Characterization of a Homozygous Deletion of Steroid Hormone Biosynthesis Genes in Horse Chromosome 29 as a Risk Factor for Disorders of Sex Development and Reproduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Horses and Phenotypes
2.3. Genomic and BAC DNA Isolation and Quality Control
2.4. Primers and PCR Analysis
2.5. Fluorescence In Situ Hybridization (FISH)
2.6. Sequencing and Bioinformatics Analysis
3. Results
3.1. Identification of Additional Deletion Carriers
3.2. Demarcation Deletion Breakpoints
3.3. Gene Content of the Deleted Region
3.4. Detection of Deletion Heterozygotes by Quantitative PCR and FISH
3.5. Frequency of the Deletion Among Horses with Reproductive Problems and DSDs, and in General Population
4. Discussion
5. Conclusions and Future Approaches
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Access
References
- Audi, L.; Ahmed, S.F.; Krone, N.; Cools, M.; McElreavey, K.; Holterhus, P.M.; Greenfield, A.; Bashamboo, A.; Hiort, O.; Wudy, S.A.; et al. GENETICS IN ENDOCRINOLOGY: Approaches to molecular genetic diagnosis in the management of differences/disorders of sex development (DSD): Position paper of EU COST Action BM 1303 ‘DSDnet’. Eur. J. Endocrinol. 2018, 179, R197–R206. [Google Scholar] [CrossRef] [Green Version]
- Barseghyan, H.; Delot, E.C.; Vilain, E. New technologies to uncover the molecular basis of disorders of sex development. Mol. Cell Endocrinol. 2018, 468, 60–69. [Google Scholar] [CrossRef]
- Witchel, S.F. Disorders of sex development. Best Pract. Res. Clin. Obstet Gynaecol. 2018, 48, 90–102. [Google Scholar] [CrossRef]
- Baetens, D.; Verdin, H.; de Baere, E.; Cools, M. Update on the genetics of differences of sex development (DSD). Best Pract. Res. Clin. Endocrinol. Metab. 2019, 33, 101271. [Google Scholar] [CrossRef]
- Ono, M.; Harley, V.R. Disorders of sex development: New genes, new concepts. Nat. Rev. Endocrinol. 2013, 9, 79–91. [Google Scholar] [CrossRef]
- Penning, T.M.; Burczynski, M.E.; Jez, J.M.; Hung, C.F.; Lin, H.K.; Ma, H.; Moore, M.; Palackal, N.; Ratnam, K. Human 3alpha-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo-keto reductase superfamily: Functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Biochem. J. 2000, 351, 67–77. [Google Scholar]
- Hughes, I.A.; Houk, C.; Ahmed, S.F.; Lee, P.A.; Lawson Wilkins Pediatric Endocrine Society/European Society for Paediatric Endocrinology Consensus Group. Consensus statement on management of intersex disorders. J. Pediatr. Urol. 2006, 2, 148–162. [Google Scholar] [CrossRef]
- Kalfa, N.; Gaspari, L.; Ollivier, M.; Philibert, P.; Bergougnoux, A.; Paris, F.; Sultan, C. Molecular genetics of hypospadias and cryptorchidism recent developments. Clin. Genet. 2019, 95, 122–131. [Google Scholar] [CrossRef] [Green Version]
- Croft, B.; Ayers, K.; Sinclair, A.; Ohnesorg, T. Review disorders of sex development: The evolving role of genomics in diagnosis and gene discovery. Birth Defects Res. C Embryo Today 2016, 108, 337–350. [Google Scholar]
- Agoulnik, A.I.; Huang, Z.; Ferguson, L. Spermatogenesis in cryptorchidism. Methods Mol. Biol. 2012, 825, 127–147. [Google Scholar]
- Eggers, S.; Sadedin, S.; van den Bergen, J.A.; Robevska, G.; Ohnesorg, T.; Hewitt, J.; Lambeth, L.; Bouty, A.; Knarston, I.M.; Tan, T.Y.; et al. Disorders of sex development: Insights from targeted gene sequencing of a large international patient cohort. Genome Biol. 2016, 17, 243. [Google Scholar] [CrossRef] [Green Version]
- Raudsepp, T.; Chowdhary, B.P. Chromosome Aberrations and Fertility Disorders in Domestic Animals. Annu. Rev. Anim. Biosci. 2016, 4, 15–43. [Google Scholar] [CrossRef]
- Lear, T.L.; McGee, R.B. Disorders of sexual development in the domestic horse, Equus caballus. Sex. Dev. 2012, 6, 61–71. [Google Scholar] [CrossRef]
- Villagomez, D.A.; Lear, T.L.; Chenier, T.; Lee, S.; McGee, R.B.; Cahill, J.; Foster, R.A.; Reyes, E.; John, E.S.; King, W.A. Equine disorders of sexual development in 17 mares including XX, SRY-negative, XY, SRY-negative and XY, SRY-positive genotypes. Sex. Dev. 2011, 5, 16–25. [Google Scholar] [CrossRef]
- Villagomez, D.A.; Parma, P.; Radi, O.; di Meo, G.; Pinton, A.; Iannuzzi, L.; King, W.A. Classical and molecular cytogenetics of disorders of sex development in domestic animals. Cytogenet Genome Res. 2009, 126, 110–131. [Google Scholar] [CrossRef]
- Hayes, H.M. Epidemiological features of 5009 cases of equine cryptorchism. Equine Vet. J. 1986, 18, 467–471. [Google Scholar] [CrossRef]
- Villagomez, D.A.; Iannuzzi, L.; King, W.A. Disorders of sex development in domestic animals. Preface. Sex. Dev. 2012, 6, 5–6. [Google Scholar]
- Raudsepp, T.; Durkin, K.; Lear, T.L.; Das, P.J.; Avila, F.; Kachroo, P.; Chowdhary, B.P. Molecular heterogeneity of XY sex reversal in horses. Anim. Genet. 2010, 41, 41–52. [Google Scholar] [CrossRef]
- Révay, T.; Villagomez, D.A.; Brewer, D.; Chenier, T.; King, W.A. GTG mutation in the start codon of the androgen receptor gene in a family of horses with 64, XY disorder of sex development. Sex. Dev. 2012, 6, 108–116. [Google Scholar] [CrossRef]
- Bolzon, C.; Joone, C.J.; Schulman, M.L.; Harper, C.K.; Villagomez, D.A.; King, W.A.; Revay, T. Missense Mutation in the Ligand-Binding Domain of the Horse Androgen Receptor Gene in a Thoroughbred Family with Inherited 64,XY (SRY+) Disorder of Sex Development. Sex. Dev. 2016, 10, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Welsford, G.E.; Munk, R.; Villagomez, D.A.; Hyttel, P.; King, W.A.; Revay, T. Androgen Insensitivity Syndrome in a Family of Warmblood Horses Caused by a 25-bp Deletion of the DNA-Binding Domain of the Androgen Receptor Gene. Sex. Dev. 2017, 11, 40–45. [Google Scholar] [CrossRef]
- Ghosh, S.; Qu, Z.; Das, P.J.; Fang, E.; Juras, R.; Cothran, E.G.; McDonell, S.; Kenney, D.G.; Lear, T.L.; Adelson, D.L.; et al. Copy number variation in the horse genome. PLoS Genet. 2014, 10, e1004712. [Google Scholar] [CrossRef] [Green Version]
- Wade, C.M.; Giulotto, E.; Sigurdsson, S.; Zoli, M.; Gnerre, S.; Imsland, F.; Lear, T.L.; Adelson, D.L.; Bailey, E.; Bellone, R.R.; et al. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 2009, 326, 865–867. [Google Scholar] [CrossRef] [Green Version]
- Kalbfleisch, T.S.; Rice, E.S.; DePriest, M.S., Jr.; Walenz, B.P.; Hestand, M.S.; Vermeesch, J.R.; O’Connell, B.L.; Fiddes, I.T.; Vershinina, A.O.; Saremi, N.F.; et al. Improved reference genome for the domestic horse increases assembly contiguity and composition. Commun. Biol. 2018, 1, 197. [Google Scholar] [CrossRef] [Green Version]
- Solé, M.; Ablondi, M.; Binzer-Panchal, A.; Velie, B.D.; Hollfelder, N.; Buys, N.; Ducro, B.J.; Francois, L.; Janssens, S.; Schurink, A.; et al. Inter- and intra-breed genome-wide copy number diversity in a large cohort of European equine breeds. BMC Genom. 2019, 20, 759. [Google Scholar] [CrossRef] [Green Version]
- Velie, B.D.; Shrestha, M.; Franois, L.; Schurink, A.; Tesfayonas, Y.G.; Stinckens, A.; Blott, S.; Ducro, B.J.; Mikko, S.; Thomas, R.; et al. Using an Inbred Horse Breed in a High Density Genome-Wide Scan for Genetic Risk Factors of Insect Bite Hypersensitivity (IBH). PLoS ONE 2016, 11, e0152966. [Google Scholar] [CrossRef] [Green Version]
- Jagannathan, V.; Gerber, V.; Rieder, S.; Tetens, J.; Thaller, G.; Drogemuller, C.; Leeb, T. Comprehensive characterization of horse genome variation by whole-genome sequencing of 88 horses. Anim. Genet. 2019, 50, 74–77. [Google Scholar] [CrossRef]
- Untergasser, A.; Nijveen, H.; Rao, X.; Bisseling, T.; Geurts, R.; Leunissen, J.A. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007, 35, W71–W74. [Google Scholar] [CrossRef] [Green Version]
- Bodin, L.; Beaune, P.H.; Loriot, M.A. Determination of cytochrome P450 2D6 (CYP2D6) gene copy number by real-time quantitative PCR. J. Biomed. Biotechnol. 2005, 2005, 248–253. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Raudsepp, T.; Chowdhary, B.P. FISH for mapping single copy genes. Methods Mol. Biol. 2008, 422, 31–49. [Google Scholar]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, A.; Vilella, A.J.; Cuppen, E.; Nijman, I.J.; Prins, P. Sambamba: Fast processing of NGS alignment formats. Bioinformatics 2015, 31, 2032–2034. [Google Scholar] [CrossRef]
- Huddleston, J.; Ranade, S.; Malig, M.; Antonacci, F.; Chaisson, M.; Hon, L.; Sudmant, P.H.; Graves, T.A.; Alkan, C.; Dennis, M.Y.; et al. Reconstructing complex regions of genomes using long-read sequencing technology. Genome Res. 2014, 24, 688–696. [Google Scholar] [CrossRef] [Green Version]
- Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Bergman, N.H.; Phillippy, A.M. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017, 27, 722–736. [Google Scholar] [CrossRef] [Green Version]
- Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef]
- Rižner, T.L.; Penning, T.M. Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism. Steroids 2014, 79, 49–63. [Google Scholar] [CrossRef] [Green Version]
- Karunasinghe, N.; Masters, J.; Flanagan, J.U.; Ferguson, L.R. Influence of Aldo-keto Reductase 1C3 in Prostate Cancer-A Mini Review. Curr. Cancer Drug Targets 2017, 17, 603–616. [Google Scholar] [CrossRef]
- Usher, C.L.; McCarroll, S.A. Complex and multi-allelic copy number variation in human disease. Brief. Funct. Genom. 2015, 14, 329–338. [Google Scholar] [CrossRef] [Green Version]
- Doan, R.; Cohen, N.; Harrington, J.; Veazey, K.; Juras, R.; Cothran, G.; McCue, M.E.; Skow, L.; Dindot, S.V. Identification of copy number variants in horses. Genome Res. 2012, 22, 899–907. [Google Scholar] [CrossRef] [Green Version]
- Dupuis, M.C.; Zhang, Z.; Durkin, K.; Charlier, C.; Lekeux, P.; Georges, M. Detection of copy number variants in the horse genome and examination of their association with recurrent laryngeal neuropathy. Anim. Genet. 2013, 44, 206–208. [Google Scholar] [CrossRef]
- Fukami, M.; Homma, K.; Hasegawa, T.; Ogata, T. Backdoor pathway for dihydrotestosterone biosynthesis: Implications for normal and abnormal human sex development. Dev. Dyn. 2013, 242, 320–329. [Google Scholar] [CrossRef]
- Biason-Lauber, A.; Miller, W.L.; Pandey, A.V.; Fluck, C.E. Of marsupials and men: “Backdoor” dihydrotestosterone synthesis in male sexual differentiation. Mol. Cell Endocrinol. 2013, 371, 124–132. [Google Scholar] [CrossRef]
- Auchus, R.J. The backdoor pathway to dihydrotestosterone. Trends Endocrinol. Metab. 2004, 15, 432–438. [Google Scholar] [CrossRef]
- Hevir, N.; Vouk, K.; Sinkovec, J.; Ribic-Pucelj, M.; Rizner, T.L. Aldo-keto reductases AKR1C1, AKR1C2 and AKR1C3 may enhance progesterone metabolism in ovarian endometriosis. Chem. Biol. Interact. 2011, 191, 217–226. [Google Scholar] [CrossRef]
- Fluck, C.E.; Meyer-Boni, M.; Pandey, A.V.; Kempna, P.; Miller, W.L.; Schoenle, E.J.; Biason-Lauber, A. Why boys will be boys: Two pathways of fetal testicular androgen biosynthesis are needed for male sexual differentiation. Am. J. Hum. Genet. 2011, 89, 201–218. [Google Scholar] [CrossRef] [Green Version]
- Ishida, M.; Choi, J.H.; Hirabayashi, K.; Matsuwaki, T.; Suzuki, M.; Yamanouchi, K.; Horai, R.; Sudo, K.; Iwakura, Y.; Nishihara, M. Reproductive phenotypes in mice with targeted disruption of the 20alpha-hydroxysteroid dehydrogenase gene. J. Reprod Dev. 2007, 53, 499–508. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.H.; Ishida, M.; Matsuwaki, T.; Yamanouchi, K.; Nishihara, M. Involvement of 20alpha-hydroxysteroid dehydrogenase in the maintenance of pregnancy in mice. J. Reprod Dev. 2008, 54, 408–412. [Google Scholar] [CrossRef] [Green Version]
- Zarrei, M.; MacDonald, J.R.; Merico, D.; Scherer, S.W. A copy number variation map of the human genome. Nat. Rev. Genet. 2015, 16, 172–183. [Google Scholar] [CrossRef]
- Penning, T.M.; Drury, J.E. Human aldo-keto reductases: Function, gene regulation, and single nucleotide polymorphisms. Arch. Biochem. Biophys. 2007, 464, 241–250. [Google Scholar] [CrossRef] [Green Version]
- Redon, R.; Ishikawa, S.; Fitch, K.R.; Feuk, L.; Perry, G.H.; Andrews, T.D.; Fiegler, H.; Shapero, M.H.; Carson, A.R.; Chen, W.; et al. Global variation in copy number in the human genome. Nature 2006, 444, 444–454. [Google Scholar] [CrossRef] [Green Version]
- Bickhart, D.M.; Hou, Y.; Schroeder, S.G.; Alkan, C.; Cardone, M.F.; Matukumalli, L.K.; Song, J.; Schnabel, R.D.; Ventura, M.; Taylor, J.F.; et al. Copy number variation of individual cattle genomes using next-generation sequencing. Genome Res. 2012, 22, 778–790. [Google Scholar] [CrossRef] [Green Version]
- Iskow, R.C.; Gokcumen, O.; Lee, C. Exploring the role of copy number variants in human adaptation. Trends Genet. 2012, 28, 245–257. [Google Scholar] [CrossRef] [Green Version]
- Raudsepp, T.; Finno, C.J.; Bellone, R.R.; Petersen, J.L. Ten years of the horse reference genome: Insights into equine biology, domestication and population dynamics in the post-genome era. Anim. Genet. 2019, 50, 569–597. [Google Scholar] [CrossRef] [Green Version]
CHORI-241 BAC | Insert Size, bp | Location in EquCab3 | Use in This Study |
---|---|---|---|
076H13 | 185,817 | 4,148,266-4,334,082 | FISH, control |
067D20 | 136,746 | 29,675,975-29,812,720 | PacBio |
177J11 | 151,587 | 29,723,325-29,874,911 | PacBio |
023N13 | 159,470 | 29,745,215-29,904,684 | PacBio and FISH |
161K5 | 223,786 | 29,771,429-29,995,214 | PacBio |
Ensembl | Gene Symbol | Gene Name | Ensembl Transcripts | Ensembl Coordinates | NCBI | NCBI Transcripts | NCBI Coordinates |
---|---|---|---|---|---|---|---|
ENSECAG 00000021292 | AKR1C3 | Prostaglandin F synthase 1; Aldo-Keto Reductase Family 1 Member C3 | 10 | 29,762,757–29,916,689 | LOC 100070491 | 1; partial mRNA; low quality protein | 29,763,330–29,777,989 |
LOC 100070501 | 3 | 29,783,899–29,797,702 | |||||
LOC 100070509 | 3 | 29,821,260–29,834,688 | |||||
LOC 100070516 | 1 | 29,840,106–29,854,539 | |||||
LOC 100057212 | 2 | 29,890,576–29,916,671 | |||||
ENSECAG 00000031302 | AKR1C23L | Aldo-keto reductase family 1 member C23-like protein | 7 | 29,928,015–30,063,271 | LOC 100070528 | 6 | 29,928,409–29,944,738 |
ENSECAG 00000029817 | U6 | U6 splicesomal RNA gene | 1 | 29,911,416–29,911,522 | LOC 111771275 | 1 | 29,911,416–29,911,522 |
Phenotype | No. of Horses | Homozygotes, DD | Percent |
---|---|---|---|
DSD (non-cryptorchid) | 205 | 17 | 8.3 |
Cryptorchid | 159 | 15 | 9.4 |
Normal but subfertile/infertile | 258 | 21 | 8.1 |
All DSDs, subfertile, infertile | 622 | 53 | 8.1 |
Normal controls | 318 | 14 | 4.7 |
No. of Horses | Method | No. of Breeds | Breeds | D/D | D/D, % | Reference |
---|---|---|---|---|---|---|
280 | 670K | 1 | Exmoor pony | 0 | 0 | [26] |
88 | WGS | 25 | Akhal-Teke, American Paint, American Standardbred, Arabian, Polish Warmblood, Badenwürttemberg Warmblood, Bayer Warmblood, German Riding Pony; Holsteiner, Morgan, Franches-Montagnes, Hannoverian, Haflinger, Icelandic, Dutch Warmblood, Noriker, Oldenburger, American Quarter Horse, Swiss Warmblood, Shetland Pony, Thoroughbred, Trakehner, UK Warmblood, Westfale, Welsh Pony | 1 | 1.1 | [27] |
1755 | 670K | 8 | Ardenner, Belgian Draught, German Draught, Exmoor Pony, Vlaams Paard, Belgian Warmblood, Swedish Warmblood, Friesian | 135 | 7.6 | [25] |
TOTAL: 2403 | 32 | 136 | 5.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, S.; Davis, B.W.; Rosengren, M.; Jevit, M.J.; Castaneda, C.; Arnold, C.; Jaxheimer, J.; Love, C.C.; Varner, D.D.; Lindgren, G.; et al. Characterization of a Homozygous Deletion of Steroid Hormone Biosynthesis Genes in Horse Chromosome 29 as a Risk Factor for Disorders of Sex Development and Reproduction. Genes 2020, 11, 251. https://doi.org/10.3390/genes11030251
Ghosh S, Davis BW, Rosengren M, Jevit MJ, Castaneda C, Arnold C, Jaxheimer J, Love CC, Varner DD, Lindgren G, et al. Characterization of a Homozygous Deletion of Steroid Hormone Biosynthesis Genes in Horse Chromosome 29 as a Risk Factor for Disorders of Sex Development and Reproduction. Genes. 2020; 11(3):251. https://doi.org/10.3390/genes11030251
Chicago/Turabian StyleGhosh, Sharmila, Brian W. Davis, Maria Rosengren, Matthew J. Jevit, Caitlin Castaneda, Carolyn Arnold, Jay Jaxheimer, Charles C. Love, Dickson D. Varner, Gabriella Lindgren, and et al. 2020. "Characterization of a Homozygous Deletion of Steroid Hormone Biosynthesis Genes in Horse Chromosome 29 as a Risk Factor for Disorders of Sex Development and Reproduction" Genes 11, no. 3: 251. https://doi.org/10.3390/genes11030251
APA StyleGhosh, S., Davis, B. W., Rosengren, M., Jevit, M. J., Castaneda, C., Arnold, C., Jaxheimer, J., Love, C. C., Varner, D. D., Lindgren, G., Wade, C. M., & Raudsepp, T. (2020). Characterization of a Homozygous Deletion of Steroid Hormone Biosynthesis Genes in Horse Chromosome 29 as a Risk Factor for Disorders of Sex Development and Reproduction. Genes, 11(3), 251. https://doi.org/10.3390/genes11030251