Weighted Single-Step Genome-Wide Association Study for Growth Traits in Chinese Simmental Beef Cattle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals, Phenotypes and Pedigree
2.3. Genotyping and Quality Control
2.4. Weighted Single-Step Genome-Wide Association Study
- In the first iteration, set t = 1,
- Estimate GEBV for all animals using ssGBLUP approach;
- Compute SNP effects as
- Calculate SNP weights for the next iteration using
- Normalize SNP weights to keep the total genetic variance constant as
- Calculate G(t+1)
- Set t = t + 1 and loop to step 2.
2.5. Identification of Candidate Genes
3. Results and Discussion
3.1. Descriptive Statistics and Heritabilities for the Growth Traits
3.2. Summary of the wssGWAS Results
3.3. wssGWAS for BW
3.4. wssGWAS for YW and BYADG
3.5. wssGWAS for 18MW
3.6. Potential Genomic Regions and Candidate Genes Reveal the Complexity of the Genetic Architecture of Growth Traits
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Igoshin, A.V.; Yudin, N.S.; Belonogova, N.M.; Larkin, D.M. Genome-wide association study for body weight in cattle populations from Siberia. Anim. Genet. 2019, 50, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Takeda, M.; Uemoto, Y.; Inoue, K.; Ogino, A.; Nozaki, T.; Kurogi, K.; Yasumori, T.; Satoh, M. Evaluation of feed efficiency traits for genetic improvement in Japanese Black cattle. J. Anim. Sci. 2018, 96, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Terakado, A.P.N.; Costa, R.B.; de Camargo, G.M.F.; Irano, N.; Bresolin, T.; Takada, L.; Carvalho, C.V.D.; Oliveira, H.N.; Carvalheiro, R.; Baldi, F.; et al. Genome-wide association study for growth traits in Nelore cattle. Animal 2018, 12, 1358–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tam, V.; Patel, N.; Turcotte, M.; Bosse, Y.; Pare, G.; Meyre, D. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 2019, 20, 467–484. [Google Scholar] [CrossRef]
- Seabury, C.M.; Oldeschulte, D.L.; Saatchi, M.; Beever, J.E.; Decker, J.E.; Halley, Y.A.; Bhattarai, E.K.; Molaei, M.; Freetly, H.C.; Hansen, S.L.; et al. Genome-wide association study for feed efficiency and growth traits in U.S. beef cattle. BMC Genom. 2017, 18, 386. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.J.; Farnir, F.; Savell, J.; Taylor, J.F. Detection of quantitative trait loci for growth and beef carcass fatness traits in a cross between Bos taurus (Angus) and Bos indicus (Brahman) cattle. J. Anim. Sci. 2003, 81, 1933–1942. [Google Scholar] [CrossRef]
- Buzanskas, M.E.; Grossi, D.A.; Ventura, R.V.; Schenkel, F.S.; Sargolzaei, M.; Meirelles, S.L.; Mokry, F.B.; Higa, R.H.; Mudadu, M.A.; da Silva, M.V.; et al. Genome-wide association for growth traits in Canchim beef cattle. PLoS ONE 2014, 9, e94802. [Google Scholar] [CrossRef] [Green Version]
- Jahuey-Martinez, F.J.; Parra-Bracamonte, G.M.; Sifuentes-Rincon, A.M.; Martinez-Gonzalez, J.C.; Gondro, C.; Garcia-Perez, C.A.; Lopez-Bustamante, L.A. Genomewide association analysis of growth traits in Charolais beef cattle. J. Anim. Sci. 2016, 94, 4570–4582. [Google Scholar] [CrossRef]
- Wang, H.; Misztal, I.; Aguilar, I.; Legarra, A.; Muir, W.M. Genome-wide association mapping including phenotypes from relatives without genotypes. Genet. Res. (Camb) 2012, 94, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Marques, D.B.D.; Bastiaansen, J.W.M.; Broekhuijse, M.; Lopes, M.S.; Knol, E.F.; Harlizius, B.; Guimaraes, S.E.F.; Silva, F.F.; Lopes, P.S. Weighted single-step GWAS and gene network analysis reveal new candidate genes for semen traits in pigs. Genet. Sel. Evol. 2018, 50, 40. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Li, C.; Cai, W.; Liu, S.; Yin, H.; Shi, S.; Zhang, Q.; Zhang, S. Genome-Wide Association Study for Milk Protein Composition Traits in a Chinese Holstein Population Using a Single-Step Approach. Front. Genet. 2019, 10, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misztal, I.; Tsuruta, S.; Lourenco, D.A.L.; Masuda, Y.; Aguilar, I.; Legarra, A.; Vitezica, Z. Manual for BLUPF90 Family Programs. Available online: http://nce.ads.uga.edu/wiki/doku.php?id=documentation (accessed on 11 November 2019).
- VanRaden, P.M. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Lourenco, D.; Aguilar, I.; Legarra, A.; Misztal, I. Weighting Strategies for Single-Step Genomic BLUP: An Iterative Approach for Accurate Calculation of GEBV and GWAS. Front. Genet. 2016, 7, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ensembl Database. Assemble: UMD3.1. Available online: http://oct2018.archive.ensembl.org/Bos_taurus/Info/Index (accessed on 13 November 2019).
- DAVID Bioinformatics Resource. Available online: https://david.ncifcrf.gov (accessed on 13 November 2019).
- Zhuang, Z.; Li, S.; Ding, R.; Yang, M.; Zheng, E.; Yang, H.; Gu, T.; Xu, Z.; Cai, G.; Wu, Z.; et al. Meta-analysis of genome-wide association studies for loin muscle area and loin muscle depth in two Duroc pig populations. PLoS ONE 2019, 14, e0218263. [Google Scholar] [CrossRef]
- Jackson, M.R.; Melideo, S.L.; Jorns, M.S. Role of human sulfide: Quinone oxidoreductase in H2S metabolism. Methods Enzymol. 2015, 554, 255–270. [Google Scholar]
- Veeranki, S.; Tyagi, S.C. Role of hydrogen sulfide in skeletal muscle biology and metabolism. Nitric. Oxide 2015, 46, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T.K.; Shimizu, F.; Nagata, M.; Kawai, A.; Fujiwara, T.; Nakamura, Y.; Takahashi, E.; Hirai, Y. Cloning, expression, and mapping of CKAPI, which encodes a putative cytoskeleton-associated protein containing a CAP-GLY domain. Cytogenet. Cell Genet. 1996, 72, 208–211. [Google Scholar] [CrossRef]
- Ponsuksili, S.; Murani, E.; Trakooljul, N.; Schwerin, M.; Wimmers, K. Discovery of candidate genes for muscle traits based on GWAS supported by eQTL-analysis. Int. J. Biol. Sci. 2014, 10, 327–337. [Google Scholar] [CrossRef] [Green Version]
- Mudadu, M.A.; Porto-Neto, L.R.; Mokry, F.B.; Tizioto, P.C.; Oliveira, P.S.; Tullio, R.R.; Nassu, R.T.; Niciura, S.C.; Tholon, P.; Alencar, M.M.; et al. Genomic structure and marker-derived gene networks for growth and meat quality traits of Brazilian Nelore beef cattle. BMC Genom. 2016, 17, 235. [Google Scholar]
- Dillon, J.A.; Riley, D.G.; Herring, A.D.; Sanders, J.O.; Thallman, R.M. Genetic effects on birth weight in reciprocal Brahman-Simmental crossbred calves. J. Anim. Sci. 2015, 93, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Simons, M.; Wang, M.; McBride, O.W.; Kawamoto, S.; Yamakawa, K.; Gdula, D.; Adelstein, R.S.; Weir, L. Human nonmuscle myosin heavy chains are encoded by two genes located on different chromosomes. Circ. Res. 1991, 69, 530–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldwin, K.M.; Haddad, F. Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle. J. Appl.Physiol. (Bethesda Md. 1985) 2001, 90, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Glasheen, B.M.; Ramanath, S.; Patel, M.; Sheppard, D.; Puthawala, J.T.; Riley, L.A.; Swank, D.M. Five Alternative Myosin Converter Domains Influence Muscle Power, Stretch Activation, and Kinetics. Biophys J. 2018, 114, 1142–1152. [Google Scholar] [CrossRef]
- Yang, F.; Wei, Q.; Adelstein, R.S.; Wang, P.J. Non-muscle myosin IIB is essential for cytokinesis during male meiotic cell divisions. Dev. Biol. 2012, 369, 356–361. [Google Scholar] [CrossRef] [Green Version]
- Xue, Q.; Zhang, G.; Li, T.; Ling, J.; Zhang, X.; Wang, J. Transcriptomic profile of leg muscle during early growth in chicken. PLoS ONE 2017, 12, e0173824. [Google Scholar] [CrossRef]
- McSherry, M.; Masih, K.E.; Elcioglu, N.H.; Celik, P.; Balci, O.; Cengiz, F.B.; Nunez, D.; Sineni, C.J.; Seyhan, S.; Kocaoglu, D.; et al. Identification of candidate gene FAM183A and novel pathogenic variants in known genes: High genetic heterogeneity for autosomal recessive intellectual disability. PLoS ONE 2018, 13, e0208324. [Google Scholar] [CrossRef] [Green Version]
- Abugessaisa, I.; Shimoji, H.; Sahin, S.; Kondo, A.; Harshbarger, J.; Lizio, M.; Hayashizaki, Y.; Carninci, P.; Forrest, A.; Kasukawa, T.; et al. FANTOM5 transcriptome catalog of cellular states based on Semantic MediaWiki. Database J. Biol. Databases Curation 2016, baw105. [Google Scholar] [CrossRef]
- Makela, T.P.; Hellsten, E.; Vesa, J.; Hirvonen, H.; Palotie, A.; Peltonen, L.; Alitalo, K. The rearranged L-myc fusion gene (RLF) encodes a Zn-15 related zinc finger protein. Oncogene 1995, 11, 2699–2704. [Google Scholar]
- Harten, S.K.; Oey, H.; Bourke, L.M.; Bharti, V.; Isbel, L.; Daxinger, L.; Faou, P.; Robertson, N.; Matthews, J.M.; Whitelaw, E. The recently identified modifier of murine metastable epialleles, Rearranged L-Myc Fusion, is involved in maintaining epigenetic marks at CpG island shores and enhancers. BMC Biol. 2015, 13, 21. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Han, S.; Shen, X.; Wang, Y.; Cui, C.; He, H.; Chen, Y.; Zhao, J.; Li, D.; Zhu, Q.; et al. The landscape of DNA methylation associated with the transcriptomic network in layers and broilers generates insight into embryonic muscle development in chicken. Int. J. Biol. Sci. 2019, 15, 1404–1418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrio, E.; Suelves, M. DNA methylation dynamics in muscle development and disease. Front. Aging Neurosci. 2015, 7, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caron, C.; DeGeer, J.; Fournier, P.; Duquette, P.M.; Luangrath, V.; Ishii, H.; Karimzadeh, F.; Lamarche-Vane, N.; Royal, I. CdGAP/ARHGAP31, a Cdc42/Rac1 GTPase regulator, is critical for vascular development and VEGF-mediated angiogenesis. Sci. Rep. UK 2016, 6, 27485. [Google Scholar] [CrossRef] [Green Version]
- Moon, S.Y.; Zheng, Y. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. 2003, 13, 13–22. [Google Scholar] [CrossRef]
- Forero, A.; Rivero, O.; Wäldchen, S.; Ku, H.-P.; Kiser, D.P.; Gärtner, Y.; Pennington, L.S.; Waider, J.; Gaspar, P.; Jansch, C. Cadherin-13 Deficiency Increases Dorsal Raphe 5-HT Neuron Density and Prefrontal Cortex Innervation in the Mouse Brain. Front. Cell Neurosci. 2017, 11, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, P.; Huang, S.; Ling, S.; Xu, S.; Wang, F.; Zhang, W.; Zhou, R.; He, L.; Xia, X.; Yao, Z.; et al. Foxp1 controls brown/beige adipocyte differentiation and thermogenesis through regulating β3-AR desensitization. Nat. Commun. 2019, 10, 5070. [Google Scholar] [CrossRef] [Green Version]
- Yin, T.; Konig, S. Genome-wide associations and detection of potential candidate genes for direct genetic and maternal genetic effects influencing dairy cattle body weight at different ages. Genet. Sel. Evol. 2019, 51, 4. [Google Scholar] [CrossRef] [Green Version]
- Santana, M.H.; Utsunomiya, Y.T.; Neves, H.H.; Gomes, R.C.; Garcia, J.F.; Fukumasu, H.; Silva, S.L.; Leme, P.R.; Coutinho, L.L.; Eler, J.P.; et al. Genome-wide association study for feedlot average daily gain in Nellore cattle (Bos indicus). J. Anim. Breed Genet. 2014, 131, 210–216. [Google Scholar] [CrossRef]
- Peters, S.O.; Kizilkaya, K.; Garrick, D.J.; Fernando, R.L.; Reecy, J.M.; Weaber, R.L.; Silver, G.A.; Thomas, M.G. Bayesian genome-wide association analysis of growth and yearling ultrasound measures of carcass traits in Brangus heifers. J. Anim. Sci. 2012, 90, 3398–3409. [Google Scholar] [CrossRef]
- Mizoshita, K.; Watanabe, T.; Hayashi, H.; Kubota, C.; Yamakuchi, H.; Todoroki, J.; Sugimoto, Y. Quantitative trait loci analysis for growth and carcass traits in a half-sib family of purebred Japanese Black (Wagyu) cattle. J. Anim. Sci. 2004, 82, 3415–3420. [Google Scholar] [CrossRef]
- Andersson, L.; Georges, M. Domestic-animal genomics: Deciphering the genetics of complex traits. Nat. Rev. Genet. 2004, 5, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Povysil, G.; Petrovski, S.; Hostyk, J.; Aggarwal, V.; Allen, A.S.; Goldstein, D.B. Rare-variant collapsing analyses for complex traits: Guidelines and applications. Nat. Rev. Genet. 2019. [Google Scholar] [CrossRef] [PubMed]
- Barton, N.H.; Keightley, P.D. Understanding quantitative genetic variation. Nat. Rev. Genet. 2002, 3, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Animal QTL Database. Available online: https://www.animalgenome.org/cgi-bin/QTLdb/BT/index (accessed on 24 November 2019).
Traits | N | Mean | SD | Min | Max | CV (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|
BW (kg) | 6022 | 44.96 | 5.38 | 29 | 61 | 11.97 | 10.165 | 14.150 | 24.315 | 0.42 ± 0.03 |
YW (kg) | 3996 | 418.21 | 68.37 | 264.94 | 608.65 | 16.36 | 444.650 | 1352.400 | 1797.050 | 0.24 ± 0.03 |
BYADG (kg/d) | 3996 | 1.03 | 0.19 | 0.6 | 1.54 | 18.45 | 0.003 | 0.010 | 0.013 | 0.23 ± 0.02 |
18MW (kg) | 3137 | 587.41 | 109.36 | 376.84 | 905.24 | 18.61 | 1193.400 | 1598.000 | 2791.400 | 0.43 ± 0.03 |
Chr a | Window Region (bp) b | gVar (%) c | topSNP d | Candidate Gene e | Distance |
---|---|---|---|---|---|
10 | 64,843,548–64,888,989 | 7.89 | BovineHD1000018698 | SQOR | 195,750 |
18 | 46,973,033–47,054,361 | 6.52 | BovineHD1800013865 | TBCB | 971 |
13 | 32,898,989–32,942,587 | 4.51 | BovineHD1300009582 | CACNB2 | 106,042 |
17 | 59,422,381–59,533,974 | 4.23 | BovineHD1700016840 | WSB2 | 634 |
21 | 54,246,453–54,304,950 | 4.17 | BovineHD2100015513 | DYNLL1 | 49,145 |
1 | 86,864,010–87,000,954 | 3.00 | BovineHD0100024730 | CCDC39 | 89,435 |
18 | 43,486,335–43,539,576 | 2.83 | BovineHD1800012856 | CEP89 | within |
7 | 25,274,362–25,344,621 | 2.51 | BovineHD0700006961 | CHSY3 | within |
10 | 22,200,536–22,227,480 | 2.20 | BovineHD4100007964 | TRDC | within |
21 | 18,442,926–18,507,549 | 2.06 | BovineHD4100015053 | / | / |
18 | 9,390,632–9,440,030 | 1.78 | BovineHD4100013431 | CDH13 | 122,107 |
16 | 55,454,686–55,576,782 | 1.57 | BovineHD1600015438 | BOVAGGRUS | 12,062 |
2 | 84,272,058–84,486,086 | 1.35 | BovineHD0200024049 | SLC39A10 | 461,944 |
27 | 17,515,069–17,628,482 | 1.35 | BovineHD2700005087 | / | / |
1 | 93,966,859–94,071,139 | 1.24 | BovineHD0100026650 | NLGN1 | 334,630 |
20 | 58,103,188–58,151,048 | 1.14 | BovineHD2000016087 | ANKH | 274,075 |
22 | 21,743,429–21,782,083 | 1.14 | BovineHD2200006300 | ITPR1 | within |
3 | 83,073,814–83,124,751 | 1.07 | BovineHD0300023782 | ATG4C | 225,105 |
Chr a | Window Region (bp) b | gVar (%) c | topSNP d | Candidate Gene e | Distance |
---|---|---|---|---|---|
19 | 28,728,158–28,766,002 | 11.80 | BovineHD1900008433 | MYH10 | within |
24 | 30,102,158–30,164,301 | 10.30 | BovineHD2400008151 | CHST9 | within |
3 | 106,567,276–106,628,358 | 9.47 | BovineHD0300030609 | RLF | within |
3 | 103,471,058–103,518,431 | 6.91 | BovineHD0300029636 | FAM183A | 27,683 |
2 | 98,892,271–98,968,329 | 4.95 | BovineHD0200028465 | CPS1 | within |
3 | 107,082,578–107,188,510 | 3.09 | BovineHD4100002437 | PABPC4 | 1629 |
3 | 105,809,585–105,893,206 | 1.92 | BovineHD0300030334 | CTPS | within |
3 | 105,103,446–105,151,204 | 1.57 | BovineHD0300030104 | / | / |
2 | 98,767,231–98,852,487 | 1.50 | BovineHD0200028425 | CPS1 | within |
12 | 37,317,791–37,375,872 | 1.36 | BovineHD1200010822 | ATP12A | 395,299 |
23 | 13,141,062–13,228,547 | 1.33 | BovineHD2300003307 | KCNK17 | 19,569 |
26 | 28,767,232–28,870,785 | 1.33 | BovineHD2600007699 | SORCS1 | 377,841 |
20 | 23,511,931–23,646,033 | 1.11 | BovineHD2000007095 | SLC38A9 | within |
12 | 37,380,083–37,454,520 | 1.08 | BovineHD1200010844 | / | / |
Chr a | Window Region (bp) b | gVar (%) c | topSNP d | Candidate Gene e | Distance |
---|---|---|---|---|---|
3 | 106,574,782–106,644,015 | 20.15 | BTB-00148396 | RLF | within |
21 | 5,941,998–5,968,820 | 10.77 | BovineHD2100001150 | ALDH1A3 | 108,659 |
5 | 77,160,030–77,212,501 | 6.22 | BovineHD0500021921 | / | / |
28 | 41,315,052–41,343,055 | 4.52 | BovineHD2800011614 | WAPAL | 178,111 |
5 | 77,289,332–77,341,198 | 2.90 | BovineHD0500021954 | / | / |
3 | 103,471,058–103,518,431 | 2.79 | BovineHD0300029636 | FAM183A | 27,683 |
21 | 6,031,496–6,114,704 | 2.66 | BovineHD2100001184 | / | / |
11 | 47,195,270–47,279,484 | 1.75 | BovineHD1100013811 | RPIA | 24,890 |
22 | 30,689,705–30,734,004 | 1.69 | BovineHD2200008831 | FOXP1 | within |
3 | 105,080,919–105,138,584 | 1.58 | BovineHD0300030098 | / | / |
19 | 24,496,287–24,525,423 | 1.56 | BovineHD1900007093 | OR1G1 | 9771 |
24 | 36,117,632–36,240,233 | 1.50 | BovineHD2400009926 | ADCYAP1 | within |
3 | 79,457,216–79,552,102 | 1.31 | BovineHD0300022907 | PDE4B | within |
20 | 23,511,931–23,646,033 | 1.26 | BovineHD2000007095 | SLC38A9 | within |
20 | 63,943,581–63,965,954 | 1.13 | BovineHD2000018191 | SEMA5A | 204,352 |
Chr a | Window Region (bp) b | gVar (%) c | topSNP d | Candidate Gene e | Distance |
---|---|---|---|---|---|
1 | 64,788,160–64,867,718 | 3.44 | BTB-00033090 | ARHGAP31 | within |
20 | 55,978,366–56,002,160 | 2.74 | BovineHD2000015364 | / | / |
22 | 32,826,296–32,856,787 | 2.68 | BovineHD2200009375 | FAM19A4 | within |
4 | 18,525,619–18,550,135 | 2.62 | BovineHD0400005535 | C14H8orf59 | 424,568 |
26 | 2,272,143–2,343,667 | 2.21 | BovineHD2600000342 | / | / |
1 | 156,048,715–156,119,788 | 2.13 | BovineHD0100045578 | TBC1D5 | within |
9 | 86,926,509–86,984,196 | 2.06 | BovineHD0900024383 | SASH1 | within |
10 | 51,554,432–51,726,000 | 1.87 | BovineHD1000015443 | FAM63B | within |
10 | 48,374,404–48,406,759 | 1.82 | BovineHD1000014557 | VPS13C | 105,944 |
25 | 25,386,519–25,442,136 | 1.77 | BovineHD2500007181 | KIAA0556 | 29,783 |
9 | 93,609,823–93,684,438 | 1.72 | BovineHD0900026491 | / | / |
23 | 19,254,288–19,290,469 | 1.64 | BovineHD2300004888 | CLIC5 | within |
14 | 49,154,187–49,217,544 | 1.54 | BovineHD1400013993 | MED30 | 195,164 |
14 | 47,765,008–47,835,714 | 1.40 | BovineHD1400013511 | SAMD12 | 14,727 |
5 | 18,940,413–19,018,750 | 1.39 | BovineHD0500005477 | DUSP6 | 336,392 |
9 | 71,346,676–71,377,254 | 1.19 | BovineHD0900019755 | MOXD1 | 4746 |
25 | 30,583,072–30,676,658 | 1.16 | BovineHD2500008480 | / | / |
3 | 60,766,989–60,828,010 | 1.15 | BovineHD0300018250 | TTLL7 | 317,902 |
1 | 49,845,978–49,930,370 | 1.14 | BTB-01076879 | ALCAM | 486,294 |
21 | 38,919,896–39,060,313 | 1.13 | BTB-00818234 | / | / |
9 | 88,466,483–88,498,915 | 1.01 | BovineHD0900024910 | PPP1R14C | within |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, Z.; Xu, L.; Yang, J.; Gao, H.; Zhang, L.; Gao, X.; Li, J.; Zhu, B. Weighted Single-Step Genome-Wide Association Study for Growth Traits in Chinese Simmental Beef Cattle. Genes 2020, 11, 189. https://doi.org/10.3390/genes11020189
Zhuang Z, Xu L, Yang J, Gao H, Zhang L, Gao X, Li J, Zhu B. Weighted Single-Step Genome-Wide Association Study for Growth Traits in Chinese Simmental Beef Cattle. Genes. 2020; 11(2):189. https://doi.org/10.3390/genes11020189
Chicago/Turabian StyleZhuang, Zhanwei, Lingyang Xu, Jie Yang, Huijiang Gao, Lupei Zhang, Xue Gao, Junya Li, and Bo Zhu. 2020. "Weighted Single-Step Genome-Wide Association Study for Growth Traits in Chinese Simmental Beef Cattle" Genes 11, no. 2: 189. https://doi.org/10.3390/genes11020189
APA StyleZhuang, Z., Xu, L., Yang, J., Gao, H., Zhang, L., Gao, X., Li, J., & Zhu, B. (2020). Weighted Single-Step Genome-Wide Association Study for Growth Traits in Chinese Simmental Beef Cattle. Genes, 11(2), 189. https://doi.org/10.3390/genes11020189