Exploring Shared Susceptibility between Two Neural Crest Cells Originating Conditions: Neuroblastoma and Congenital Heart Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Neuroblastoma GWAS Summary Statistics
2.2. CHD Genotypes
2.3. CHD Genotypes Imputation
2.4. CHD Association Analysis
2.5. Evaluation of the Extent of Shared Genetics
2.6. Identification of Colocalizing Association Signals
2.7. Enrichment of Epigenetic Signatures in Susceptibility Loci
2.8. eQTL Analysis
3. Results
3.1. Evaluation of the Genome Wide Extent of Shared Genetic Association
3.2. Identification of Colocalizing Association Signals between NB and CHD
3.3. Enrichment in Epigenetic Markers in Colocalizing Regions
3.4. Annotation of Colocalizing Regions
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Maris, J.M. Recent advances in neuroblastoma. N. Engl. J. Med. 2010, 362, 2202–2211. [Google Scholar] [CrossRef] [PubMed]
- Capasso, M.; Diskin, S.J. Genetics and genomics of neuroblastoma. Cancer Treat. Res. 2010, 155, 65–84. [Google Scholar] [PubMed]
- Tolbert, V.P.; Coggins, G.E.; Maris, J.M. Genetic susceptibility to neuroblastoma. Curr. Opin. Genet. Dev. 2017, 42, 81–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capasso, M.; Diskin, S.J.; Totaro, F.; Longo, L.; De Mariano, M.; Russo, R.; Cimmino, F.; Hakonarson, H.; Tonini, G.P.; Devoto, M.; et al. Replication of GWAS-identified neuroblastoma risk loci strengthens the role of BARD1 and affirms the cumulative effect of genetic variations on disease susceptibility. Carcinogenesis 2013, 34, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Capasso, M.; Diskin, S.; Cimmino, F.; Acierno, G.; Totaro, F.; Petrosino, G.; Pezone, L.; Diamond, M.; McDaniel, L.; Hakonarson, H.; et al. Common genetic variants in NEFL influence gene expression and neuroblastoma risk. Cancer Res. 2014, 74, 6913–6924. [Google Scholar] [CrossRef] [PubMed]
- Capasso, M.; McDaniel, L.D.; Cimmino, F.; Cirino, A.; Formicola, D.; Russell, M.R.; Raman, P.; Cole, K.A.; Diskin, S.J. The functional variant rs34330 of CDKN1B is associated with risk of neuroblastoma. J. Cell Mol. Med. 2017, 21, 3224–3230. [Google Scholar] [CrossRef]
- Cimmino, F.; Avitabile, M.; Diskin, S.J.; Vaksman, Z.; Pignataro, P.; Formicola, D.; Cardinale, A.; Testori, A.; Koster, J.; de Torres, C.; et al. Fine mapping of 2q35 high-risk neuroblastoma locus reveals independent functional risk variants and suggests full-length BARD1 as tumor-suppressor. Int. J. Cancer 2018, 143, 2828–2837. [Google Scholar] [CrossRef] [Green Version]
- Tennant, P.W.; Pearce, M.S.; Bythell, M.; Rankin, J. 20-year survival of children born with congenital anomalies: a population-based study. Lancet 2010, 375, 649–656. [Google Scholar] [CrossRef]
- Cordell, H.J.; Bentham, J.; Topf, A.; Zelenika, D.; Heath, S.; Mamasoula, C.; Cosgrove, C.; Blue, G.; Granados-Riveron, J.; Setchfield, K.; et al. Genome-wide association study of multiple congenital heart disease phenotypes identifies a susceptibility locus for atrial septal defect at chromosome 4p16. Nat. Genet. 2013, 45, 822–824. [Google Scholar] [CrossRef]
- LaHaye, S.; Corsmeier, D.; Basu, M.; Bowman, J.L.; Fitzgerald-Butt, S.; Zender, G.; Bosse, K.; McBride, K.L.; White, P.; Garg, V. Utilization of Whole Exome Sequencing to Identify Causative Mutations in Familial Congenital Heart Disease. Circ. Cardiovasc. Genet. 2016, 9, 320–329. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.C.; Homsy, J.; Zaidi, S.; Lu, Q.; Morton, S.; DePalma, S.R.; Zeng, X.; Qi, H.; Chang, W.; Sierant, M.C.; et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat. Genet. 2017, 49, 1593–1601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaidi, S.; Brueckner, M. Genetics and Genomics of Congenital Heart Disease. Circ. Res. 2017, 120, 923–940. [Google Scholar] [CrossRef] [PubMed]
- Bellah, R.; D’Andrea, A.; Darillis, E.; Fellows, K.E. The association of congenital neuroblastoma and congenital heart disease. Is there a common embryologic basis? Pediatr. Radiol. 1989, 19, 119–121. [Google Scholar] [CrossRef] [PubMed]
- Friedman, D.M.; Dunnigan, A.; Magid, M.S. Coarctation of the aorta associated with neuroblastoma. Pediatr. Cardiol. 1998, 19, 480–481. [Google Scholar] [CrossRef] [PubMed]
- McElhinney, D.B.; Reddy, V.M.; Feuerstein, B.G.; Marx, G.R.; Hanley, F.L. Intraoperative discovery of neuroblastoma in an infant with pulmonary atresia. Ann. Thorac. Surg. 1997, 64, 1827–1829. [Google Scholar] [CrossRef]
- Rosti, L.; Lin, A.E.; Frigiola, A. Neuroblastoma and congenital cardiovascular malformations. Pediatrics 1996, 97, 258–261. [Google Scholar] [PubMed]
- Faingold, R.; Babyn, P.S.; Yoo, S.J.; Dipchand, A.I.; Weitzman, S. Neuroblastoma with atypical metastases to cardiac and skeletal muscles: MRI features. Pediatr. Radiol. 2003, 33, 584–586. [Google Scholar] [CrossRef] [PubMed]
- George, R.E.; Lipshultz, S.E.; Lipsitz, S.R.; Colan, S.D.; Diller, L. Association between congenital cardiovascular malformations and neuroblastoma. J. Pediatr. 2004, 144, 444–448. [Google Scholar] [CrossRef]
- Van Engelen, K.; Merks, J.H.; Lam, J.; Kremer, L.C.; Backes, M.; Baars, M.J.; van der Pal, H.J.; Postma, A.V.; Versteeg, R.; Caron, H.N.; et al. Prevalence of congenital heart defects in neuroblastoma patients: A cohort study and systematic review of literature. Eur. J. Pediatr. 2009, 168, 1081–1090. [Google Scholar] [CrossRef]
- Kratz, C.P.; Rapisuwon, S.; Reed, H.; Hasle, H.; Rosenberg, P.S. Cancer in Noonan, Costello, cardiofaciocutaneous and LEOPARD syndromes. Am. J. Med. Genet. C Semin. Med. Genet. 2011, 157C, 83–89. [Google Scholar] [CrossRef]
- Keyte, A.; Hutson, M.R. The neural crest in cardiac congenital anomalies. Differentiation 2012, 84, 25–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lombardo, R.C.; Porollo, A.; Cnota, J.F.; Hopkin, R.J. Congenital heart disease and aortic arch variants associated with mutation in PHOX2B. Genet. Med. 2018, 20, 1538–1543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosse, Y.P.; Laudenslager, M.; Khazi, D.; Carlisle, A.J.; Winter, C.L.; Rappaport, E.; Maris, J.M. Germline PHOX2B mutation in hereditary neuroblastoma. Am. J. Hum. Genet. 2004, 75, 727–730. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Stanke, J.; Lahti, J.M. The connections between neural crest development and neuroblastoma. Curr. Top. Dev. Biol. 2011, 94, 77–127. [Google Scholar] [PubMed]
- McDaniel, L.D.; Conkrite, K.L.; Chang, X.; Capasso, M.; Vaksman, Z.; Oldridge, D.A.; Zachariou, A.; Horn, M.; Diamond, M.; Hou, C.; et al. Common variants upstream of MLF1 at 3q25 and within CPZ at 4p16 associated with neuroblastoma. PLoS Genet. 2017, 13. [Google Scholar] [CrossRef] [PubMed]
- Delaneau, O.; Howie, B.; Cox, A.J.; Zagury, J.F.; Marchini, J. Haplotype estimation using sequencing reads. Am. J. Hum. Genet. 2013, 93, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Howie, B.; Fuchsberger, C.; Stephens, M.; Marchini, J.; Abecasis, G.R. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet. 2012, 44, 955–959. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Forer, L.; Schönherr, S.; Sidore, C.; Locke, A.E.; Kwong, A.; Vrieze, S.I.; Chew, E.Y.; Levy, S.; McGue, M.; et al. Next-generation genotype imputation service and methods. Nat. Genet. 2016, 48, 1284–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchini, J.; Howie, B.; Myers, S.; McVean, G.; Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 2007, 39, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 2015, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Elliott, K.S.; Chapman, K.; Day-Williams, A.; Panoutsopoulou, K.; Southam, L.; Lindgren, C.M.; Arden, N.; Aslam, N.; Birrell, F.; Carluke, I.; et al. Evaluation of the genetic overlap between osteoarthritis with body mass index and height using genome-wide association scan data. Ann. Rheum. Dis. 2013, 72, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Duggal, P.; Gillanders, E.M.; Holmes, T.N.; Bailey-Wilson, J.E. Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies. BMC Genom. 2008, 9, 516. [Google Scholar] [CrossRef] [PubMed]
- Pickrell, J.K.; Berisa, T.; Liu, J.Z.; Ségurel, L.; Tung, J.Y.; Hinds, D.A. Detection and interpretation of shared genetic influences on 42 human traits. Nat. Genet. 2016, 48, 709–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, M.; Sallari, R.C.; Guo, H.; Moore, J.H.; He, H.H.; Lupien, M. Variant Set Enrichment: An R package to identify disease-associated functional genomic regions. BioData Min. 2017, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Ward, L.D.; Kellis, M. HaploReg: A resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012, 40, D930–D934. [Google Scholar] [CrossRef] [PubMed]
- LinDA. Available online: http://linda.irgb.cnr.it/index.html (accessed on 26 April 2019).
- Winsvold, B.S.; Nelson, C.P.; Malik, R.; Gormley, P.; Anttila, V.; Vander Heiden, J.; Elliott, K.S.; Jacobsen, L.M.; Palta, P.; Amin, N.; et al. Genetic analysis for a shared biological basis between migraine and coronary artery disease. Neurol. Genet. 2015, 1, e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fehringer, G.; Kraft, P.; Pharoah, P.D.; Eeles, R.A.; Chatterjee, N.; Schumacher, F.R.; Schildkraut, J.M.; Lindström, S.; Brennan, P.; Bickeböller, H.; et al. Cross-Cancer Genome-Wide Analysis of Lung, Ovary, Breast, Prostate, and Colorectal Cancer Reveals Novel Pleiotropic Associations. Cancer Res. 2016, 76, 5103–5114. [Google Scholar] [CrossRef] [PubMed]
- Solovieff, N.; Cotsapas, C.; Lee, P.H.; Purcell, S.M.; Smoller, J.W. Pleiotropy in complex traits: Challenges and strategies. Nat. Rev. Genet. 2013, 14, 483–495. [Google Scholar] [CrossRef]
- Kar, S.P.; Beesley, J.; Amin Al Olama, A.; Michailidou, K.; Tyrer, J.; Kote-Jarai, Z.; Lawrenson, K.; Lindstrom, S.; Ramus, S.J.; Thompson, D.J.; et al. Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types. Cancer Discov. 2016, 6, 1052–1067. [Google Scholar] [CrossRef]
- Hackinger, S.; Trajanoska, K.; Styrkarsdottir, U.; Zengini, E.; Steinberg, J.; Ritchie, G.R.S.; Hatzikotoulas, K.; Gilly, A.; Evangelou, E.; Kemp, J.P.; et al. Evaluation of shared genetic aetiology between osteoarthritis and bone mineral density dentifies SMAD3 as a novel osteoarthritis risk locus. Hum. Mol. Genet. 2017, 26, 3850–3858. [Google Scholar] [CrossRef]
- Claussnitzer, M.; Dankel, S.N.; Kim, K.H.; Quon, G.; Meuleman, W.; Haugen, C.; Glunk, V.; Sousa, I.S.; Beaudry, J.L.; Puviindran, V.; et al. FTO Obesity Variant Circuitry and Adipocyte Browning in Humans. N. Engl. J. Med. 2015, 373, 895–907. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.R.; Li, J.; Zhao, S.D.; Bradfield, J.P.; Mentch, F.D.; Maggadottir, S.M.; Hou, C.; Abrams, D.J.; Chang, D.; Gao, F.; et al. Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases. Nat. Med. 2015, 21, 1018–1027. [Google Scholar] [CrossRef] [PubMed]
- Luan, M.; Shang, Z.; Teng, Y.; Chen, X.; Zhang, M.; Lv, H.; Zhang, R. The shared and specific mechanism of four autoimmune diseases. Oncotarget 2017, 8, 108355–108374. [Google Scholar] [CrossRef] [PubMed]
- Lupo, P.J.; Schraw, J.M.; Desrosiers, T.A.; Nembhard, W.N.; Langlois, P.H.; Canfield, M.A.; Copeland, G.; Meyer, R.E.; Brown, A.L.; Chambers, T.M.; et al. Association Between Birth Defects and Cancer Risk Among Children and Adolescents in a Population-Based Assessment of 10 Million Live Births. JAMA Oncol. 2019, in press. [Google Scholar] [CrossRef] [PubMed]
- Tribulo, C.; Aybar, M.J.; Nguyen, V.H.; Mullins, M.C.; Mayor, R. Regulation of Msx genes by a Bmp gradient is essential for neural crest specification. Development 2003, 130, 6441–6452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.H.; Ishii, M.; Sun, J.; Sucov, H.M.; Maxson, R.E., Jr. Msx1 and Msx2 regulate survival of secondary heart field precursors and post-migratory proliferation of cardiac neural crest in the outflow tract. Dev. Biol. 2007, 308, 421–437. [Google Scholar] [CrossRef]
- Revet, I.; Huizenga, G.; Chan, A.; Koster, J.; Volckmann, R.; van Sluis, P.; Øra, I.; Versteeg, R.; Geerts, D. The MSX1 homeobox transcription factor is a downstream target of PHOX2B and activates the Delta-Notch pathway in neuroblastoma. Exp. Cell Res. 2008, 314, 707–719. [Google Scholar] [CrossRef]
- Ozcan, A.; Acer, H.; Ciraci, S.; Gumus, H.; Karakukcu, M.; Patiroglu, T.; Ozdemir, M.A.; Unal, E. Neuroblastoma in a Child with Wolf-Hirschhorn Syndrome. J. Pediatr. Hematol. Oncol. 2017, 39, e224–e226. [Google Scholar] [CrossRef]
- Hoffmann, S.; Schmitteckert, S.; Griesbeck, A.; Preiss, H.; Sumer, S.; Rolletschek, A.; Granzow, M.; Eckstein, V.; Niesler, B.; Rappold, G.A. Comparative expression analysis of Shox2-deficient embryonic stem cell-derived sinoatrial node-like cells. Stem Cell Res. 2017, 21, 51–57. [Google Scholar] [CrossRef]
- Hoffmann, S.; Clauss, S.; Berger, I.M.; Weiß, B.; Montalbano, A.; Röth, R.; Bucher, M.; Klier, I.; Wakili, R.; Seitz, H.; et al. Coding and non-coding variants in the SHOX2 gene in patients with early-onset atrial fibrillation. Basic Res. Cardiol. 2016, 111, 36. [Google Scholar] [CrossRef]
- Blaschke, R.J.; Monaghan, A.P.; Schiller, S.; Schechinger, B.; Rao, E.; Padilla-Nash, H.; Ried, T.; Rappold, G.A. SHOT, a SHOX-related homeobox gene, is implicated in craniofacial, brain, heart, and limb development. Proc. Natl. Acad. Sci. USA 1998, 95, 2406–2411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vickerman, L.; Neufeld, S.; Cobb, J. Shox2 function couples neural, muscular and skeletal development in the proximal forelimb. Dev. Biol. 2011, 350, 323–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Liu, H.; Gu, S.; Liu, C.; Sun, C.; Zheng, Y.; Chen, Y. Replacing Shox2 with human SHOX leads to congenital disc degeneration of the temporomandibular joint in mice. Cell Tissue Res. 2014, 355, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Rangrez, A.Y.; Pott, J.; Kluge, A.; Frauen, R.; Stiebeling, K.; Hoppe, P.; Sossalla, S.; Frey, N.; Frank, D. Myeloid leukemia factor-1 is a novel modulator of neonatal rat cardiomyocyte proliferation. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 634–644. [Google Scholar] [CrossRef] [PubMed]
- Capasso, M.; Devoto, M.; Hou, C.; Asgharzadeh, S.; Glessner, J.T.; Attiyeh, E.F.; Mosse, Y.P.; Kim, C.; Diskin, S.J.; Cole, K.A.; et al. Common variations in BARD1 influence susceptibility to high-risk neuroblastoma. Nat. Genet. 2009, 41, 718–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cimmino, F.; Formicola, D.; Capasso, M. Dualistic Role of BARD1 in Cancer. Genes 2017, 8, 375. [Google Scholar] [CrossRef] [PubMed]
Condition | Cases | Controls |
---|---|---|
ASD/PFO | 340 | 5159 |
CM | 151 | 5159 |
DORV | 96 | 5159 |
LH | 387 | 5159 |
NB | 2101 | 4202 |
TGA | 207 | 5159 |
ToF | 835 | 5159 |
VSD | 191 | 5159 |
Dataset | p-value Threshold | Fisher Test p-value | Odds Ratio |
---|---|---|---|
ALL | 0.0001 | 1 | 0 |
ALL | 0.0005 | 1 | 0 |
ALL | 0.001 | 1 | 0 |
ALL | 0.005 | 0.92 | 0.46 |
ALL | 0.01 | 0.02 | 1.56 |
ALL | 0.05 | 0.84 | 0.94 |
ASD/PFO | 0.0001 | 1 | 0 |
ASD/PFO | 0.0005 | 1 | 0 |
ASD/PFO | 0.001 | 1 | 0 |
ASD/PFO | 0.005 | 0.64 | 0.89 |
ASD/PFO | 0.01 | 0.52 | 1.01 |
ASD/PFO | 0.05 | 0.02 | 1.12 |
CM | 0.0001 | 1 | 0 |
CM | 0.0005 | 1 | 0 |
CM | 0.001 | 0.18 | 4.97 |
CM | 0.005 | 0.04 | 2.05 |
CM | 0.01 | 0.23 | 1.23 |
CM | 0.05 | 0.99 | 0.84 |
VSD | 0.0001 | 1 | 0 |
VSD | 0.0005 | 0.05 | 19.45 |
VSD | 0.001 | 0.15 | 5.86 |
VSD | 0.005 | 0.27 | 1.43 |
VSD | 0.01 | 0.53 | 1 |
VSD | 0.05 | 0.8 | 0.94 |
Disease | Band | pos hg19 | SNPs with p-value < 10−3 | Direction of Effect | Lead SNP NB | p-value | Lead SNP CHD Subtype | p-value |
---|---|---|---|---|---|---|---|---|
CM | 2q35 | 215590505–215840829 | 28 | opposite | rs3768708 | 1.09 × 10−10 | rs34206771 | 7.15 × 10−5 |
ASD/PFO | 12q21.31 | 85606538–85723868 | 16 | opposite | rs7295242 | 2.75 × 10−4 | rs13377665 | 3.71 × 10−4 |
VSD | 12q21.31 | 85604092–85723868 | 18 | opposite | rs11116772 | 2.41 × 10−4 | rs7954427 | 5.03 × 10−4 |
VSD | 3q25.32 | 157828781–158245883 | 399 | opposite | rs1978779 | 6.09 × 10−8 | rs6441201 | 2.39 × 10−5 |
ToF | 14q24.3 | 79029133–79059667 | 14 | same | rs4643247 | 5.88 × 10−5 | rs7159049 | 7.75 × 10−5 |
Band | Disease | Lead SNP | pos hg19 | p-value | Disease | Lead SNP | pos hg19 | p-value | Distance | D’ | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|
3q25.32 | NB | rs1978779 | 158211291 | 6.09 × 10−8 | ToF | rs75107964 | 158458751 | 1.30 × 10−7 | 247,460 | 0.7 | 0.1 |
4p16.2 | NB | rs11944652 | 4892294 | 1.61 × 10−6 | ASD/PFO | rs4689909 | 4643276 | 7.75 × 10−7 | 249,018 | 0.1 | 0.01 |
Disease | Band | pos hg19 | Lead SNP NB | p-value NB | Lead SNP CHD | p-value CHD | PP |
---|---|---|---|---|---|---|---|
CM | 6p22.3 | 21685357–22748186 | rs4712656 | 6.33 × 10−16 | rs147429944 | 7.39 × 10−9 | 0.932813 |
DORV | 11p15.4 | 7436942–8331494 | rs204926 | 6.91 × 10−12 | rs12807437 | 1.71 × 10−3 | 0.906466 |
DORV | 2q35 | 215573795–217714948 | rs2070096 | 3.39 × 10−11 | rs116515369 | 2.43 × 10−4 | 0.91838 |
DORV | 3q25.33 | 157312429–159477493 | rs1978779 | 6.09 × 10−8 | 158680170 | 8.16 × 10−7 | 0.923649 |
DORV | 4p16.1 | 8154534–8733618 | rs3796727 | 3.19 × 10−9 | chr4:8379187:I | 5.06 × 10−3 | 0.91279 |
DORV | 6p22.3 | 21685357–22748186 | rs4712656 | 6.33 × 10−16 | rs115828798 | 1.37 × 10−4 | 0.926876 |
DORV | 6q21 | 103983460–106054975 | rs4945714 | 1.28 × 10−8 | rs78448955 | 1.44 × 10−3 | 0.906372 |
ToF | 11p15.4 | 7436942–8331494 | rs204926 | 6.91 × 10−12 | rs6578887 | 3.80 × 10−5 | 0.917802 |
ToF | 2q35 | 215573795–217714948 | rs2070096 | 3.39 × 10−11 | rs13023347 | 5.08 × 10−5 | 0.919856 |
ToF | 3q25.33 | 157312429–159477493 | rs1978779 | 6.09 × 10−8 | rs75107964 | 1.30 × 10−7 | 0.99738 |
Gene | Band | Number of SNPs |
---|---|---|
BARD1 | 2:q35 | 20 |
MFSD1 | 3:q25.32 | 47 |
RARRES1 | 3:q25.32 | 49 |
RP11-379F4.4 | 3:q25.32 | 47 |
RP11-538P18.2 | 3:q25.32 | 12 |
RSRC1 | 3:q25.32 | 159 |
SHOX2 | 3:q25.32 | 2 |
HS.276795 | 4:p16.2 | 4 |
MSX1 | 4:p16.2 | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Testori, A.; Lasorsa, V.A.; Cimmino, F.; Cantalupo, S.; Cardinale, A.; Avitabile, M.; Limongelli, G.; Russo, M.G.; Diskin, S.; Maris, J.; et al. Exploring Shared Susceptibility between Two Neural Crest Cells Originating Conditions: Neuroblastoma and Congenital Heart Disease. Genes 2019, 10, 663. https://doi.org/10.3390/genes10090663
Testori A, Lasorsa VA, Cimmino F, Cantalupo S, Cardinale A, Avitabile M, Limongelli G, Russo MG, Diskin S, Maris J, et al. Exploring Shared Susceptibility between Two Neural Crest Cells Originating Conditions: Neuroblastoma and Congenital Heart Disease. Genes. 2019; 10(9):663. https://doi.org/10.3390/genes10090663
Chicago/Turabian StyleTestori, Alessandro, Vito A. Lasorsa, Flora Cimmino, Sueva Cantalupo, Antonella Cardinale, Marianna Avitabile, Giuseppe Limongelli, Maria Giovanna Russo, Sharon Diskin, John Maris, and et al. 2019. "Exploring Shared Susceptibility between Two Neural Crest Cells Originating Conditions: Neuroblastoma and Congenital Heart Disease" Genes 10, no. 9: 663. https://doi.org/10.3390/genes10090663
APA StyleTestori, A., Lasorsa, V. A., Cimmino, F., Cantalupo, S., Cardinale, A., Avitabile, M., Limongelli, G., Russo, M. G., Diskin, S., Maris, J., Devoto, M., Keavney, B., Cordell, H. J., Iolascon, A., & Capasso, M. (2019). Exploring Shared Susceptibility between Two Neural Crest Cells Originating Conditions: Neuroblastoma and Congenital Heart Disease. Genes, 10(9), 663. https://doi.org/10.3390/genes10090663