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1 Variational Bayes method for PLDA

Our proposed model, PLDA, is an extended model of LDA. The graphical model is shown in Figure 2 in
the manuscript. Furthermore, we previously reported [I] the notation when PLDA is applied to predict
mutation signatures. Those parameters in the model were learned by the variational Bayes method, and
the details of the calculation are described herein.

Variational Bayes is an iterative method to update parameters to maximize the objective function,
variational lower bound (VLB). Letting ¢(-) the probability of the functional argument, VLB for PLDA
is calculated as follows by extending that for LDA.
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Since p(8;s | a;) and p(¢y | B) are Dirichlet distributions, the fourth term of Flg(z,8, ¢ | £7,£%)] can
be explicitly calculated. Update formulae are derived by partial differentiation of VLB for each parameter
and considering the local maximum:
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Where T'(-) and ¥(-) show the gamma function and the digamma function, respectively.
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Furthermore, we used a fixed-point iteration method to update the hyperparameters. To define & as
a before update, the update formula for a is as follows:
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The update of 3, which is a hyperparameter of the mutational distribution, is not different from the
case of LDA.

On performing signature prediction using this method, the aforementioned parameter updates were
repeated 1000 times (it was confirmed that the rise in VLB has converged in any case.). Furthermore,
with the variational Bayes method, it is possible that the predicted solution becomes a local minimum;
hence, we reassign the initial value of the parameter 10 times to avoid it and adopted the solution with
the best VLB as the representative value.
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2 Comparison with Supervised LDA

As described in Section 4.2, Supervised LDA[2] is a probabilistic model that uses auxiliary information for
each sample, similar to PLDA. Figure |[S1| shows the graphical model of Supervised LDA. In this model,
there are new variables, I; and 7. [5 shows the tumor types of sth sample. In this way, Supervised LDA
regards auxiliary information as an observed random variable, and searches for parameters that fits to
them in the course of learning. Additionally, n is the parameter of a probabilistic distribution generating
ls. When auxiliary information takes discrete values like this time, we think that Supervised LDA can
be implemented by considering the following generation process:
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Here, x and ) shows the tumor types and a set of them, respectively. The responsibility is weighted by
n and we can get the new parameters of a multinomial distribution generating ls. In this manner, the
tumor type is treated as a random variable in the framework , and it is generated from the signature
distribution (i.e. ¢(zs)). We believe that this modeling is not valid because causal relationship is
reversed; the signature distributions are actually determined by the tumour type. PLDA parallelizes the
hyperparameters («;) that generate the signature distribution, so this problem does not occur.
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Figure S1: The graphical model of Supervised LDA.
This figure shows the graphical model of Supervised LDA[2]. Compared with PLDA, Supervised LDA
regards auxiliary information (Is in this figure) as an observed random variable.



3 How to create artificial mutation catalogs used in Simulation

Herein, we have described how to create an artificial mutation catalog used in the simulation experiment,
as described in Section 3.1 of the paper. The purpose of this simulation experiment was to compare the
performance of signature prediction between PLDA and other previous methods (normal LDA, SigProfiler,
and SignatureAnalyzer). First, it should be supposed that the mutation catalog to predict signatures is
a mixture of samples from L = 5 tumour types with quite different signature activities. As described in
Table 1, the samples obtained from these tumour types are the result of SBS1 to SBS5 signatures (K = 5)
predicted by SigProfiler [3]. In addition, each sample has n;s = 400 mutations, and there are S; = 50
samples for each tumour type (i.e. the total number of samples in one mutation catalog is S; x L = 250).
The 400 mutations in each sample are generated according to the following PLDA generation process:

aqeREFP 1<Vi<L=5

0, ~ Dir(ay), 0, € RE=51 < Vs < 5 = 50

215 ~ Cat(0ys), 2150 € {1,2,--- , K =5}, 1 < Vi < ngg =400
Mysi ~ Cat(Pr=z,.,), Msi € {1,2,---,V =96}

where each notation is the same as described in the Methods section. Only the hyperparameter «; was
artificially determined in these mutation catalogs, and we set the values so that active signatures were
different for each tumor type, as shown in Table 1 (e.g., in artificial tumour type 1, SBS1 and SBS2 tended
to be active, and SBS3 to SBS5 tended to be inactivated, so we set ay—; = {0.5,0.5,0.05,0.05,0.05}). As
bias would be introduced with the use of one mutation catalog to evaluate the performance, we generated
30 mutation catalogs in the above manner and used the prediction results of signatures for all of them
in the evaluation. At this time, it should be noted that even if the generation process is the same, the
contents of the 30 mutation catalogs would be different because the above catalog generation is conducted
by sampling with a random number seed.



4 Supplementary results of simulation with synthetic data ob-
tained from PCAWG cohort

The Supplementary results referenced in Section 3.2 of the main text are discussed here. In addition to
71350 synthetic whole genome mutational spectra 150 spectra from each of nine cancer types” as described
in Section 3.2 of the main text, we applied PLDA to the large whole-genome sequenced Cataloﬂ and the
whole-exome sequenced catalog?]

First, the large whole-genome sequenced mutation catalog consists of 2700 samples from nine tumor
types by the contributions of 21 mutation signatures. From this synthetic mutation catalog, PLDA could
predict K = 20 signatures, among which, 17 matched correct signatures. All the matching result are
shown in Supplementary Table PLDA could not extract SBS29, SBS30, SBS40, and SBS9. Supple-
mentary Tableshows the comparison against the existing methods (SigProfiler and SignatureAnalyzer).
Neither SigProfiler nor SignatureAnalyzer could extract SBS29 and SBSO.

Table S1: Matching result of synthetic large WGS data published from PCAWG project

Predicted Matched Cosine similarity True Matched Cosine similarity
1 SBS28 0.9674 SBS1 3 1.0000
2 SBS2 0.9999 SBS13 12 0.9992
3 SBS1 1.0000 SBS15 9 0.9880
4 SBS4 0.9583 SBS17a 6 0.9999
5 SBS18 0.9929 SBS17b 17 0.9868
6 SBS17a 0.9999 SBS18 5 0.9929
7 SBS26 0.8526 SBS2 2 0.9999
8 SBS5 0.8693 SBS21 15 0.9997
9 SBS15 0.9880 SBS22 19 0.9964
10 SBS5 0.8790 SBS26 7 0.8526
11 SBS3 0.8205 SBS28 1 0.9674
12 SBS13 0.9992 SBS29 5 0.7958
13 SBS3 0.9311 SBS3 13 0.9311
14 SBS2 0.8080 SBS30 14 0.7666
15 SBS21 0.9997 SBS4 4 0.9583
16 SBS41 0.9854 SBS40 11 0.8123
17 SBS17b 0.9868 SBS41 16 0.9854
18 SBS8 0.8923 SBS44 20 0.9563
19 SBS22 0.9964 SBS5 10 0.8790
20 SBS44 0.9563 SBS8 18 0.8923
- - - SBS9 16 0.7101

This table shows the matching results based on the cosine similarity with synthetic and large WGS data from
PCAWG project, and can be interpreted in a similar manner to Table 7 in the main text. Out of 21 signatures,
PLDA could extract 17 correct signatures.

Table S2: Comparison of the methods with synthetic large WGS data

Method # Extracted (True : 21) | Avg. cosine similarity | Reconstruction rate
PLDA (proposed) 17 0.9354 0.9913
SigProfiler 19 0.9646 0.9965
SignatureAnalyzer 19 0.9582 0.9977

This table shows the comparison of the methods with synthetic large WGS data, and can be interpreted in a
similar manner to Table 8.

Lhttps://www.synapse.org/#!Synapse:syn18500213
2https:/ /www.synapse.org/#!Synapse:syn18909829.4



Next, we applied PLDA to the whole-exome sequenced mutation catalog that consists of 2700 samples
from nine tumor types by the contributions of 21 mutation signatures, whose number of mutations
per sample (n;s) tends to be smaller than that of WGS. When PLDA was applied to this mutation
catalog, 11 identical signatures were extracted (Supplementary Table . Compared to the results of
SigProfiler, PLDA missed 10 signatures (SBS22, SBS26, SBS28, SBS29, SBS30, SBS40, SBS41, SBS44,
SBS8 and SBS9), whereas SigProfiler could not extract SBS15, SBS18 and SBS3 in addition to these 10
correct signatures (Supplementary Table . Additionally, SignatureAnalyzer extracted 12 signatures
and successfully predicted SBS22 compared to PLDA. However, PLDA was the most accurate in terms
of reconstruction rate that could be evaluated not only for the mutational distributions but also for the
activities.

Table S3: Matching result of synthetic WES data published from PCAWG project

Predicted Matched Cosine similarity True Matched Cosine similarity
1 SBS21 0.9977 SBS1 7 0.9971
2 SBS5 0.9150 SBS13 10 0.9997
3 SBS3 0.8589 SBS15 11 0.9212
4 SBS2 1.0000 SBS17a 5 0.9997
5 SBS17a 0.9997 SBS17b 6 0.9991
6 SBS17b 0.9991 SBS18 8 0.9808
7 SBS1 0.9971 SBS2 4 1.0000
8 SBS18 0.9808 SBS21 1 0.9977
9 SBS4 0.9189 SBS22 9 0.3977
10 SBS13 0.9997 SBS26 1 0.7265
11 SBS15 0.9212 SBS28 6 0.4462
- - - SBS29 8 0.8254
- - - SBS3 3 0.8589
- - - SBS30 2 0.5129
- - - SBS4 9 0.9189
- - - SBS40 3 0.7539
- - - SBS41 3 0.5920
- - - SBS44 11 0.7731
- - - SBS5 2 0.9150
- - - SBS8 9 0.7510
- - - SBS9 3 0.5279

This table shows the matching result based on the cosine similarity with synthetic WES data from PCAWG
project, and can be interpreted in a similar manner to Table 7 in the main text. Out of 21 signatures, PLDA
could extract 11 signatures correctly.

Table S4: Comparison of the methods with synthetic WES data

Method # Extracted (True : 21) | Avg. cosine similarity | Reconstruction rate
PLDA (proposed) 11 0.8588 0.8149
SigProfiler 8 0.8255 0.7991
SignatureAnalyzer 12 0.8875 0.7213

This table shows the comparison of the methods with synthetic WES data, and can be interpreted in a similar
manner to Table 8.



5 Model selection of PLDA

Upon parameter learning via the variational Bayes method, the number of signatures K was assumed to
be known. However, we do not need know the number of signatures included in the mutation catalog, and
the model can predict K automatically comparing the VLB values calculated after parameter learning
when K was changed. Supplementary Figure shows the results of model selection when applying
PLDA to the actual mutation catalogs with whole-genome sequenced, and the model predict K = 41.
Supplementary Figure also includes the transition of the reconstruction rate, RR. Please see Section
3.2 for the definition of RR. RR takes a value from 0.0 to 1.0, and RR = 1.0 indicates that the original
mutation catalog could be completely reconstructed. Essentially, the value of RR continues to improve
by increasing the number of signatures K, because the representation power of the model increases.
Therefore, we cannot use RR as an index for model selection; instead, we need to use a regularized
index. From Supplementary Figure we can see that the RR value is large in K > 41 compared with
K =41 (e.g. RR with K = 41 is approximately 0.940, but that with K = 47 is approximately 0.942).
This indicated that the proposed method with regularization by VLB can select a model with smaller
KL-divergence between the posterior distribution and the “true” distribution, rather than a model with
a higher RR value (i.e. with simply a higher likelihood).
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Figure S2: Model selection of PLDA with real mutation catalogs.

This figure shows the results of model selection when applying PLDA to the actual mutation catalogs.
The horizontal axis represents the number of signatures, and the vertical axis represents the variational
lower bound (VLB) value that serves as the criterion to determine the number of signatures. The bar
with the largest VLB is red, and K = 41 is predicted. This figure also includes the reconstruction rate
(black-line), and the RR value is larger in K > 41 compared with K = 41 (e.g. RR with K = 41
is approximately 0.940, but that with K = 47 is approximately 0.942). Please refer to Supplementary
Section 4 how to calculate RR value in detail.



6 Other Supplementary Results with real datasets
The Supplementary Tables and Figures referenced in text are posted here.

Table S5: Matching result with real data published from PCAWG project.

Predicted Matched Cosine Similarity || Known Matched Cosine Similarity
1 SBS21 0.739 SBS1 26 0.9924
2 SBS40 0.8344 SBS2 18 0.9986
3 SBS4 0.9565 SBS3 2 0.8046
4 SBS15 0.9813 SBS4 3 0.9565
5 SBS22 0.9894 SBS5 16 0.7674
6 SBS11 0.643 SBS6 4 0.8614
7 SBS21 0.9017 SBS7a 23 0.9692
8 SBS17b 0.9417 SBS7b 41 0.9367
9 SBS10a 0.8925 SBS7c 29 0.5928
10 SBS10a 0.9242 SBS7d 1 0.6068
11 SBS13 0.9884 SBS8 3 0.7824
12 SBS12 0.796 SBS9 30 0.7428
13 SBS18 0.9127 SBS10a 14 0.9804
14 SBS10a 0.9804 SBS10b 33 0.9731
15 SBS19 0.8953 SBS11 37 0.9883
16 SBS5 0.7674 SBS12 12 0.796
17 SBS3 0.7015 SBS13 11 0.9884
18 SBS2 0.9986 SBS14 38 0.9417
19 SBS7a 0.9022 SBS15 4 0.9813
20 SBS16 0.9611 SBS16 20 0.9611
21 SBS44 0.7153 SBS17a 36 0.9654
22 SBS17b 0.6974 SBS17b 8 0.9417
23 SBS7a 0.9692 SBS18 13 0.9127
24 SBS10a 0.9639 SBS19 15 0.8953
25 SBS42 0.7216 SBS20 38 0.8005
26 SBS1 0.9924 SBS21 7 0.9017
27 SBS7a 0.9202 SBS22 5 0.9894
28 SBS37 0.7866 SBS23 37 0.8182
29 SBS7a 0.7773 SBS24 13 0.6582
30 SBS28 0.919 SBS25 5 0.7391
31 SBS26 0.876 SBS26 31 0.876
32 SBS34 0.8458 SBS27 5 0.5953
33 SBS10b 0.9731 SBS28 40 0.9741
34 SBS29 0.7454 SBS29 13 0.836
35 SBS53 0.7815 SBS30 41 0.7907
36 SBS17a 0.9654 SBS31 15 0.8716
37 SBS11 0.9883 SBS32 37 0.7689
38 SBS14 0.9417 SBS33 31 0.5342
39 SBS39 0.8815 SBS34 32 0.8458
40 SBS28 0.9741 SBS35 3 0.6426
41 SBS7b 0.9367 SBS36 13 0.8291
- - - SBS37 28 0.7866
- - - SBS38 35 0.7527
- - - SBS39 39 0.8815
- - - SBS40 2 0.8344
- - - SBS41 32 0.6546
- - - SBS42 25 0.7216
- - - SBS43 6 0.4981
- - - SBS44 21 0.7153
- - - SBS45 3 0.8054
- - - SBS46 36 0.7853
- - - SBS47 32 0.642
- - - SBS48 13 0.1789
- - - SBS49 35 0.3816
- - - SBS50 34 0.5948
- - - SBS51 34 0.5056
- - - SBS52 13 0.6385
- - - SBS53 35 0.7815
- - - SBS54 31 0.7695
- - - SBS55 6 0.6416
- - - SBS56 24 0.9161
- - - SBS57 30 0.5093
- - - SBS58 19 0.4555
- - - SBS59 13 0.4429
- - - SBS60 6 0.5348
- - - SBS84 25 0.6471
- - - SBS85 32 0.73

This table shows the matching result based on cosine similarity with real data from PCAWG project, and can
be interpreted in a similar manner to Table 7 in the main text. Table 9 in the paper summarizes these results.
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Figure S3: The number of mutations attributed to Predicted Signature 12
preted in a similar manner to Figure 5.
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Figure S4: The number of mutations attributed to Predicted Signature 16
preted in a similar manner to Figure 5.
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Figure S5: The number of mutations attributed to Predicted Signature 34

This figure shows the number of mutations attributed to Predicted Signature 34, and can be inter-

preted in a similar manner to Figure 5.
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This figure shows the number of mutations attributed to each predicted signature in samples from Liver-
HCC, and can be interpreted in a similar manner to Figure 6. The checked columns show the signatures
of interest, which are listed in Figure 4 and have large cosine distances to most closely known signatures.

Figure S6: The number of mutations attributed to each signature with Liver-HCC
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they differ in other mutations.
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Each panel of (A)~(D) shows the mutational distribution of Predicted Signatures 19, 23, 27,

29 and (E) shows the known signature SBS7a.
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PLDA Predicted signatures 2 and 17
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Figure S8: Predicted Signatures 2, 17, SBS3 and SBS40

Each panel shows the mutational distribution of Predicted Signature 2, 17, SBS3 and SBS40. Each
bar graph can be interpreted similar to Figure 4. Based on the cosine distance, Predicted Signature 2
matched SBS40 (cos = 0.166), whereas Predicted Signature 17 were matched SBS3 (cos = 0.299). It can
be observed that SBS3 and SBS40 had similar distributions (cosine distance 0.118); in fact, the cosine
distance between Predicted Signature 2 and SBS3 was also small (0.195).
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Figure S9: The number of mutations attributed to Predicted Signature 2

This figure shows the number of mutations attributed to Predicted Signature 2, and can be interpreted
in a manner similar to Figure 5. The checked columns show the Breast cancer samples. SBS40 that
this signature matched with, is not active in Breast cancer samples; however, SBS3 that has a similar
distribution to SBS40 is active.
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