Behavioral Evolution of Drosophila: Unraveling the Circuit Basis
Abstract
:1. Introduction
2. D. melanogaster Male Courtship Ritual
3. Circuit Basis for Courtship Behavior in D. melanogaster
4. Neural Basis for Species-Specific Song Characteristics
5. Genetic Basis for Species-Specificity in Courtship Song Characteristics
6. Conspecific Partner Preference Involves Species-Specific Neural Connections
7. Nuptial Gift Transfer as a Novel Component of the Courtship Ritual
8. Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abzhanov, A.; Kuo, P.W.; Hartmann, C.; R-Grant, B.; Grant, P.R.; Tabin, C.J. The calmodulin pathway and evolution of elongated beak morphology in Darwin’s finches. Nature 2006, 442, 563–567. [Google Scholar] [CrossRef]
- Lorenz, K. Evolution and Modification of Behavior. The University of Chicago Press: Chicago, IL, USA, 1965; p. 121. [Google Scholar]
- Spieth, H.T. Mating behavior within the genus Drosophila (Diptera). Bull. Am. Mus. Nat. Hist. 1952, 99, 399–474. [Google Scholar]
- Ewing, A.W.; B-Clark, H.C. The courtship songs of Drosophila. Behaviour 1968, 31, 288–301. [Google Scholar] [CrossRef]
- Hoy, R.R.; Hoikkala, A.; Kaneshiro, K.Y. Hawaiian courtship songs; evolutionary innovation in communication signals in Drosophila. Science 1988, 240, 217–219. [Google Scholar] [CrossRef] [PubMed]
- Fabre, C.C.; Hedwig, B.; Conduit, G.; Lawrence, P.A.; Goodwin, S.F.; Casal, J. Substrate-borne vibratory communication during courtship in Drosophila melanogaster. Curr. Biol. 2012, 22, 2180–2185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández, M.V.; Fabre, C.C. The elaborate postural display of courting Drosophila persimilis flies produces substrate-borne vibratory signals. J. Insect Behav. 2016, 29, 578–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satokangas, P.; Liimatainen, J.O.; Hoikkala, A. Songs produced by the females of the Drosophila virilis group of species. Behav. Genet. 1994, 24, 263–272. [Google Scholar] [CrossRef] [PubMed]
- LaRue, K.M.; Clemens, J.; Berman, G.J.; Murthy, M. Acoustic duetting in Drosophila virilis relies on the integration of auditory and tactile signals. eLife 2015, 4, e07277. [Google Scholar] [CrossRef]
- Chen, A.L.; Chen, C.C.; Katoh, T.; Katoh, T.K.; Watada, M.; Toda, M.J.; Ritchie, M.G.; Wen, S.Y. Evolution and diversity of the courtship repertoire in the Drosophila montium species group (Diptera: Drosophilidae). J. Evol. Biol. 2019, 32, 1124–1140. [Google Scholar] [CrossRef]
- Yamamoto, D.; Ishikawa, Y. Genetic and neural bases for species-specific behavior in Drosophila species. J. Neurogenet. 2013, 27, 130–142. [Google Scholar] [CrossRef]
- Davie, K.; Janssens, J.; Koldere, D.; De Waegeneer, M.; Pech, U.; Kreft, Ł.; Aibar, S.; Makhzami, S.; Christiaens, V.; Bravo González-Blas, C.; et al. A single-cell transcriptome atlas of the aging Drosophila brain. Cell 2018, 174, 982–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, R.; Asano, S.M.; Upadhyayula, S.; Pisarev, I.; Milkie, D.E.; Liu, T.L.; Singh, V.; Graves, A.; Huynh, G.H.; Zhao, Y.; et al. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science 2019, 363, 6424. [Google Scholar] [CrossRef] [PubMed]
- Robie, A.A.; Hirokawa, J.; Edwards, A.W.; Umayam, L.A.; Lee, A.; Phillips, M.L.; Card, G.M.; Korff, W.; Rubin, G.M.; Simpson, J.H.; et al. Mapping the neural substrates of behavior. Cell 2017, 170, 393–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Z.; Lauritzen, J.S.; Perlman, E.; Robinson, C.G.; Nichols, M.; Milkie, D.; Torrens, O.; Price, J.; Fisher, C.B.; Sharifi, N.; et al. A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell 2018, 174, 730–743. [Google Scholar] [CrossRef] [Green Version]
- Dickson, B.J. Wired for sex: The neurobiology of Drosophila mating decisions. Science 2008, 322, 904–909. [Google Scholar] [CrossRef] [Green Version]
- Ito, H.; Fujitani, K.; Usui, K.; Shimizu-Nishikawa, K.; Tanaka, S.; Yamamoto, D. Sexual orientation in Drosophila is altered by the satori mutation in the sex-determination gene fruitless that encodes a zinc finger protein with a BTB domain. Proc. Natl. Acad. Sci. USA 1996, 93, 9687–9692. [Google Scholar] [CrossRef] [Green Version]
- Ryner, L.C.; Goodwin, S.F.; Castrillon, D.H.; Anand, A.; Villella, A.; Baker, B.S.; Hall, J.C.; Taylor, B.J.; Wasserman, S.A. Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene. Cell 1996, 87, 1079–1089. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, D.; Koganezawa, M. Genes and circuits of courtship behaviour in Drosophila males. Nat. Rev. Neurosci. 2013, 14, 681–692. [Google Scholar] [CrossRef]
- Bastock, M.; Manning, A. The courtship of Drosophila melanogaster. Behaviour 1955, 8, 85–111. [Google Scholar] [CrossRef]
- Hall, J.C. The mating of a fly. Science 1994, 264, 1702–1714. [Google Scholar] [CrossRef]
- von Schilcher, F. The function of pulse song and sine song in the courtship of Drosophila melanogaster. Anim. Behav. 1976, 24, 622–625. [Google Scholar] [CrossRef]
- Kyriacou, C.P.; Hall, J.C. Learning and memory mutations impair acoustic priming of mating behaviour in Drosophila. Nature 1984, 308, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, Y.; Okamoto, N.; Yoneyama, Y.; Maeda, N.; Kamikouchi, A. A single male auditory response test to quantify auditory behavioral responses in Drosophila melanogaster. J. Neurogenet. 2019, 33, 64–74. [Google Scholar] [CrossRef] [PubMed]
- von Schilcher, F. The role of auditory stimuli in the courtship of Drosophila melanogaster. Anim. Behav. 1976, 24, 18–26. [Google Scholar] [CrossRef]
- Cowling, D.E.; Burnet, B. Courtship songs and genetic control of their acoustic characteristics in sibling species of the Drosophila melanogaster. Anim. Behav. 1981, 29, 924–935. [Google Scholar] [CrossRef]
- Tomaru, M.; Oguma, Y. Differences in courtship song in the species of the Drosophila auraria complex. Anim. Behav. 1994, 47, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Riabinina, O.; Dai, M.; Duke, T.; Albert, J.T. Active process mediates species-specific tuning of Drosophila ears. Curr. Biol. 2011, 21, 658–664. [Google Scholar] [CrossRef] [Green Version]
- Saarikettu, M.; Liimatainen, J.O.; Hoikkala, A. The role of male courtship song in species recognition in Drosophila montana. Behav. Genet. 2005, 35, 257–263. [Google Scholar] [CrossRef]
- Clemens, J.; Coen, P.; Roemschied, F.A.; Pereira, T.D.; Mazumder, D.; Aldarondo, D.E.; Pacheco, D.A.; Murthy, M. Discovery of a new song mode in Drosophila reveals hidden structure in the sensory and neural drivers of behavior. Curr. Biol. 2018, 28, 2400–2412. [Google Scholar] [CrossRef] [Green Version]
- Kimura, K.-I.; Hachiya, T.; Koganezawa, M.; Tazawa, T.; Yamamoto, D. Fruitless and Doublesex coordinate to generate male-specific neurons that can initiate courtship. Neuron 2008, 59, 759–769. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.Y.; Kanai, M.I.; Demir, E.; Jefferis, G.S.; Dickson, B.J. Cellular organization of the neural circuit that drives Drosophila courtship behavior. Curr. Biol. 2010, 20, 1602–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohatsu, S.; Koganezawa, M.; Yamamoto, D. Female contact activates male-specific interneurons that trigger stereopypic courtship behavior in Drosophila. Neuron 2011, 69, 498–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Philipsborn, A.; Liu, T.; Yu, J.Y.; Masser, C.; Bidaye, S.S.; Dickson, B.J. Neural control of Drosophila courtship song. Neuron 2011, 69, 509–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohatsu, S.; Yamamoto, D. Visually induced initiation of Drosophila innate courtship-like pursuit is mediated by central excitatory state. Nat. Commun. 2015, 6, 6457. [Google Scholar] [CrossRef]
- McKellar, C.E.; Lilvis, J.L.; Bath, D.E.; Fitsgerald, J.E.; Cannon, J.G.; Simpson, J.H.; Dickson, B.J. Threshold-based ordering of sequential actions during Drosophila courtship. Curr. Biol. 2019, 29, 426–434. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, A.; Lindsay, T.; Prudrikova, A.; Erdi, B.; Dickinson, M.; von Philipsborn, A.C. Multifunctional wing motor control of song and flight. Curr. Biol. 2018, 28, 2705–2717. [Google Scholar] [CrossRef] [Green Version]
- Shirangi, T.R.; Stern, D.L.; Truman, J.W. Motor control of Drosophila courtship song. Cell Rep. 2013, 5, 678–686. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Lillvis, J.L.; Cande, J.; Berman, G.J.; Arthur, B.J.; Long, X.; Xu, M.; Dickson, B.J.; Stern, D.L. Neural evolution of context-dependent fly song. Curr. Biol. 2019, 29, 1089–1099. [Google Scholar] [CrossRef] [Green Version]
- Cande, J.; Andolfatto, P.; Prud’homme, B.; Stern, D.; Gompel, N. Evolution of multiple additive loci caused divergence between Drosophila yakuba and D. santomea in wing rowing during male courtship. PLoS ONE 2012, 7, e43888. [Google Scholar] [CrossRef]
- Gleason, J.M.; Ritchie, M.G. Do quantitative trait loci (QTL) for a courtship song difference between Drosophila simulans and D. sechellia coincide with candidate genes and intraspecific QTL? Genetics 2004, 166, 1303–1311. [Google Scholar] [CrossRef] [Green Version]
- Belote, J.M.; Lucchesi, J.C. Control of X chromosome transcription by the maleless gene in Drosophila. Nature 1980, 285, 573–575. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.F.; Ganetzky, B.; Jan, L.Y.; Benzer, S. A Drosophila mutant with a temperature-sensitive block in nerve conduction. Proc. Natl. Acad. Sci. USA 1978, 75, 4047–4051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peixoto, A.A.; Hall, J.C. Analysis of temperature-sensitive mutants reveals new genes involved in the courtship song of Drosophila. Genetics. 1998, 148, 827–838. [Google Scholar]
- Reenan, R.A.; Hanrahan, C.J.; Ganetzky, B. The mle (napts) RNA helicase mutation in Drosophila results in a splicing catastrophe of the para Na+ channel transcript in a region of RNA editing. Neuron 2000, 25, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Ahsan, M.T.; Ote, M.; Koganezawa, M.; Yamamoto, D. Calmodulin-binding transcription factor shapes the male courtship song in Drosophila. PLoS Genet. 2019, 15, e1008309. [Google Scholar] [CrossRef]
- Yokokura, T.; Ueda, R.; Yamamoto, D. Phenotypic and molecular characterization of croaker, a new mating behavior mutant of Drosophila melanogaster. Jpn. J. Genet. 1995, 70, 103–117. [Google Scholar] [CrossRef] [Green Version]
- Villella, A.; Gailey, D.A.; Berwald, B.; Ohshima, S.; Barnes, P.T.; Hall, J.C. Extended reproductive roles of the fruitless gene in Drosophila melanogaster revealed by behavioral analysis of new fru mutants. Genetics 1997, 147, 1107–1130. [Google Scholar]
- Cande, J.; Stern, D.L.; Morita, T.; Prud’homme, B.; Gompel, N. Looking under the lamp post: Neither fruitless nor doublesex has evolved to generate divergent male courtship in Drosophila. Cell Rep. 2014, 8, 363–370. [Google Scholar] [CrossRef]
- Clyne, J.D.; Miesenbock, G. Sex-specific control and tuning of the pattern generator for courtship song in Drosophila. Cell 2008, 133, 354–363. [Google Scholar] [CrossRef] [Green Version]
- Rezaval, C.; Pattnaik, S.; Pavlou, H.J.; Nojima, T.; Brüggemeier, B.; D’Souza, L.A.D.; Dweck, H.K.M.; Goodwin, S.F. Activation of latent courtship circuitry in the brain of Drosophila females induces male-like behaviors. Curr. Biol. 2016, 26, 2508–2515. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Berrocal, A.; Morita, T.; Longden, K.D.; Stern, D.L. Natural courtship song variation caused by an intronic retroelement in an ion channel gene. Nature 2016, 536, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Frolov, R.V.; Bagati, A.; Casino, B.; Singh, S. Potassium channels in Drosophila: Historical breakthroughs, significance, and perspectives. J. Neurogenet. 2012, 26, 275–290. [Google Scholar] [CrossRef] [PubMed]
- Elkins, T.; Ganetzky, B.; Wu, C.F. A Drosophila mutation that eliminates a calcium-dependent potassium current. Proc. Natl. Acad. Sci. USA 1986, 83, 8415–8419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jallon, J.-M. A few chemical words exchanged by Drosophila during courtship and mating. Behav. Genet. 1984, 14, 441–478. [Google Scholar] [CrossRef] [PubMed]
- Billeter, J.-C.; Atallah, J.; Krupp, J.J.; Millar, J.G.; Levine, J.D. Specialized cells tag sexual and species identity in Drosophila melanogaster. Nature 2009, 461, 987–991. [Google Scholar] [CrossRef] [PubMed]
- Thistle, R.; Cameron, P.; Ghorayshi, A.; Dennison, L.; Scott, K. Contact chemoreceptors mediate male-male repulsion and male-female attraction during Drosophila courtship. Cell 2012, 149, 1140–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toda, H.; Zhao, X.; Dickson, B.J. The Drosophila female aphrodisiac pheromone activates ppk23(+) sensory neurons to elicit male courtship behavior. Cell. Rep. 2012, 1, 599–607. [Google Scholar] [CrossRef] [Green Version]
- Clowney, E.J.; Iguchi, S.; Bussell, J.J.; Scheer, E.; Ruta, V. Multimodal chemosensory circuits controlling male courtship in Drosophila. Neuron 2015, 87, 1036–1049. [Google Scholar] [CrossRef] [Green Version]
- Kallman, B.R.; Kim, H.; Scott, K. Excitation and inhibition onto central courtship neurons biases Drosophila mate choice. eLife 2015, 4, e11188. [Google Scholar] [CrossRef]
- Koganezawa, M.; Haba, D.; Matsuo, T.; Yamamoto, D. The shaping of male courtship posture by lateralized gustatory inputs to male-specific interneurons. Curr. Biol. 2010, 20, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kimura, K.-I.; Ote, M.; Tazawa, T.; Yamamoto, D. Fruitless specifies sexually dimorphic neural circuitry in the Drosophila brain. Nature 2005, 438, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Grillet, M.; Everaerts, C.; Houot, B.; Ritchie, M.G.; Cobb, M.; Ferveur, J.-F. Incipient speciation in Drosophila melanogaster involves chemical signals. Sci. Rep. 2012, 2, 224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butterworth, F.M. Lipids of Drosophila: A newly detected lipid in the male. Science 1969, 163, 1356–1357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.X.; Rogulja, D.; Crickmore, M.A. Dopaminergic circuitry underlying mating drive. Neuron 2016, 91, 168–181. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Ganguly, A.; Huang, J.; Wang, Y.; Ni, J.D.; Gurav, A.S.; Aguilar, M.A.; Montell, C. Neuropeptide F regulates courtship in Drosophila through a male-specific neuronal circuit. eLife 2019, 8, e49574. [Google Scholar] [CrossRef]
- Zhang, S.X.; Rogulja, D.; Crickmore, M.A. Recurrent circuitry sustains Drosophila courtship drive while priming itself for satiety. Curr. Biol. 2019, 29, 3216–3228. [Google Scholar] [CrossRef]
- Zhang, S.X.; Miner, L.E.; Boutros, C.L.; Rogulja, D.; Crickmore, M.A. Motivation, perception, and chance converge to make a binary decision. Neuron 2018, 99, 376–388. [Google Scholar] [CrossRef] [Green Version]
- Seeholzer, L.F.; Seppo, M.; Stern, D.L.; Ruta, V. Evolution of a central neural circuit underlies Drosophila mate preferences. Nature 2018, 559, 564–569. [Google Scholar] [CrossRef]
- Ahmed, O.M.; Avila-Herrera, A.; Tun, K.M.; Serpa, P.H.; Peng, J.; Parthasarathy, S.; Knapp, J.-M.; Stern, D.L.; Davis, G.W.; Pollard, K.S.; et al. Evolution of mechanisms that control mating in Drosophila males. Cell Rep. 2019, 27, 2527–2536. [Google Scholar] [CrossRef] [Green Version]
- Immonen, E.; Hoikkala, A.; Kozem, A.J.N.; Ritchie, M.G. When are vomiting males attractive? Sexual selection on condition-dependint nuptial feeding in Drosophila subobscura. Behaiv. Ecol. 2009, 20, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Steele, R.H. Courtship feeding in Drosophila subobscura. Anim. Behav. 1986, 34, 1087–1098. [Google Scholar] [CrossRef]
- Higuchi, T.; Kohatsu, S.; Yamamoto, D. Quantitative analysis of visually induced courtship elements in Drosophila subobscura. J. Neurogenet. 2017, 31, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, R.; Higuchi, T.; Kohatsu, S.; Sato, K.; Yamamoto, D. Optogenetic activation of the fruitless-labeled circuitry in Drosophila subobscura males induces mating motor zcts. J. Neurosci. 2017, 37, 11662–11674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, R.; Murakami, H.; Ote, M.; Yamamoto, D. Clustered regulatory interspaced short palindromic repeats (CRISPR)-mediated mutagenesis and phenotype rescue by piggyBac transgenesis in a nonmodel Drosophila species. Insect. Mol. Biol. 2016, 25, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Dacks, A.M.; Nickel, T.; Mictcell, B.K. An examination of serotonin and feeding in the flesh fly Neobellieria bullata (Sarcophagidae: Diptera). J. Insect Behav. 2003, 16, 1–21. [Google Scholar] [CrossRef]
- Stoffolano, J.G.; Acaron, A.; Conway, M. “Bubbling” or droplet regurgitation in both sexes of adult Phormia regina (Diptera: Calliphoridae) fed various concentrations of sugar and protein solutions. Ann. Entomol. Soc. Am. 2008, 101, 964–970. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, K.; Tanaka, R.; Ishikawa, Y.; Yamamoto, D. Behavioral Evolution of Drosophila: Unraveling the Circuit Basis. Genes 2020, 11, 157. https://doi.org/10.3390/genes11020157
Sato K, Tanaka R, Ishikawa Y, Yamamoto D. Behavioral Evolution of Drosophila: Unraveling the Circuit Basis. Genes. 2020; 11(2):157. https://doi.org/10.3390/genes11020157
Chicago/Turabian StyleSato, Kosei, Ryoya Tanaka, Yuki Ishikawa, and Daisuke Yamamoto. 2020. "Behavioral Evolution of Drosophila: Unraveling the Circuit Basis" Genes 11, no. 2: 157. https://doi.org/10.3390/genes11020157
APA StyleSato, K., Tanaka, R., Ishikawa, Y., & Yamamoto, D. (2020). Behavioral Evolution of Drosophila: Unraveling the Circuit Basis. Genes, 11(2), 157. https://doi.org/10.3390/genes11020157