Genetic Variants behind Cardiovascular Diseases and Dementia
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Genetic Variants Connecting Cardiovascular Risk Factors and Dementia
3.1.1. Diabetes Mellitus
3.1.2. Inflammation
3.1.3. Hypertension and Hyperlipidemia
3.2. Cerebral Small Vessel Diseases and Dementia
3.2.1. Genetic Variants Connecting White Matter Hyperintensities and Dementia
3.2.2. Genetic Variants Connecting Cerebral Microbleeds and Dementia
3.2.3. Genetic Variants Connecting Covert Infarction and Dementia
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Livingston, G.; Sommerlad, A.; Orgeta, V.; Costafreda, S.G.; Huntley, J.; Ames, D.; Ballard, C.; Banerjee, S.; Burns, A.; Cohen-Mansfield, J.; et al. Dementia Prevention, Intervention, and Care. Lancet 2017, 390, 2673–2734. [Google Scholar] [CrossRef] [Green Version]
- Samieri, C.; Perier, M.C.; Gaye, B.; Proust-Lima, C.; Helmer, C.; Dartigues, J.F.; Berr, C.; Tzourio, C.; Empana, J.P. Association of Cardiovascular Health Level in Older Age with Cognitive Decline and Incident Dementia. JAMA 2018, 320, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Lowe, V.J.; Lundt, E.S.; Albertson, S.M.; Przybelski, S.A.; Senjem, M.L.; Parisi, J.E.; Kantarci, K.; Boeve, B.; Jones, D.T.; Knopman, D.; et al. Neuroimaging Correlates with Neuropathologic Schemes in Neurodegenerative Disease. Alzheimers Dement. 2019, 15, 927–939. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.A.; Arvanitakis, Z.; Leurgans, S.E.; Bennett, D.A. The Neuropathology of Probable Alzheimer Disease and Mild Cognitive Impairment. Ann. Neurol. 2009, 66, 200–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broce, I.J.; Tan, C.H.; Fan, C.C.; Jansen, I.; Savage, J.E.; Witoelar, A.; Wen, N.; Hess, C.P.; Dillon, W.P.; Glastonbury, C.M.; et al. Dissecting the Genetic Relationship between Cardiovascular Risk Factors and Alzheimer’s Disease. Acta Neuropathol. 2019, 137, 209–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hooghiemstra, A.M.; Leeuwis, A.E.; Bertens, A.S.; Biessels, G.J.; Bots, M.L.; Brunner-La Rocca, H.P.; Greving, J.P.; Kappelle, L.J.; van Oostenbrugge, R.J.; van Rossum, A.C.; et al. Frequent Cognitive Impairment in Patients with Disorders along the Heart-Brain Axis. Stroke 2019, 50, 3369–3375. [Google Scholar] [CrossRef] [PubMed]
- Kokkinidis, D.G.; Zareifopoulos, N.; Theochari, C.A.; Arfaras-Melainis, A.; Papanastasiou, C.A.; Uppal, D.; Giannakoulas, G.; Kalogeropoulos, A.P.; Fontes, J.D.T. Association between Atrial Fibrillation and Cognitive Impairment in Individuals with Prior Stroke: A Meta-Analysis and Meta-Regression Analysis. Stroke 2020, 51, 1662–1666. [Google Scholar] [CrossRef]
- Juul Rasmussen, I.; Rasmussen, K.L.; Nordestgaard, B.G.; Tybjærg-Hansen, A.; Frikke-Schmidt, R. Impact of Cardiovascular Risk Factors and Genetics on 10-Year Absolute Risk of Dementia: Risk Charts for Targeted Prevention. Eur. Heart J. 2020, 41, 4024–4033. [Google Scholar] [CrossRef]
- Gola, D.; Erdmann, J.; Läll, K.; Mägi, R.; Müller-Myhsok, B.; Schunkert, H.; König, I.R. Population Bias in Polygenic Risk Prediction Models for Coronary Artery Disease. Circ. Genom. Precis. Med. 2020. [Google Scholar] [CrossRef]
- Musunuru, K.; Kathiresan, S. Genetics of Common, Complex Coronary Artery Disease. Cell 2019, 177, 132–145. [Google Scholar] [CrossRef]
- Wehby, G.L.; Domingue, B.W.; Wolinsky, F.D. Genetic Risks for Chronic Conditions: Implications for Long-Term Wellbeing. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 477–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peloso, G.M.; Beiser, A.S.; Satizabal, C.L.; Xanthakis, V.; Vasan, R.S.; Pase, M.P.; Destefano, A.L.; Seshadri, S. Cardiovascular Health, Genetic Risk, and Risk of Dementia in the Framingham Heart Study. Neurology 2020, 95, e1341–e1350. [Google Scholar] [CrossRef] [PubMed]
- Jassal, B.; Matthews, L.; Viteri, G.; Gong, C.; Lorente, P.; Fabregat, A.; Sidiropoulos, K.; Cook, J.; Gillespie, M.; Haw, R.; et al. The Reactome Pathway KnowledgeBase. Nucleic Acids Res. 2020, 48, D498–D503. [Google Scholar] [CrossRef] [PubMed]
- Biessels, G.J.; Nobili, F.; Teunissen, C.E.; Simó, R.; Scheltens, P. Understanding Multifactorial Brain Changes in type 2 Diabetes: A Biomarker Perspective. Lancet Neurol. 2020, 19, 699–710. [Google Scholar] [CrossRef]
- Hao, K.; Di Narzo, A.F.; Ho, L.; Luo, W.; Li, S.; Chen, R.; Li, T.; Dubner, L.; Pasinetti, G.M. Shared Genetic Etiology Underlying Alzheimer’s Disease and type 2 Diabetes. Mol. Asp. Med. 2015, 43–44, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.F.; Lin, X.; Li, D.Y.; Zhou, R.; Greenbaum, J.; Chen, Y.C.; Zeng, C.P.; Peng, L.P.; Wu, K.H.; Ao, Z.X.; et al. Linking Alzheimer’s Disease and type 2 Diabetes: Novel Shared Susceptibility Genes Detected by cFDR Approach. J. Neurol. Sci. 2017, 380, 262–272. [Google Scholar] [CrossRef]
- Greenbaum, L.; Ravona-Springer, R.; Livny, A.; Shelly, S.; Sharvit-Ginon, I.; Ganmore, I.; Alkelai, A.; Heymann, A.; Schnaider Beeri, M. The CADM2 Gene Is Associated with Processing Speed Performance—Evidence among Elderly With type 2 Diabetes. World J. Biol. Psychiatry 2019, 20, 577–583. [Google Scholar] [CrossRef]
- Girard, H.; Potvin, O.; Nugent, S.; Dallaire-Théroux, C.; Cunnane, S.; Duchesne, S.; Alzheimer’s Disease Neuroimaging Initiative. Faster Progression From MCI to Probable AD for Carriers of a Single-Nucleotide Polymorphism Associated With type 2 Diabetes. Neurobiol. Aging 2018, 64, 157.e11–157.e17. [Google Scholar] [CrossRef] [Green Version]
- Arvanitakis, Z.; Wang, H.Y.; Capuano, A.W.; Khan, A.; Taïb, B.; Anokye-Danso, F.; Schneider, J.A.; Bennett, D.A.; Ahima, R.S.; Arnold, S.E. Brain Insulin Signaling, Alzheimer Disease Pathology, and Cognitive Function. Ann. Neurol. 2020. [Google Scholar] [CrossRef]
- Liu, S.Y.; Zhao, H.D.; Wang, J.L.; Huang, T.; Tian, H.W.; Yao, L.F.; Tao, H.; Chen, Z.W.; Wang, C.Y.; Sheng, S.T.; et al. Association Between Polymorphisms of the AKT1 Gene Promoter and Risk of the Alzheimer’s Disease in a Chinese Han Population with Type 2 Diabetes. CNS Neurosci. Ther. 2015, 21, 619–625. [Google Scholar] [CrossRef]
- Keary, T.A.; Gunstad, J.; Benitez, A.; Spitznagel, M.B.; McCaffery, J.; McGeary, J.E.; Poppas, A.; Paul, R.H.; Sweet, L.H.; Cohen, R.A. TCF7L2 Polymorphism and Cognitive Test Performance in Cardiovascular Disease. Psychogeriatrics 2012, 12, 93–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asleh, R.; Briasoulis, A.; Berinstein, E.M.; Wiener, J.B.; Palla, M.; Kushwaha, S.S.; Levy, A.P. Meta-Analysis of the Association of the Haptoglobin Genotype with Cardiovascular Outcomes and the Pharmacogenomic Interactions with Vitamin E Supplementation. Pharmgenom. Pers. Med. 2018, 11, 71–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beeri, M.S.; Lin, H.M.; Sano, M.; Ravona-Springer, R.; Liu, X.; Bendlin, B.B.; Gleason, C.E.; Guerrero-Berroa, E.; Soleimani, L.; Launer, L.J.; et al. Association of the Haptoglobin Gene Polymorphism with Cognitive Function and Decline in Elderly African American Adults With Type 2 Diabetes: Findings From the Action to Control Cardiovascular Risk in Diabetes-Memory in Diabetes (Accord-MIND) Study. JAMA Netw. Open 2018, 1, e184458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Persson, N.; Lavebratt, C.; Wahlin, A. Synergy Effects of HbA1C and Variants of APOE and BDNFVal66Met Explains Individual Differences in Memory Performance. Neurobiol. Learn. Mem. 2013, 106, 274–282. [Google Scholar] [CrossRef]
- Wayman, G.A.; Lee, Y.S.; Tokumitsu, H.; Silva, A.J.; Soderling, T.R. Calmodulin-Kinases: Modulators of Neuronal Development and Plasticity. Neuron 2008, 59, 914–931. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lin, Y.; Wang, L.; Zhan, H.; Luo, X.; Zeng, Y.; Wu, W.; Zhang, X.; Wang, F. TREM2 Ameliorates Neuroinflammatory Response and Cognitive Impairment via PI3K/AKT/FoxO3a Signaling Pathway in Alzheimer’s Disease Mice. Aging 2020, 12, 20862–20879. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, Z.H.; Liu, P.; Edgington-Mitchell, L.; Liu, X.; Wang, X.C.; Ye, K. TrkB Receptor Cleavage by Delta-Secretase Abolishes Its Phosphorylation of APP, Aggravating Alzheimer’s Disease Pathologies. Mol. Psychiatry 2020. [Google Scholar] [CrossRef]
- Perry, V.H.; Cunningham, C.; Holmes, C. Systemic Infections and Inflammation Affect Chronic Neurodegeneration. Nat. Rev. Immunol. 2007, 7, 161–167. [Google Scholar] [CrossRef]
- Lucin, K.M.; Wyss-Coray, T. Immune Activation in Brain Aging and Neurodegeneration: Too Much or Too Little? Neuron 2009, 64, 110–122. [Google Scholar] [CrossRef] [Green Version]
- Benke, K.S.; Carlson, M.C.; Doan, B.Q.; Walston, J.D.; Xue, Q.L.; Reiner, A.P.; Fried, L.P.; Arking, D.E.; Chakravarti, A.; Fallin, M.D. The Association of Genetic Variants in Interleukin-1 Genes With Cognition: Findings From the Cardiovascular Health Study. Exp. Gerontol. 2011, 46, 1010–1019. [Google Scholar] [CrossRef] [Green Version]
- Regieli, J.J.; Jukema, J.W.; Doevendans, P.A.; Zwinderman, A.H.; Kastelein, J.J.; Grobbee, D.E.; van der Graaf, Y. Paraoxonase Variants Relate to 10-Year Risk in Coronary Artery Disease: Impact of a High-Density Lipoprotein-Bound Antioxidant in Secondary Prevention. J. Am. Coll. Cardiol. 2009, 54, 1238–1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dantoine, T.F.; Drouet, M.; Debord, J.; Merle, L.; Cogne, M.; Charmes, J.P. Paraoxonase 1 192/55 Gene Polymorphisms in Alzheimer’s Disease. Ann. N. Y. Acad. Sci. 2002, 977, 239–244. [Google Scholar] [CrossRef]
- Janka, Z.; Juhász, A.; Rimanóczy, A.; Boda, K.; Márki-Zay, J.; Kálmán, J. Codon 311 (Cys --> Ser) Polymorphism of paraoxonase-2 Gene Is Associated With Apolipoprotein E4 Allele in Both Alzheimer’s and Vascular Dementias. Mol. Psychiatry 2002, 7, 110–112. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim-Verbaas, C.A.; Zorkoltseva, I.V.; Amin, N.; Schuur, M.; Coppus, A.M.; Isaacs, A.; Aulchenko, Y.S.; Breteler, M.M.; Ikram, M.A.; Axenovich, T.I.; et al. Linkage Analysis for Plasma Amyloid Beta Levels in Persons With Hypertension Implicates Aβ-40 Levels to Presenilin 2. Hum. Genet. 2012, 131, 1869–1876. [Google Scholar] [CrossRef]
- Wersching, H.; Guske, K.; Hasenkamp, S.; Hagedorn, C.; Schiwek, S.; Jansen, S.; Witte, V.; Wellmann, J.; Lohmann, H.; Duning, K.; et al. Impact of Common KIBRA Allele on Human Cognitive Functions. Neuropsychopharmacology 2011, 36, 1296–1304. [Google Scholar] [CrossRef] [Green Version]
- Bessi, V.; Balestrini, J.; Bagnoli, S.; Mazzeo, S.; Giacomucci, G.; Padiglioni, S.; Piaceri, I.; Carraro, M.; Ferrari, C.; Bracco, L.; et al. Influence of ApoE Genotype and Clock T3111C Interaction With Cardiovascular Risk Factors on the Progression to Alzheimer’s Disease in Subjective Cognitive Decline and Mild Cognitive Impairment Patients. J. Pers. Med. 2020, 10, 45. [Google Scholar] [CrossRef]
- Armitage, J.; Holmes, M.V.; Preiss, D. Cholesteryl Ester Transfer Protein Inhibition for Preventing Cardiovascular Events: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2019, 73, 477–487. [Google Scholar] [CrossRef]
- Poduslo, S.E.; Huang, R.; Spiro, A., 3rd. A Genome Screen of Successful Aging Without Cognitive Decline Identifies LRP1B by Haplotype Analysis. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2010, 153B, 114–119. [Google Scholar] [CrossRef]
- Raz, N.; Rodrigue, K.M.; Kennedy, K.M.; Land, S. Genetic and Vascular Modifiers of Age-Sensitive Cognitive Skills: Effects of COMT, BDNF, ApoE, and Hypertension. Neuropsychology 2009, 23, 105–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, S.; Su, B.B.; Tovar, H.; Mao, C.; Gonzalez, V.; Liu, Y.; Lu, Y.; Wang, K.S.; Xu, C. Polymorphisms Within RYR3 Gene Are Associated With Risk and Age at Onset of Hypertension, Diabetes, and Alzheimer’s Disease. Am. J. Hypertens. 2018, 31, 818–826. [Google Scholar] [CrossRef]
- Sanders, A.E.; Wang, C.; Katz, M.; Derby, C.A.; Barzilai, N.; Ozelius, L.; Lipton, R.B. Association of a Functional Polymorphism in the Cholesteryl Ester Transfer Protein (CETP) Gene With Memory Decline and Incidence of Dementia. JAMA 2010, 303, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Giese, A.K.; Schirmer, M.D.; Dalca, A.V.; Sridharan, R.; Donahue, K.L.; Nardin, M.; Irie, R.; McIntosh, E.C.; Mocking, S.J.T.; Xu, H.; et al. White Matter Hyperintensity Burden in Acute Stroke Patients Differs by Ischemic Stroke Subtype. Neurology 2020, 95, e79–e88. [Google Scholar] [CrossRef] [PubMed]
- Bos, D.; Wolters, F.J.; Darweesh, S.K.L.; Vernooij, M.W.; de Wolf, F.; Ikram, M.A.; Hofman, A. Cerebral Small Vessel Disease and the Risk of Dementia: A Systematic Review and Meta-Analysis of Population-Based Evidence. Alzheimers Dement. 2018, 14, 1482–1492. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Sigurðsson, S.; Jónsson, P.V.; Eiriksdottir, G.; Charidimou, A.; Lopez, O.L.; van Buchem, M.A.; Guðnason, V.; Launer, L.J. Large Perivascular Spaces Visible on Magnetic Resonance Imaging, Cerebral Small Vessel Disease Progression, and Risk of Dementia: The Age, Gene/Environment Susceptibility-Reykjavik Study. JAMA Neurol. 2017, 74, 1105–1112. [Google Scholar] [CrossRef]
- Cannistraro, R.J.; Badi, M.; Eidelman, B.H.; Dickson, D.W.; Middlebrooks, E.H.; Meschia, J.F. CNS Small Vessel Disease: A Clinical Review. Neurology 2019, 92, 1146–1156. [Google Scholar] [CrossRef]
- Chabriat, H.; Joutel, A.; Dichgans, M.; Tournier-Lasserve, E.; Bousser, M.G.; Cadasil. CADASIL. Lancet Neurol. 2009, 8, 643–653. [Google Scholar] [CrossRef]
- Duering, M.; Csanadi, E.; Gesierich, B.; Jouvent, E.; Hervé, D.; Seiler, S.; Belaroussi, B.; Ropele, S.; Schmidt, R.; Chabriat, H.; et al. Incident Lacunes Preferentially Localize to the Edge of White Matter Hyperintensities: Insights Into the Pathophysiology of Cerebral Small Vessel Disease. Brain 2013, 136, 2717–2726. [Google Scholar] [CrossRef] [Green Version]
- Moreton, F.C.; Razvi, S.S.; Davidson, R.; Muir, K.W. Changing Clinical Patterns and Increasing Prevalence in CADASIL. Acta Neurol. Scand. 2014, 130, 197–203. [Google Scholar] [CrossRef]
- Opherk, C.; Gonik, M.; Duering, M.; Malik, R.; Jouvent, E.; Hervé, D.; Adib-Samii, P.; Bevan, S.; Pianese, L.; Silvestri, S.; et al. Genome-Wide Genotyping Demonstrates a Polygenic Risk Score Associated With White Matter Hyperintensity Volume in CADASIL. Stroke 2014, 45, 968–972. [Google Scholar] [CrossRef] [Green Version]
- Schilling, S.; DeStefano, A.L.; Sachdev, P.S.; Choi, S.H.; Mather, K.A.; DeCarli, C.D.; Wen, W.; Høgh, P.; Raz, N.; Au, R.; et al. APOE Genotype and MRI Markers of Cerebrovascular Disease: Systematic Review and Meta-Analysis. Neurology 2013, 81, 292–300. [Google Scholar] [CrossRef] [Green Version]
- Carmelli, D.; Swan, G.E.; Reed, T.; Wolf, P.A.; Miller, B.L.; DeCarli, C. Midlife Cardiovascular Risk Factors and Brain Morphology in Identical Older Male Twins. Neurology 1999, 52, 1119–1124. [Google Scholar] [CrossRef] [PubMed]
- Song, R.; Xu, H.; Dintica, C.S.; Pan, K.Y.; Qi, X.; Buchman, A.S.; Bennett, D.A.; Xu, W. Associations Between Cardiovascular Risk, Structural Brain Changes, and Cognitive Decline. J. Am. Coll. Cardiol. 2020, 75, 2525–2534. [Google Scholar] [CrossRef] [PubMed]
- Kandel, B.M.; Avants, B.B.; Gee, J.C.; McMillan, C.T.; Erus, G.; Doshi, J.; Davatzikos, C.; Wolk, D.A. White Matter Hyperintensities Are More Highly Associated With Preclinical Alzheimer’s Disease Than Imaging and Cognitive Markers of Neurodegeneration. Alzheimers Dement. 2016, 4, 18–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staekenborg, S.S.; Koedam, E.L.; Henneman, W.J.; Stokman, P.; Barkhof, F.; Scheltens, P.; van der Flier, W.M. Progression of Mild Cognitive Impairment to Dementia: Contribution of Cerebrovascular Disease Compared With Medial Temporal Lobe Atrophy. Stroke 2009, 40, 1269–1274. [Google Scholar] [CrossRef]
- Sudre, C.H.; Bocchetta, M.; Cash, D.; Thomas, D.L.; Woollacott, I.; Dick, K.M.; van Swieten, J.; Borroni, B.; Galimberti, D.; Masellis, M.; et al. White Matter Hyperintensities Are Seen Only in GRN Mutation Carriers in the GENFI Cohort. NeuroImage Clin. 2017, 15, 171–180. [Google Scholar] [CrossRef]
- Yu, Z.; Cao, S.; Wu, A.; Yue, H.; Zhang, C.; Wang, J.; Xia, M.; Wu, J. Genetically Confirmed CARASIL: Case Report With Novel HTRA1 Mutation and Literature Review. World Neurosurg. 2020, 143, 121–128. [Google Scholar] [CrossRef]
- Lin, Y.F.; Smith, A.V.; Aspelund, T.; Betensky, R.A.; Smoller, J.W.; Gudnason, V.; Launer, L.J.; Blacker, D. Genetic Overlap Between Vascular Pathologies and Alzheimer’s Dementia and Potential Causal Mechanisms. Alzheimers Dement. 2019, 15, 65–75. [Google Scholar] [CrossRef]
- Tian, Y.; Chang, J.C.; Fan, E.Y.; Flajolet, M.; Greengard, P. Adaptor Complex AP2/PICALM, Through Interaction With LC3, Targets Alzheimer’s APP-CTF for Terminal Degradation via Autophagy. Proc. Natl. Acad. Sci. USA 2013, 110, 17071–17076. [Google Scholar] [CrossRef] [Green Version]
- Benedictus, M.R.; Prins, N.D.; Goos, J.D.; Scheltens, P.; Barkhof, F.; van der Flier, W.M. Microbleeds, Mortality, and Stroke in Alzheimer Disease: The MISTRAL Study. JAMA Neurol. 2015, 72, 539–545. [Google Scholar] [CrossRef] [Green Version]
- Shams, S.; Granberg, T.; Martola, J.; Charidimou, A.; Li, X.; Shams, M.; Fereshtehnejad, S.M.; Cavallin, L.; Aspelin, P.; Wiberg-Kristoffersen, M.; et al. Cerebral Microbleeds Topography and Cerebrospinal Fluid Biomarkers in Cognitive Impairment. J. Cereb. Blood Flow Metab. 2017, 37, 1006–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knol, M.J.; Lu, D.; Traylor, M.; Adams, H.H.; Romero, J.R.J.; Smith, A.V.; Fornage, M.; Hofer, E.; Liu, J.; Hostettler, I.C.; et al. Association of Common Genetic Variants With Brain Microbleeds: A Genome-Wide Association Study. Neurology 2020. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Bae, H.J.; Lee, J.; Kang, L.; Lee, S.; Kim, S.; Lee, J.E.; Lee, K.M.; Yoon, B.W.; Kwon, O.; et al. APOE epsilon2/epsilon4 Polymorphism and Cerebral Microbleeds on Gradient-Echo MRI. Neurology 2005, 65, 1474–1475. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, S.S.; Jackson, C.A.; Paternoster, L.; Cordonnier, C.; Thijs, V.; Al-Shahi Salman, R.; Sudlow, C.L. Genetic Associations With Brain Microbleeds: Systematic Review and Meta-Analyses. Neurology 2011, 77, 158–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuur, M.; van Swieten, J.C.; Schol-Gelok, S.; Ikram, M.A.; Vernooij, M.W.; Liu, F.; Isaacs, A.; de Boer, R.; de Koning, I.; Niessen, W.J.; et al. Genetic Risk Factors for Cerebral Small-Vessel Disease in Hypertensive Patients From a Genetically Isolated Population. J. Neurol. Neurosurg. Psychiatry 2011, 82, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Q.; Cai, W.J.; Hou, X.H.; Cui, M.; Tan, L.; Yu, J.T.; Dong, Q.; Alzheimer’s Disease Neuroimaging Initiative. Genome-Wide Association Study of Cerebral Microbleeds on MRI. Neurotox. Res. 2020, 37, 146–155. [Google Scholar] [CrossRef]
- Yoo, J.S.; Ryu, C.H.; Kim, Y.S.; Kim, H.J.; Bushnell, C.D.; Kim, H.Y. Homocysteinemia Is Associated With the Presence of Microbleeds in Cognitively Impaired Patients. J. Stroke Cerebrovasc. Dis. 2020, 29, 105302. [Google Scholar] [CrossRef]
- Chung, C.P.; Chen, J.W.; Chang, F.C.; Li, W.C.; Lee, Y.C.; Chen, L.F.; Liao, Y.C. Cerebral Microbleed Burdens in Specific Brain Regions Are Associated with Disease Severity of Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy. J. Am. Heart Assoc. 2020, 9, e016233. [Google Scholar] [CrossRef]
- Cohn-Hokke, P.E.; Holstege, H.; Weiss, M.M.; van der Flier, W.M.; Barkhof, F.; Sistermans, E.A.; Pijnenburg, Y.A.; van Swieten, J.C.; Meijers-Heijboer, H.; Scheltens, P. A Novel CCM2 Variant in a Family with Non-Progressive Cognitive Complaints and Cerebral Microbleeds. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2017, 174, 220–226. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ren, J. ALDH2 in Alcoholic Heart Diseases: Molecular Mechanism and Clinical Implications. Pharmacol. Ther. 2011, 132, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Jiang, Y.; Cui, M.; Wang, Y.; Li, S.; Xu, K.; Zhang, K.; Zhu, C.; Xu, W.; Jin, L.; et al. ALDH2 rs671 Polymorphisms and the Risk of Cerebral Microbleeds in Chinese Elderly: The Taizhou Imaging Study. Ann. Transl. Med. 2020, 8, 229. [Google Scholar] [CrossRef]
- Vermeer, S.E.; Prins, N.D.; den Heijer, T.; Hofman, A.; Koudstaal, P.J.; Breteler, M.M. Silent Brain Infarcts and the Risk of Dementia and Cognitive Decline. N. Engl. J. Med. 2003, 348, 1215–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inaba, O.; Yamauchi, Y.; Sekigawa, M.; Miwa, N.; Yamaguchi, J.; Nagata, Y.; Obayashi, T.; Miyamoto, T.; Kamata, T.; Isobe, M.; et al. Atrial fibrillation type matters: Greater infarct volume and worse neurological defects seen in acute cardiogenic cerebral embolism due to persistent or permanent rather than paroxysmal atrial fibrillation. EP Eur. 2018, 20, 1591–1597. [Google Scholar] [CrossRef] [PubMed]
- Conen, D.; Rodondi, N.; Müller, A.; Beer, J.H.; Ammann, P.; Moschovitis, G.; Auricchio, A.; Hayoz, D.; Kobza, R.; Shah, D.; et al. Relationships of Overt and Silent Brain Lesions With Cognitive Function in Patients with Atrial Fibrillation. J. Am. Coll. Cardiol. 2019, 73, 989–999. [Google Scholar] [CrossRef] [PubMed]
- Madhavan, M.; Graff-Radford, J.; Piccini, J.P.; Gersh, B.J. Cognitive dysfunction in atrial fibrillation. Nature reviews. Cardiology 2018, 15, 744–756. [Google Scholar] [CrossRef]
- Gutierrez, J.; Gil-Guevara, A.; Ramaswamy, S.; DeRosa, J.; Di Tullio, M.R.; Cheung, K.; Rundek, T.; Sacco, R.L.; Wright, C.B.; Elkind, M.S.V. Classification of Covert Brain Infarct Subtype and Risk of Death and Vascular Events. Stroke 2020, 51, 90–98. [Google Scholar] [CrossRef]
- Chen, W.; Wang, S.; Lv, W.; Pan, Y. Causal Associations of Insulin Resistance With Coronary Artery Disease and Ischemic Stroke: A Mendelian Randomization Analysis. BMJ Open Diabetes Res. Care 2020, 8. [Google Scholar] [CrossRef]
- Yan, A.; Cai, G.; Fu, N.; Feng, Y.; Sun, J.; Maimaiti, Y.; Zhou, W.; Fu, Y. Relevance Study on Cerebral Infarction and Resistin Gene Polymorphism in Chinese Han Population. Aging Dis. 2016, 7, 593–603. [Google Scholar] [CrossRef]
- Notsu, Y.; Nabika, T.; Park, H.Y.; Masuda, J.; Kobayashi, S. Evaluation of Genetic Risk Factors for Silent Brain Infarction. Stroke 1999, 30, 1881–1886. [Google Scholar] [CrossRef] [Green Version]
- Debette, S.; Bis, J.C.; Fornage, M.; Schmidt, H.; Ikram, M.A.; Sigurdsson, S.; Heiss, G.; Struchalin, M.; Smith, A.V.; van der Lugt, A.; et al. Genome-Wide Association Studies of MRI-Defined Brain Infarcts: Meta-Analysis from the CHARGE Consortium. Stroke 2010, 41, 210–217. [Google Scholar] [CrossRef] [Green Version]
- van Rijn, M.J.; Bos, M.J.; Yazdanpanah, M.; Isaacs, A.; Arias-Vásquez, A.; Koudstaal, P.J.; Hofman, A.; Witteman, J.C.; van Duijn, C.M.; Breteler, M.M. Alpha-Adducin Polymorphism, Atherosclerosis, and Cardiovascular and Cerebrovascular Risk. Stroke 2006, 37, 2930–2934. [Google Scholar] [CrossRef] [Green Version]
- Hirose, T.; Totsune, K.; Nakashige, Y.; Metoki, H.; Kikuya, M.; Ohkubo, T.; Hara, A.; Satoh, M.; Inoue, R.; Asayama, K.; et al. Influence of Adrenomedullin 2/Intermedin Gene Polymorphism on Blood Pressure, Renal Function and Silent Cerebrovascular Lesions in Japanese: The Ohasama Study. Hypertens. Res. 2011, 34, 1327–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.O.; Jeon, Y.J.; Kim, O.J.; Oh, S.H.; Kim, H.S.; Shin, B.S.; Oh, D.; Kim, E.J.; Cho, Y.K.; Kim, N.K. Association Between Common Genetic Variants of α2A-, α2B- and α2C-adrenoceptors and the Risk of Silent Brain Infarction. Mol. Med. Rep. 2014, 9, 2459–2466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.; Kim, O.J.; Kim, H.S.; Bae, S.J.; Hong, S.P.; Oh, D.; Kim, N.K. Endothelial Nitric Oxide Synthase Gene Polymorphisms and the Risk of Silent Brain Infarction. Int. J. Mol. Med. 2010, 25, 819–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, I.B.; Kim, O.J.; Ropper, A.E.; Kim, H.S.; Cho, Y.K.; Teng, Y.D.; Kim, N.K. Association Between Kinase Insert Domain-Containing Receptor Gene Polymorphisms and Silent Brain Infarction: A Korean Study. J. Neurol. Sci. 2012, 318, 85–89. [Google Scholar] [CrossRef]
- Kohara, K.; Fujisawa, M.; Ando, F.; Tabara, Y.; Niino, N.; Miki, T.; Shimokata, H.; NILS-LSA Study. MTHFR Gene Polymorphism as a Risk Factor for Silent Brain Infarcts and White Matter Lesions in the Japanese General Population: The NILS-LSA Study. Stroke 2003, 34, 1130–1135. [Google Scholar] [CrossRef]
- Serizawa, M.; Nabika, T.; Ochiai, Y.; Takahashi, K.; Yamaguchi, S.; Makaya, M.; Kobayashi, S.; Kato, N. Association Between PRKCH Gene Polymorphisms and Subcortical Silent Brain Infarction. Atherosclerosis 2008, 199, 340–345. [Google Scholar] [CrossRef]
- Cho, Y.; Kim, J.O.; Lee, J.H.; Park, H.M.; Jeon, Y.J.; Oh, S.H.; Bae, J.; Park, Y.S.; Kim, O.J.; Kim, N.K. Association of Reduced Folate carrier-1 (RFC-1) Polymorphisms With Ischemic Stroke and Silent Brain Infarction. PLoS ONE 2015, 10, e0115295. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Zheng, L.; Fei, Q.; Fu, Y.; Weng, Y.; Wu, H.; Li, H.; Jun, Q.; Shao, J.; Xu, Y. Association of Thromboxane A2 Receptor Gene Polymorphisms With Cerebral Infarction in a Chinese Population. Neurol. Sci. 2013, 34, 1791–1796. [Google Scholar] [CrossRef]
- Matsui, T.; Arai, H.; Yuzuriha, T.; Yao, H.; Miura, M.; Hashimoto, S.; Higuchi, S.; Matsushita, S.; Morikawa, M.; Kato, A.; et al. Elevated Plasma Homocysteine Levels and Risk of Silent Brain Infarction in Elderly People. Stroke 2001, 32, 1116–1119. [Google Scholar] [CrossRef] [Green Version]
- Kim, O.J.; Hong, S.H.; Oh, S.H.; Kim, T.G.; Min, K.T.; Oh, D.; Kim, N.K. Association Between VEGF Polymorphisms and Homocysteine Levels in Patients With Ischemic Stroke and Silent Brain Infarction. Stroke 2011, 42, 2393–2402. [Google Scholar] [CrossRef] [Green Version]
- Hohman, T.J.; Bell, S.P.; Jefferson, A.L.; Alzheimer’s Disease Neuroimaging Initiative. The Role of Vascular Endothelial Growth Factor in Neurodegeneration and Cognitive Decline: Exploring Interactions With Biomarkers of Alzheimer Disease. JAMA Neurol. 2015, 72, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Elahi, F.M.; Casaletto, K.B.; La Joie, R.; Walters, S.M.; Harvey, D.; Wolf, A.; Edwards, L.; Rivera-Contreras, W.; Karydas, A.; Cobigo, Y.; et al. Plasma Biomarkers of Astrocytic and Neuronal Dysfunction in Early- and Late-Onset Alzheimer’s Disease. Alzheimers Dement. 2020, 16, 681–695. [Google Scholar] [CrossRef] [PubMed]
Gene | Location | Marker 1 | rOR * | Gene–Phenotype Relationships 2 | Ref |
AKT1 | 14q32.33 | rs2498786 | 0.33 (0.16–0.70) | Breast cancer, colorectal cancer, Cowden syndrome 6, ovarian cancer, proteus syndrome | [20] |
Gene | Location | Marker 1 | rβ * | Gene–Phenotype Relationships 2 | Ref |
CADM2 | 3p12.1 | rs17518584 | 0.06 | [17] | |
Gene | Location | Marker 1 | rP * | Gene–Phenotype Relationships 2 | Ref |
HP | 16q22.2 | Hp 1-1 | <0.01 | Anhaptoglobinemia, Hypohaptoglobinemia | [23] |
SRR | 17p13.3 | rs391300 | <0.01 | [18] | |
TCF7L2 | 10q25.2-q25.3 | rs7903146 | <0.01 | Diabetes mellitus, type 2 | [21] |
APOE | 19q13.32 | ε4 | NA * | Alzheimer disease, macular degeneration | [24] |
BDNF | 11p14.1 | Val(66)Met | NA | Signaling by receptor tyrosine kinases | [24] |
Inflammation | |||||
Gene | Location | Marker 1 | rOR * | Gene–Phenotype Relationships 2 | Ref |
IL1RN | 2q14.1 | rs17042917, rs4251961 | 0.47 (0.09–0.85) | [30] | |
PON1 | 7q21.3 | 192QQ/RR | NA * | Coronary artery disease, Coronary artery spasm 2, Microvascular complications of diabetes 5 | [32] |
PON2 | 7q21.3 | 311 (Cys → Ser) | NA | Coronary artery disease | [33] |
Hypertension | |||||
Gene | Location | Marker 1 | rP * | Gene–Phenotype Relationships 2 | Ref |
PSEN2 | rs6703170 | <0.01 | [34] | ||
WWC1 | 5q34 | rs17070145 | <0.01 | Memory | [35] |
Clock | 4q12 | T3111C | 0.03 | [36] | |
HypercholesteRolemia | |||||
Gene | Location | Marker 1 | rOR * | Gene–Phenotype Relationships 2 | Ref |
CETP | 16q13 | rs5882 | 0.29 (0.10–0.85) | High density lipoprotein cholesterol, Hyperalphalipoproteinemia | [37] |
LRP1B | 2q22.1-q22.2 | rs12474609, rs10201482, rs980286 | 0.63 (0.38–1.03), 0.71 (0.47–1.09), 0.77(0.50–1.18) | [38] |
Gene | Location | Marker 1 | rOR * | Gene–Phenotype Relationships 2 | Ref |
APOE | 19q13.32 | ε4 allele | 1.24 (1.07–1.43) | Alzheimer disease, macular degeneration, coronary artery disease, hyperlipoproteinemia, lipoprotein glomerulopathy | [50] |
Gene | Location | Marker 1 | rP * | Gene–Phenotype Relationships 2 | Ref |
GRN | 17q21.31 | Progranulin | <0.01 | Aphasia, primary progressive, ceroid lipofuscinosis, neuronal, frontotemporal lobar degeneration with ubiquitin-positive inclusions | [55] |
HTRA1 | 10q26.13 | c.847G>T | NA * | Macular degeneration, CARASIL syndrome | [56] |
NOTCH3 | 19p13.12 | <0.01 | Myofibromatosis, infantile 2, CADASIL, lateral meningocele syndrome | [49] |
Gene | Location | Marker 1 | rOR * | Gene–Phenotype Relationships 2 | Ref |
---|---|---|---|---|---|
ALDH2 | 12q24.12 | rs671 | 1.93 (1.21–3.06) | Esophageal cancer, alcohol-related, hangover, sublingual nitroglycerin, alcohol sensitivity | [69] |
AMPH | rs10263645 | 0.41 | [65] | ||
APOE | 19q13.32 | rs769449 | NA * | Alzheimer’s disease, macular degeneration, coronary artery disease, hyperlipoproteinemia, lipoprotein glomerulopathy | [62] |
CCM2 | 7p13 | Frame shift variant (c.236_237delAC) | NA | Cerebral cavernous malformations-2 | [68] |
CTNNA2 | 2p12 | rs1368908 | 2.21 | Cortical dysplasia, complex | [65] |
LINC01361 | 1p31.1 | rs10493734, rs10782802 | 0.46, 0.48 | [65] | |
LINC01362 | 1p31.1 | rs1144266, rs1144267, rs7411897, rs11163625, rs1348045, rs11163602 | 0.45, 0.47, 0.47, 0.47, 0.48, 0.48 | [65] | |
LOC105374287 | 3q29 | rs12497385 | 0.51 | [65] | |
LOC105374510 | 4p15.31 | rs1850549, rs66690887, rs67159217, rs10027565 | 2.56, 2.05, 2.05, 1.97 | [65] | |
LOC107985396 | 1p31.1 | rs12132310, rs12140057, rs11163585 | 0.46, 0.47, 0.47 | [65] | |
SLC12A7 | 5p15.33 | rs55738218 | 0.22 | [65] | |
SORL1 | 11q24.1 | rs1699102, rs3824968, rs2282649, rs1010159 | 6.81 (1.79–25.97), 5.90 (1.54–22.70), 6.87 (1.78–26.44), 4.17 (1.18–14.70) | [64] | |
SRGAP1 | 12q14.2 | rs6581525 | 2.05 | [65] |
Gene | Location | Marker 1 | rOR * | Gene–Phenotype Relationships 2 | Ref |
---|---|---|---|---|---|
ADD1 | 4p16.3 | Gly460Trp | 1.36 (0.98–1.88) | Hypertension | [80] |
ADM2 | 22q13.33 | rs3840963 | 2.4 (1.2–4.7) | [81] | |
ADRA2 | 10q25.2 | rs61767072 | 2.03 (1.34–3.10) | [82] | |
APOA1 | 11q23.3 | Alleles I to IV | 2.56 (1.19–5.53) | Amyloidosis, ApoA-I and apoC-III deficiency, hypoalphalipoproteinemia | [78] |
eNOS | 7q36.1 | 894G>T | 2.27 (1.34–3.83) | Alzheimer’s disease, late-onset, coronary artery spasm 1, hypertension, ischemic stroke, placental abruption | [83] |
KDR | 4q12 | -604T>C | 1.596 (1.02–2.50) | Hemangioma, capillary infantile | [84] |
MACROD2 | 20p12.1 | rs2208454 | 0.76 (0.68–0.84) | [79] | |
MTHFR | 1p36.22 | C677T | 1.72(1.10–2.68) | Vascular disease, homocystinuria, neural tube defects, schizophrenia, thromboembolism | [85] |
PRKCH | 14q23.1 | rs3783799, rs2230500 | 1.83 (1.00–3.38), 1.62 (1.21–2.17) | Cerebral infarction | [86] |
RETN | 19p13.2 | rs3219175, rs34861192 | 1.49 (1.03–2.17), 1.46 (1.01–2.13) | Diabetes mellitus, Hypertension | [77] |
SLC19A1 | 21q22.3 | 80A>G | 1.384 (1.03–1.87) | [87] | |
TBXA2R | 19p13.3 | rs768963 | NA * | Bleeding disorder, platelet-type | [88] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, W.-M.; Wu, Y.-Y.; Chen, Y.-C. Genetic Variants behind Cardiovascular Diseases and Dementia. Genes 2020, 11, 1514. https://doi.org/10.3390/genes11121514
Ho W-M, Wu Y-Y, Chen Y-C. Genetic Variants behind Cardiovascular Diseases and Dementia. Genes. 2020; 11(12):1514. https://doi.org/10.3390/genes11121514
Chicago/Turabian StyleHo, Wei-Min, Yah-Yuan Wu, and Yi-Chun Chen. 2020. "Genetic Variants behind Cardiovascular Diseases and Dementia" Genes 11, no. 12: 1514. https://doi.org/10.3390/genes11121514
APA StyleHo, W. -M., Wu, Y. -Y., & Chen, Y. -C. (2020). Genetic Variants behind Cardiovascular Diseases and Dementia. Genes, 11(12), 1514. https://doi.org/10.3390/genes11121514