genet. 2003, 33, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Boehnke, M. Quantifying and correcting for the winner’s curse in genetic association studies. Genet. Epidemiol. 2009, 33, 453–462. [Google Scholar] [CrossRef] [PubMed]
Trait | PMID | locus | SNP | effect | q | h2 | −logP |
---|---|---|---|---|---|---|---|
Crohn’s disease | 23128233 | AC007728.2 | rs2066847 | 0.383 | 0.024 | 0.007 | 208.222 |
Crohn’s disease | 30500874 | HLA-DQB1–MTCO3P1 | rs184950714 | 0.209 | 0.156 | 0.011 | 18.398 |
Crohn’s disease | 18587394 | LINC02471 | rs11175593 | 0.143 | 0.020 | 0.001 | 9.523 |
Crohn’s disease | 22412388 | LINC00491 | rs7705924 | 0.124 | 0.066 | 0.002 | 7.699 |
Crohn’s disease | 26192919 | SLC2A13–LINC02555 | rs12422544 | 0.124 | 0.019 | 0.001 | 24.398 |
Crohn’s disease | 17554261 | LINC01680–AL359081.1 | rs10801047 | 0.120 | 0.080 | 0.002 | 7.523 |
Crohn’s disease | 23850713 | FCHSD2–AP002761.2 | rs11235667 | 0.117 | 0.096 | 0.002 | 8.155 |
Crohn’s disease | 22412388 | AL645939.5 | rs9258260 | 0.114 | 0.104 | 0.002 | 9.699 |
Crohn’s disease | 21102463 | NOD2 | rs2076756 | 0.112 | 0.260 | 0.005 | 68.398 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Cortegano, E.; Caballero, A. GWEHS: A Genome-Wide Effect Sizes and Heritability Screener. Genes 2019, 10, 558. https://doi.org/10.3390/genes10080558
López-Cortegano E, Caballero A. GWEHS: A Genome-Wide Effect Sizes and Heritability Screener. Genes. 2019; 10(8):558. https://doi.org/10.3390/genes10080558
Chicago/Turabian StyleLópez-Cortegano, Eugenio, and Armando Caballero. 2019. "GWEHS: A Genome-Wide Effect Sizes and Heritability Screener" Genes 10, no. 8: 558. https://doi.org/10.3390/genes10080558
APA StyleLópez-Cortegano, E., & Caballero, A. (2019). GWEHS: A Genome-Wide Effect Sizes and Heritability Screener. Genes, 10(8), 558. https://doi.org/10.3390/genes10080558