The Role of MIR9-2 in Shared Susceptibility of Psychiatric Disorders during Childhood: A Population-Based Birth Cohort Study
Abstract
:1. Introduction
2. Methods
2.1. Mental Health Outcomes
2.2. Genetic Polymorphisms and Genotyping
2.3. Statistical Analyses
2.4. In Silico Functionality Analysis
2.5. Ethics Approval and Consent to Participate
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- De Girolamo, G.; Dagani, J.; Purcell, R.; Cocchi, A.; McGorry, P.D. Age of Onset of Mental Disorders and Use of Mental Health Services: Needs, Opportunities and Obstacles. Epidemiol. Psychiatr. Sci. 2012, 21, 47–57. [Google Scholar] [CrossRef]
- Kessler, R.C.; Amminger, G.P.; Aguilar-Gaxiola, S.; Alonso, J.; Lee, S.; Ustün, T.B. Age of Onset of Mental Disorders: A Review of Recent Literature. Curr. Opin. Psychiatry 2007, 20, 359–364. [Google Scholar] [CrossRef]
- Domschke, K.; Maron, E. Genetic Factors in Anxiety Disorders. Mod. Trends Pharmacopsychiatry 2013, 29, 24–46. [Google Scholar] [PubMed]
- Faraone, S.V.; Larsson, H. Genetics of Attention Deficit Hyperactivity Disorder. Mol. Psychiatry 2019, 24, 562–575. [Google Scholar] [CrossRef] [PubMed]
- Sandin, S.; Lichtenstein, P.; Kuja-Halkola, R.; Hultman, C.; Larsson, H.; Reichenberg, A. The Heritability of Autism Spectrum Disorder. JAMA 2017, 318, 1182–1184. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, P.F.; Neale, M.C.; Kendler, K.S. Genetic Epidemiology of Major Depression: Review and Meta-Analysis. Am. J. Psychiatry 2000, 157, 1552–1562. [Google Scholar] [CrossRef]
- Anttila, V.; Bulik-Sullivan, B.; Finucane, H.K.; Walters, R.K.; Bras, J.; Duncan, L.; Escott-Price, V.; Falcone, G.J.; Gormley, P.; Malik, R.; et al. Analysis of Shared Heritability in Common Disorders of the Brain. Science 2018, 360, 8757. [Google Scholar]
- Cross-Disorder Group of the Psychiatric Genomics Consortium. Genetic Relationship between Five Psychiatric Disorders Estimated from Genome-Wide Snps. Nat. Genet. 2013, 45, 984–994. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Santpere, G.; Imamura Kawasawa, Y.; Evgrafov, O.V.; Gulden, F.O.; Pochareddy, S.; Sunkin, S.M.; Li, Z.; Shin, Y.; Zhu, Y.; et al. Integrative Functional Genomic Analysis of Human Brain Development and Neuropsychiatric Risks. Science 2018, 362, eaat7615. [Google Scholar] [CrossRef]
- Filipowicz, W.; Bhattacharyya, S.N.; Sonenberg, N. Mechanisms of Post-Transcriptional Regulation by Micrornas: Are the Answers in Sight? Nat. Rev. Genet. 2008, 9, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, S.; Tong, Y.C.; Steitz, J.A. Switching from Repression to Activation: Micrornas Can up-Regulate Translation. Science 2007, 318, 1931–1934. [Google Scholar] [CrossRef] [PubMed]
- Forero, D.A.; van der Ven, K.; Callaerts, P.; Del-Favero, J. Mirna Genes and the Brain: Implications for Psychiatric Disordersa. Hum. Mutat. 2010, 31, 1195–1204. [Google Scholar] [CrossRef] [PubMed]
- Ziats, M.N.; Rennert, O.M. Identification of Differentially Expressed Micrornas across the Developing Human Brain. Mol. Psychiatry 2014, 19, 848–852. [Google Scholar] [CrossRef] [PubMed]
- Alural, B.; Genc, S.; Haggarty, S.J. Diagnostic and Therapeutic Potential of Micrornas in Neuropsychiatric Disorders: Past, Present, and Future. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2017, 73, 87–103. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.J.; Mishra, P.J.; Banerjee, D.; Bertino, J.R. Mirsnps or Mir-Polymorphisms, New Players in Microrna Mediated Regulation of the Cell: Introducing Microrna Pharmacogenomics. Cell Cycle 2008, 7, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Issler, O.; Chen, A. Determining the Role of Micrornas in Psychiatric Disorders. Nat. Rev. Neurosci. 2015, 16, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Saunders, L.R.; Sharma, A.D.; Tawney, J.; Nakagawa, M.; Okita, K.; Yamanaka, S.; Willenbring, H.; Verdin, E. Mirnas Regulate Sirt1 Expression During Mouse Embryonic Stem Cell Differentiation and in Adult Mouse Tissues. Aging 2010, 2, 415–431. [Google Scholar] [CrossRef]
- Zhao, C.N.; Sun, G.Q.; Li, S.X.; Shi, Y.H. A Feedback Regulatory Loop Involving Microrna-9 and Nuclear Receptor Tlx in Neural Stem Cell Fate Determination. Nat. Struct. Mol. Biol. 2009, 16, 365–371. [Google Scholar] [CrossRef]
- Delaloy, C.; Liu, L.; Lee, J.A.; Su, H.; Shen, F.X.; Yang, G.Y.; Young, W.L.; Ivey, K.N.; Gao, F.B. Microrna-9 Coordinates Proliferation and Migration of Human Embryonic Stem Cell-Derived Neural Progenitors. Cell Stem Cell 2010, 6, 323–335. [Google Scholar] [CrossRef]
- Shi, S.; Leites, C.; He, D.; Schwartz, D.; Moy, W.; Shi, J.X.; Duan, J.B. Microrna-9 and Microrna-326 Regulate Human Dopamine D2 Receptor Expression, and the Microrna-Mediated Expression Regulation Is Altered by a Genetic Variant. J. Biol. Chem. 2014, 289, 13434–13444. [Google Scholar] [CrossRef]
- Sim, S.E.; Lim, C.S.; Kim, J.I.; Seo, D.; Chun, H.; Yu, N.K.; Lee, J.; Kang, S.J.; Ko, H.G.; Choi, J.H. The Brain-Enriched Microrna Mir-9-3p Regulates Synaptic Plasticity and Memory. J. Neurosci. 2016, 36, 8641–8652. [Google Scholar] [CrossRef] [PubMed]
- Perkins, D.O.; Jeffries, C.D.; Jarskog, L.F.; Thomson, J.M.; Woods, K.; Newman, M.A.; Parker, J.S.; Jin, J.; Hammond, S.M. Microrna Expression in the Prefrontal Cortex of Individuals with Schizophrenia and Schizoaffective Disorder. Genome Biol. 2007, 8, R27. [Google Scholar] [CrossRef] [PubMed]
- Camkurt, M.A.; Karababa, F.; Erdal, M.E.; Bayazıt, H.; Kandemir, S.B.; Ay, M.E.; Kandemir, H.; Ay, Ö.İ.; Çiçek, E.; Selek, S.; et al. Investigation of Dysregulation of Several Micrornas in Peripheral Blood of Schizophrenia Patients. Clin. Psychopharmacol. Neurosci. 2016, 14, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Miya Shaik, M.; Tamargo, I.A.; Abubakar, M.B.; Kamal, M.A.; Greig, N.H.; Gan, S.H. The Role of Micrornas in Alzheimer’s Disease and Their Therapeutic Potentials. Genes 2018, 9, 174. [Google Scholar] [CrossRef]
- Alieva, A.K.; Filatova, E.V.; Karabanov, A.V.; Illarioshkin, S.N.; Limborska, S.A.; Shadrina, M.I.; Slominsky, P.A. Mirna Expression Is Highly Sensitive to a Drug Therapy in Parkinson’s Disease. Parkinsonism Relat. Disord. 2015, 21, 72–74. [Google Scholar] [CrossRef] [PubMed]
- Topol, A.; Zhu, S.J.; Hartley, B.J.; English, J.; Hauberg, M.E.; Tran, N.; Rittenhouse, C.A.; Simone, A.; Ruderfer, D.M.; Johnson, J.; et al. Dysregulation of Mirna-9 in a Subset of Schizophrenia Patient-Derived Neural Progenitor Cells. Cell Rep. 2016, 15, 1024–1036. [Google Scholar] [CrossRef]
- Demontis, D.; Walters, R.K.; Martin, J.; Mattheisen, M.; Als, T.D.; Agerbo, E.; Baldursson, G.; Belliveau, R.; Bybjerg-Grauholm, J.; Bækvad-Hansen, M. Discovery of the First Genome-Wide Significant Risk Loci for Attention Deficit/Hyperactivity Disorder. Nat. Genet. 2019, 51, 63–75. [Google Scholar] [CrossRef]
- Nagel, M.; Jansen, P.R.; Stringer, S.; Watanabe, K.; de Leeuw, C.A.; Bryois, J.; Savage, J.E.; Hammerschlag, A.R.; Skene, N.G.; Muñoz-Manchado, A.B. Meta-Analysis of Genome-Wide Association Studies for Neuroticism in 449,484 Individuals Identifies Novel Genetic Loci and Pathways. Nat. Genet. 2018, 50, 920–927. [Google Scholar] [CrossRef]
- Lee, P.H.; Anttila, V.; Won, H.; Feng, Y.-C.A.; Rosenthal, J.; Zhu, Z.; Tucker-Drob, E.M.; Nivard, M.G.; Grotzinger, A.D.; Posthuma, D.; et al. Genome Wide Meta-Analysis Identifies Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. bioRxiv 2019, 528117. [Google Scholar] [CrossRef]
- Liu, M.; Jiang, Y.; Wedow, R.; Li, Y.; Brazel, D.M.; Chen, F.; Datta, G.; Davila-Velderrain, J.; McGuire, D.; Tian, C.; et al. Association Studies of up to 1.2 Million Individuals Yield New Insights into the Genetic Etiology of Tobacco and Alcohol Use. Nat. Genet. 2019, 51, 237–244. [Google Scholar] [CrossRef]
- Grove, J.; Ripke, S.; Als, T.D.; Mattheisen, M.; Walters, R.K.; Won, H.; Pallesen, J.; Agerbo, E.; Andreassen, O.A.; Anney, R.; et al. Identification of Common Genetic Risk Variants for Autism Spectrum Disorder. Nat. Genet. 2019, 51, 431–444. [Google Scholar] [CrossRef] [PubMed]
- Hermeking, H. The Mir-34 Family in Cancer and Apoptosis. Cell Death Differ. 2009, 17, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Jauhari, A.; Yadav, S. Mir-34 and Mir-200: Regulator of Cell Fate Plasticity and Neural Development. NeuroMolecular Med. 2019, 21, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Banerjee-Basu, S.; Larsen, E.; Muend, S. Common Micrornas Target Established Asd Genes. Front. Neurol. 2014, 5, 205. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Martínez, I.; Sánchez-Mora, C.; Pagerols, M.; Richarte, V.; Corrales, M.; Fadeuilhe, C.; Cormand, B.; Casas, M.; Ramos-Quiroga, J.A.; Ribasés, M. Preliminary Evidence for Association of Genetic Variants in Pri-Mir-34b/C and Abnormal Mir-34c Expression with Attention Deficit and Hyperactivity Disorder. Transl. Psychiatry 2016, 6, e879. [Google Scholar] [CrossRef]
- Xu, C.; Yang, C.; Zhang, A.; Xu, Y.; Li, X.; Liu, Z.; Liu, S.; Sun, N.; Zhang, K. The Interaction of Mir-34b/C Polymorphisms and Negative Life Events Increases Susceptibility to Major Depressive Disorder in Han Chinese Population. Neurosci. Lett. 2017, 651, 65–71. [Google Scholar] [CrossRef]
- Santos, I.S.; Barros, A.J.D.; Matijasevich, A.; Domingues, M.R.; Barros, F.C.; Victora, C.G. Cohort Profile: The 2004 Pelotas (Brazil) Birth Cohort Study. Int. J. Epidemiol. 2010, 40, 1461–1468. [Google Scholar] [CrossRef] [Green Version]
- Santos, I.S.; Barros, A.J.; Matijasevich, A.; Zanini, R.; Chrestani Cesar, M.A.; Camargo-Figuera, F.A.; Oliveira, I.O.; Barros, F.C.; Victora, C.G. Cohort Profile Update: 2004 Pelotas (Brazil) Birth Cohort Study. Body Composition, Mental Health and Genetic Assessment at the 6 Years Follow-Up. Int. J. Epidemiol. 2014, 43, 1437. [Google Scholar] [CrossRef]
- Goodman, R.; Ford, T.; Richards, H.; Gatward, R.; Meltzer, H. The Development and Well-Being Assessment: Description and Initial Validation of an Integrated Assessment of Child and Adolescent Psychopathology. J. Child Psychol. Psychiatry Allied Discip. 2000, 41, 645–655. [Google Scholar] [CrossRef]
- Petresco, S.; Anselmi, L.; Santos, I.S.; Barros, A.J.; Fleitlich-Bilyk, B.; Barros, F.C.; Matijasevich, A. Prevalence and Comorbidity of Psychiatric Disorders among 6-Year-Old Children: 2004 Pelotas Birth Cohort. Soc. Psychiatry Psychiatr. Epidemiol. 2014, 49, 975–983. [Google Scholar] [CrossRef]
- Fleitlich-Bilyk, B.; Goodman, R. Prevalence of Child and Adolescent Psychiatric Disorders in Southeast Brazil. J. Am. Acad. Child Adolesc. Psychiatry 2004, 43, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Matijasevich, A.; Murray, J.; Cooper, P.J.; Anselmi, L.; Barros, A.J.; Barros, F.C.; Santos, I.S. Trajectories of Maternal Depression and Offspring Psychopathology at 6 Years: 2004 Pelotas Cohort Study. J. Affect. Disord. 2015, 174, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-Generation Plink: Rising to the Challenge of Larger and Richer Datasets. Gigascience 2015, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. Plink: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Ward, L.D.; Kellis, M. Haploreg: A Resource for Exploring Chromatin States, Conservation, and Regulatory Motif Alterations within Sets of Genetically Linked Variants. Nucleic Acids Res. 2012, 40, D930–D9344. [Google Scholar] [CrossRef] [PubMed]
- Griffith, J.W.; Zinbarg, R.E.; Craske, M.G.; Mineka, S.; Rose, R.D.; Waters, A.M.; Sutton, J.M. Neuroticism as a Common Dimension in the Internalizing Disorders. Psychol. Med. 2010, 40, 1125–1136. [Google Scholar] [CrossRef]
- Hettema, J.M.; Neale, M.C.; Myers, J.M.; Prescott, C.A.; Kendler, K.S. A Population-Based Twin Study of the Relationship between Neuroticism and Internalizing Disorders. Am. J. Psychiatry 2006, 163, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Kendler, K.S.; Myers, J. The Genetic and Environmental Relationship between Major Depression and the Five-Factor Model of Personality. Psychol. Med. 2009, 40, 801–806. [Google Scholar] [CrossRef]
- Middeldorp, C.M.; Cath, D.C. The Association of Personality with Anxious and Depressive Psycopathology. In Biology of Personal and Individual Differences; Canli, T., Ed.; Guilford Press: New York, NY, USA; London, UK, 2006; pp. 251–272. [Google Scholar]
- Smith, R.M.; Webb, A.; Papp, A.C.; Newman, L.C.; Handelman, S.K.; Suhy, A.; Mascarenhas, R.; Oberdick, J.; Sadee, W. Whole Transcriptome Rna-Seq Allelic Expression in Human Brain. BMC Genom. 2013, 14, 571. [Google Scholar] [CrossRef]
- Lima-Costa, M.F.; Rodrigues, L.C.; Barreto, M.L.; Gouveia, M.; Horta, B.L.; Mambrini, J.; Kehdy, F.S.; Pereira, A.; Rodrigues-Soares, F.; Victora, C.G.; et al. Genomic Ancestry and Ethnoracial Self-Classification Based on 5871 Community-Dwelling Brazilians (the Epigen Initiative). Sci. Rep. 2015, 5, 9812. [Google Scholar] [CrossRef]
Variables | Included (n = 3447) | Not included (n = 784) | p-Value |
---|---|---|---|
Sex | n (%) | n (%) | |
Male | 1780 (51.6) | 415 (52.9) | 0.513 |
Female | 1667 (48.4) | 369 (47.1) | |
Skin color | 0.137 | ||
White | 2332 (67.7) | 394 (71.4) | |
Black | 428 (12.4) | 54 (9.8) | |
Others | 686 (19.9) | 104 (18.8) | |
Mother schooling (y) | 0.057 | ||
<5 | 512 (15.0) | 142 (18.4) | |
5–8 | 1426 (41.7) | 305 (39.6) | |
>9 | 1478 (43.3) | 323 (42.0) | |
Wealth Index (quintiles) | 0.001 | ||
1st (poorest) | 579 (20.9) | 128 (25.6) | |
2nd | 523 (18.9) | 97 (19.4) | |
3rd | 551 (19.9) | 84 (16.8) | |
4th | 576 (20.8) | 74 (14.8) | |
5th (richest) | 536 (19.5) | 117 (23.4) | |
Genotypes * | |||
rs4916723 | |||
AA | 1356 (39.3) | - | |
AC | 1644 (47.7) | - | |
CC | 447 (13.0) | - | |
rs4938723 | |||
TT | 1522 (44.5) | - | |
CT | 1482 (43.3) | - | |
CC | 420 (12.2) | - |
Outcome | n | rs4916723 (MIR9-2) ORcrude (95% CI) | rs4916723 (MIR9-2) * ORadj (95% CI) | * padj | N | rs4938723 (MIR34B/C) ORcrude (95% CI) | rs4938723 (MIR34B/C) * ORadj (95% CI) | * padj |
---|---|---|---|---|---|---|---|---|
Effect Allele: C | Effect Allele: C | |||||||
Any disorder | 3447 | 0.816 (0.710–0.938) | 0.820 (0.713–0.944) | 0.006 | 3424 | 1.047 (0.915–1.198) | 1.055 (0.921–1.208) | 0.442 |
Any externalizing disorder | 3447 | 0.863 (0.672–1.108) | 0.870 (0.676–1.118) | 0.276 | 3424 | 1.063 (0.835–1.353) | 1.074 (0.843–1.368) | 0.566 |
Any internalizing disorder | 3447 | 0.824 (0.693–0.979) | 0.830 (0.698–0.987) | 0.035 | 3424 | 0.994 (0.841–1.176) | 1.002 (0.847–1.185) | 0.984 |
SNP ID | CHR | Position (GRCh37) | Gene/Location | Promoter Histone Marks Tissues | Enhancer Histone Marks Tissues | DNAse Tissues | Motifs Changed | eQTL Hits |
---|---|---|---|---|---|---|---|---|
rs4916723 | 5 | 87854395 | LINC00461 intronic | BRN | BRN, ESC, iPSC, BRN.CRTX | BRN | 11 altered motifs | LINC02060 in Brain Hippocampus and Nucleus accumbens |
rs4938723 | 11 | 111382565 | BTG4 intronic | ESC, BRST | ESC, iPSC, FAT.ADIP, SKIN.PEN.FRSK.,BRST, SKIN.NHEK | iPSC, BRST | 3 altered motifs | COLCA2 in Colon Transverse PPP2R1B in Whole Blood |
Epigenome ID (EID) | Group | Description | Chromatin states (Core 15-State Model) | Chromatin States (25-State Model Using 12 Imputed Marks) | H3K4me1 | H3K4me3 | H3K27ac | H3K9ac | DNase |
---|---|---|---|---|---|---|---|---|---|
rs4916723 | |||||||||
E071 | Brain | Brain Hippocampus Middle | - | 22_PromP | H3K4me1_Enh | H3K4me3_Pro | - | - | - |
E074 | Brain | Brain Substantia Nigra | - | - | H3K4me1_Enh | H3K4me3_Pro | - | - | - |
E068 | Brain | Brain Anterior Caudate | - | 22_PromP | H3K4me1_Enh | H3K4me3_Pro | - | H3K9ac_Pro | - |
E069 | Brain | Brain Cingulate Gyrus | - | 17_EnhW2 | -- | - | - | - | - |
E072 | Brain | Brain Inferior Temporal Lobe | - | - | H3K4me1_Enh | - | - | - | - |
E067 | Brain | Brain Angular Gyrus | - | 19_DNase | H3K4me1_Enh | H3K4me3_Pro | - | - | - |
E073 | Brain | Brain_Dorsolateral_Prefrontal_Cortex | - | 17_EnhW2 | H3K4me3_Pro | H3K27ac_Enh | H3K9ac_Pro | - | |
E070 | Brain | Brain Germinal Matrix | 2_TssAFlnk | 16_EnhW1 | H3K4me1_Enh | H3K4me3_Pro | - | - | - |
E082 | Brain | Fetal Brain Female | 2_TssAFlnk | 13_EnhA1 | H3K4me1_Enh | H3K4me3_Pro | - | - | DNase |
E081 | Brain | Fetal Brain Male | 7_Enh | 16_EnhW1 | H3K4me1_Enh | - | - | - | DNase |
rs4938723 | |||||||||
E071 | Brain | Brain Hippocampus Middle | - | - | - | H3K4me3_Pro | H3K27ac_Enh | - | - |
E074 | Brain | Brain Substantia Nigra | - | - | - | - | H3K27ac_Enh | H3K9ac_Pro | - |
E068 | Brain | Brain Anterior Caudate | - | - | - | H3K4me3_Pro | H3K27ac_Enh | H3K9ac_Pro | - |
E069 | Brain | Brain Cingulate Gyrus | - | - | H3K4me1_Enh | H3K4me3_Pro | H3K27ac_Enh | - | - |
E072 | Brain | Brain Inferior Temporal Lobe | - | - | - | H3K4me3_Pro | - | H3K9ac_Pro | - |
E067 | Brain | Brain Angular Gyrus | - | - | H3K4me1_Enh | H3K4me3_Pro | - | H3K9ac_Pro | - |
E073 | Brain | Brain_Dorsolateral_Prefrontal_Cortex | - | - | - | - | - | - | - |
E070 | Brain | Brain Germinal Matrix | - | - | - | - | - | - | - |
E082 | Brain | Fetal Brain Female | - | - | - | - | - | - | - |
E081 | Brain | Fetal Brain Male | - | - | - | - | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tovo-Rodrigues, L.; Quinte, G.C.; Brum, C.B.; Ghisleni, G.; Bastos, C.R.; Oliveira, I.O.d.; Barros, F.C.; Barros, A.J.D.; Santos, I.S.; Rohde, L.A.; et al. The Role of MIR9-2 in Shared Susceptibility of Psychiatric Disorders during Childhood: A Population-Based Birth Cohort Study. Genes 2019, 10, 626. https://doi.org/10.3390/genes10080626
Tovo-Rodrigues L, Quinte GC, Brum CB, Ghisleni G, Bastos CR, Oliveira IOd, Barros FC, Barros AJD, Santos IS, Rohde LA, et al. The Role of MIR9-2 in Shared Susceptibility of Psychiatric Disorders during Childhood: A Population-Based Birth Cohort Study. Genes. 2019; 10(8):626. https://doi.org/10.3390/genes10080626
Chicago/Turabian StyleTovo-Rodrigues, Luciana, Gabriela Callo Quinte, Clarice Brinck Brum, Gabriele Ghisleni, Clarissa Ribeiro Bastos, Isabel Oliveira de Oliveira, Fernando C. Barros, Aluisio J. D. Barros, Iná S. Santos, Luis A. Rohde, and et al. 2019. "The Role of MIR9-2 in Shared Susceptibility of Psychiatric Disorders during Childhood: A Population-Based Birth Cohort Study" Genes 10, no. 8: 626. https://doi.org/10.3390/genes10080626
APA StyleTovo-Rodrigues, L., Quinte, G. C., Brum, C. B., Ghisleni, G., Bastos, C. R., Oliveira, I. O. d., Barros, F. C., Barros, A. J. D., Santos, I. S., Rohde, L. A., Hutz, M. H., & Matijasevich, A. (2019). The Role of MIR9-2 in Shared Susceptibility of Psychiatric Disorders during Childhood: A Population-Based Birth Cohort Study. Genes, 10(8), 626. https://doi.org/10.3390/genes10080626