Novel Variants in GDF9 Gene Affect Promoter Activity and Litter Size in Mongolia Sheep
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Standards
2.2. Animals
2.3. Re-Sequencing and Variants Detection in GDF9
2.4. Genotyping
2.4.1. iPLEX MassARRAY
2.4.2. PCR-Restriction Fragment Length Polymorphism (RFLP)
2.4.3. Direct Sequencing
2.5. Promoter Activity
2.5.1. Cell Culture
2.5.2. Plasmid Construction
2.5.3. Luciferase Reporter Assay
2.6. Bioinformatics Analysis
2.7. Statistical Analysis
3. Results
3.1. Association Analysis of 19 Known Variants with Litter Size in Mongolia Sheep
3.2. Variants Discovery in GDF9 of Mongolia Sheep
3.3. Linkage Disequilibrium Analysis of Novel Variants in GDF9
3.4. Associations Between Novel Variants and Litter Size
3.5. Associations Between Haplotypes and Litter Size
3.6. Genetic Diversity Analysis
3.7. GDF9 Promoter Activity Analysis in HEK293T
3.8. Effect of the LD-M1 on GDF9 Promoter Activity
4. Discussion
4.1. Source of FecBB Mutation in Mongolia Sheep Populations
4.2. Identification and Distribution of Novel Variants
4.3. Novel Variants and Haplotypes in Mongolia Sheep
4.4. Possible Effect of c.1040T>C Mutation of GDF9
4.5. Effect of Variants on Promoter Activity of GDF9
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mulsant, P.; Lecerf, F.; Fabre, S.; Schibler, L.; Monget, P.; Lanneluc, I.; Pisselet, C.; Riquet, J.; Monniaux, D.; Callebaut, I.; et al. Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Mérino ewes. Proc. Natl. Acad. Sci. USA 2001, 98, 5104–5109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, C.J.H.; MacDougall, C.; Campbell, B.K.; McNeilly, A.S.; Baird, D.T. The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1 B (BMPR1B) gene. J. Endocrinol. 2001, 169, R1–R6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, T.; Wu, X.Y.; Juengel, J.L.; Ross, I.K.; Lumsden, J.M.; Lord, E.A.; Dodds, K.G.; Walling, G.A.; McEwan, J.C.; O’Connell, A.R.; et al. Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells. Biol. Reprod. 2001, 64, 1225–1235. [Google Scholar] [CrossRef] [PubMed]
- Galloway, S.M.; McNatty, K.P.; Cambridge, L.M.; Laitinen, M.P.; Juengel, J.L.; Jokiranta, T.S.; McLaren, R.J.; Luiro, K.; Dodds, K.G.; Montgomery, G.W.; et al. Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat. Genet. 2000, 25, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Hanrahan, P.J.; Gregan, S.M.; Mulsant, P.; Mullen, M.; Davis, G.H.; Powell, R.; Galloway, S.M. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol. Reprod. 2004, 70, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Drouilhet, L.; Mansanet, C.; Sarry, J.; Tabet, K.; Bardou, P.; Woloszyn, F.; Lluch, J.; Harichaux, G.; Viguié, C.; Monniaux, D.; et al. The highly prolific phenotype of Lacaune sheep is associated with an ectopic expression of the B4GALNT2 gene within the ovary. PLoS Genet. 2013, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juengel, J.L.; French, M.C.; O’Connell, A.R.; Edwards, S.J.; Haldar, A.; Brauning, R.; Farquhar, P.A.; Dodds, K.G.; Galloway, S.M.; Johnstone, P.D.; et al. Mutations in the leptin receptor gene associated with delayed onset of puberty are also associated with decreased ovulation and lambing rates in prolific Davisdale sheep. Reprod. Fertil. 2015, 28, 1318–1325. [Google Scholar] [CrossRef]
- Davis, G.H.; Galloway, S.M.; Ross, I.K.; Gregan, S.M.; Ward, J.; Nimbkar, B.V.; Ghalsasi, P.M.; Nimbkar, C.; Gray, G.D.; Subandriyo, I.I.; et al. DNA tests in prolific sheep from eight countries provide new evidence on origin of the Booroola (FecB) mutation. Biol. Reprod. 2002, 66, 1869–1874. [Google Scholar] [CrossRef]
- Chu, M.X.; Liu, Z.H.; Jiao, C.L.; He, Y.Q.; Fang, L.; Ye, S.C.; Chen, G.H.; Wang, J.Y. Mutations in BMPR-IB and BMP-15 genes are associated with litter size in Small Tailed Han sheep (Ovis aries). J. Anim. Sci. 2007, 85, 598–603. [Google Scholar] [CrossRef]
- Guan, F.; Liu, S.R.; Shi, G.Q.; Yang, L.G. Polymorphism of FecB gene in nine sheep breeds or strains and its effects on litter size, lamb growth and development. Anim. Reprod. Sci. 2007, 99, 44–52. [Google Scholar] [CrossRef]
- Fogarty, N.M. A review of the effects of the Booroola gene (FecB) on sheep production. Small Ruminant Res. 2009, 85, 75–84. [Google Scholar] [CrossRef]
- Mahdavi, M.; Nanekarani, S.; Hosseini, S.D. Mutation in BMPR-IB gene is associated with litter size in Iranian Kalehkoohi sheep. Anim. Reprod. Sci. 2014, 147, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.S.; Geng, L.Y.; Du, L.X.; Liu, Z.Z.; Fu, Z.X.; Feng, M.S.; Gong, F.Y. Polymorphic study of FecX(G), FecG(H) and Fec(B) mutations in four domestic sheep breeds in the Lower Yellow River Valley of China. J. Anim. Vet. Adv. 2011, 10, 2198–2201. [Google Scholar] [CrossRef] [Green Version]
- Bodin, L.; Di-Pasquale, E.; Fabre, S.; Bontoux, M.; Monget, P.; Persani, L.; Mulsant, P. A novel mutation in the bone morphogenetic protein 15 gene causing defective protein secretion is associated with both increased ovulation rate and sterility in Lacaune sheep. Endocrinology 2007, 148, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Royo, A.; Jurado, J.J.; Smulders, J.P.; Marti, J.I.; Alabart, J.L.; Roche, A.; Fantova, E.; Bodin, L.; Mulsant, P.; Noreña, M.S.; et al. A deletion in the bone morphogenetic protein 15 gene causes sterility and increased prolificacy in Rasa Aragonesa sheep. Anim. Genet. 2008, 39, 294–297. [Google Scholar] [CrossRef]
- Demars, J.; Fabre, S.; Sarry, J.; Rossetti, R.; Gilbert, H.; Persani, L.; Tosser-Klopp, G.; Mulsant, P.; Nowak, Z.; Drobik, W.; et al. Genome-wide association studies identify two novel BMP15 mutations responsible for an atypical hyperprolificacy phenotype in sheep. PLoS Genet. 2013, 9, e1003482. [Google Scholar] [CrossRef]
- Lassoued, N.; Benkhlil, Z.; Woloszyn, F.; Rejeb, A.; Aouina, M.; Rekik, M.; Fabre, S.; Bedhiaf-Romdhani, S. FecX (Bar) a novel BMP15 mutation responsible for prolificacy and female sterility in Tunisian Barbarine sheep. BMC Genet. 2017, 18, 43. [Google Scholar] [CrossRef] [Green Version]
- Nicol, L.; Bishop, S.C.; Pong-Wong, R.; Bendixen, C.; Holm, L.E.; Rhind, S.M.; McNeilly, A.S. Homozygosity for a single base-pair mutation in the oocyte-specific GDF9 gene results in sterility in Thoka sheep. Reproduction 2009, 138, 921–933. [Google Scholar] [CrossRef] [Green Version]
- Silva, B.D.M.; Castro, E.A.; Souza, C.J.H.; Paiva, S.R.; Sartori, R.; Franco, M.M.; Azevedo, H.C.; Silva, T.A.; Vieira, A.M.; Neves, J.P.; et al. A new polymorphism in the Growth and Differentiation Factor 9 (GDF9) gene is associated with increased ovulation rate and prolificacy in homozygous sheep. Anim. Genet. 2011, 42, 89–92. [Google Scholar] [CrossRef] [Green Version]
- Moradband, F.; Rahimi, G.; Gholizadeh, M. Association of polymorphisms in fecundity genes of GDF9, BMP15 and BMP15-1B with litter size in Iranian Baluchi sheep. Asian Australas. J. Anim. Sci. 2011, 24, 1179–1183. [Google Scholar] [CrossRef]
- Våge, D.I.; Husdal, M.; Kent, M.P.; Klemetsdal, G.; Boman, I.A. A missense mutation in growth differentiation factor 9 (GDF9) is strongly associated with litter size in sheep. BMC Genet. 2013, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullen, M.P.; Hanrahan, J.P. Direct evidence on the contribution of a missense mutation in GDF9 to variation in ovulation rate of Finnish. PLoS ONE 2014, 9, e95251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, C.J.H.; McNeilly, A.S.; Benavides, M.V.; Melo, E.O.; Moraes, J.C.F. Mutation in the protease cleavage site of GDF9 increases ovulation rate and litter size in heterozygous ewes and causes infertility in homozygous ewes. Anim. Genet. 2014, 45, 732–739. [Google Scholar] [CrossRef] [Green Version]
- Bravo, S.; Larama, G.; Paz, E.; Inostroza, K.; Montaldo, H.H.; Sepúlveda, N. Polymorphism of the GDF9 gene associated with litter size in Araucana creole sheep. Anim. Genet. 2016, 47, 390–391. [Google Scholar] [CrossRef] [PubMed]
- China National Commission of Animal Genetic Resources (CNCAGR). Sheep and Goats, Animal Genetic Resources in China; China Agriculture Press: Beijing, China, 2011. [Google Scholar]
- Liu, Z.; Ji, Z.; Wang, G.; Chao, T.; Hou, L.; Wang, J. Genome-wide analysis reveals signatures of selection for important traits in domestic sheep from different ecoregions. BMC Genomics 2016, 17, 863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Li, W.R.; Lv, F.H.; He, S.G.; Tian, S.L.; Peng, W.F.; Sun, Y.W.; Zhao, Y.X.; Tu, X.L.; Zhang, M.; et al. Whole-genome sequencing of native sheep provides insights into rapid adaptations to extreme environments. Mol. Biol. Evol. 2016, 33, 2576–2592. [Google Scholar] [CrossRef] [Green Version]
- Hua, G.H.; Yang, L.G. A review of research progress of FecB gene in Chinese breeds of sheep. Anim. Reprod. Sci. 2009, 116, 1–9. [Google Scholar] [CrossRef]
- Liu, Y.B.; Rong, W.H.; Wang, F.; He, X.L.; Tian, C.Y.; Dalai. Association analysis between polymorphisms of BMP15 and GDF9 gene and litter size in Mongolia sheep (in Chinese). Anim. Husb. Feed Sci. 2010, 31, 136–138. [Google Scholar] [CrossRef]
- Otsuka, F.; McTavish, K.J.; Shimasaki, S. Integral role of GDF-9 and BMP-15 in ovarian function. Mol. Reprod. Dev. 2011, 78, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Matzuk, M.M.; Burns, K.H. Genetics of mammalian reproduction: Modeling the end of the germline. Annu. Rev. Physiol. 2012, 74, 503–528. [Google Scholar] [CrossRef]
- Bodensteiner, K.J.; Clay, C.M.; Moeller, C.L.; Sawyer, H.R. Molecular cloning of the ovine growth/differentiation factor-9 gene and expression of growth/differentiation factor-9 in ovine and bovine ovaries. Biol. Reprod. 1999, 60, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Juengel, J.L.; Hudson, N.L.; Heath, D.A.; Smith, P.; Reader, K.L.; Lawrence, S.B.; O’Connell, A.R.; Laitinen, M.P.; Cranfield, M.; Groome, N.P.; et al. Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular development in sheep. Biol. Reprod. 2002, 67, 1777–1789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandon-Pepin, B.; Oustry-Vaiman, A.; Vigier, B.; Piumi, F.; Cribiu, E.; Cotinot, C. Expression profiles and chromosomal localization of genes controlling meiosis and follicular development in the sheep ovary. Biol. Reprod. 2003, 68, 985–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdoli, R.; Zamani, P.; Mirhoseini, S.Z.; Ghavi Hossein-Zadeh, N.; Nadri, S. A review on prolificacy genes in sheep. Reprod. Domest. Anim. 2016, 51, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.S.; Gao, L.; Xie, X.L.; Ren, Y.L.; Shen, Z.Q.; Wang, F.; Shen, M.; Eyϸórsdóttir, E.; Hallsson, J.H.; Kiseleva, T.; et al. Genome-wide association analyses highlight the potential for different genetic mechanisms for litter size among sheep breeds. Front. Genet. 2018, 9, 118. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, S.; Ziaugra, L.; Tabbaa, D. SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr. Protoc. Hum. Genet. 2009. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Fornes, O.; Stigliani, A.; Gheorghe, M.; Castro-Mondragon, J.A.; Van der Lee, R.; Bessy, A.; Chèneby, J.; Kulkarni, S.R.; Tan, G.; et al. JASPAR 2018: Update of the open-access database of transcription factor binding profiles and its web framework. Nucleic. Acids Res. 2018, 46, D260–D266. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Sims, G.E.; Murphy, S.; Miller, J.R.; Chan, A.P. Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 2012, 7, e46688. [Google Scholar] [CrossRef] [Green Version]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef] [Green Version]
- Schrödinger. Prime; Schrödinger, LLC: New York, NY, USA, 2019. [Google Scholar]
- Schrödinger. Maestro; Schrödinger, LLC: New York, NY, USA, 2019. [Google Scholar]
- Padyana, A.K.; Vaidialingam, B.; Hayes, D.B.; Gupta, P.; Franti, M.; Farrow, N.A. Crystal structure of human GDF11. Acta Crystallogr. F Struct. Biol. Commun. 2016, 72, 160–164. [Google Scholar] [CrossRef] [Green Version]
- Nei, M.; Roychoudhury, A.K. Sampling variances of heterozygosity and genetic distance. Genetics 1974, 76, 379–390. [Google Scholar] [PubMed]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.Y.; He, L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005, 15, 97–98. [Google Scholar] [CrossRef] [PubMed]
- Nei, M. Mathematical model for studying genetic variation in terms of restriction endonuclease. Proc. Natl. Acad. Sci. USA 1979, 89, 1477–1481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sham, P.; Bader, J.S.; Craig, I.; O’Donovan, M.; Owen, M. DNA Pooling: A tool for large-scale association studies. Nat. Rev. Genet. 2002, 3, 862–871. [Google Scholar] [CrossRef]
- Feng, W.; Ma, Y.; Zhang, Z.; Zhou, D. Prolific Breeds of China. Prolific Sheep; CAB International: Wallingford, UK, 1996; pp. 146–151. [Google Scholar]
- Chang, T.S. Livestock production in China with particular reference to sheep. Wool Technol. Sheep Breeds 1979, 27, 19–28. [Google Scholar]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial ecoregions of the world: A new map of life on earth. Bioscience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Vinet, A.; Drouilhet, L.; Bodin, L.; Mulsant, P.; Fabre, S.; Phocas, F. Genetic control of multiple births in low ovulating mammalian species. Mamm. Genome 2012, 23, 727–740. [Google Scholar] [CrossRef]
- Drouilhet, L.; Lecerf, F.; Bodin, L.; Fabre, S.; Mulsant, P. Fine mapping of the FecL locus influencing prolificacy in Lacaune sheep. Anim. Genet. 2009, 40, 804–812. [Google Scholar] [CrossRef]
- Guo, X.; Wang, X.; Liang, B.; Di, R.; Liu, Q.; Hu, W.; He, X.; Zhang, J.; Zhang, X.; Chu, M. Molecular cloning of the B4GALNT2 gene and its single nucleotide polymorphisms association with litter size in Small Tail Han sheep. Animals 2018, 8, 160. [Google Scholar] [CrossRef] [Green Version]
- Ricordeau, G.; Thimonier, J.; Poivey, J.P.; Driancourt, M.A.; Hochereau-De-Reviers, M.T.; Tchamitchian, L. INRA. research on the romanov sheep breed in france: A review. Livest. Prod. Sci. 1990, 24, 305–332. [Google Scholar] [CrossRef]
- Shimasaki, S.; Moore, R.K.; Otsuka, F.; Erickson, G.F. The bone morphogenetic protein system in mammalian reproduction. Endocr. Rev. 2004, 25, 72–101. [Google Scholar] [CrossRef] [PubMed]
- Carabatsos, M.J.; Elvin, J.; Matzuk, M.M.; Albertini, D.F. Characterization of oocyte and follicle development in growth differentiation factor-9-deficient mice. Dev. Biol. 1998, 204, 373–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juengel, J.L.; Davis, G.H.; McNatty, K.P. Using sheep lines with mutations in single genes to better understand ovarian function. Reproduction 2013, 146, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Clark, E.L.; Bush, S.J.; Mcculloch, M.; Farquhar, I.L.; Young, R.; Lefevre, L.; Pridans, C.; Tsang, H.G.; Wu, C.; Afrasiabi, C.; et al. A high resolution atlas of gene expression in the domestic sheep (Ovis aries). PLoS Genet. 2017, 13, e1006997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouilly, J.; Bachelot, A.; Broutin, I.; Touraine, P.; Binart, N. Novel nobox loss-of-function mutations account for 6.2% of cases in a large primary ovarian insufficiency cohort. Hum. Mutat. 2011, 32, 1108–1113. [Google Scholar] [CrossRef] [PubMed]
- Bayne, R.A.; Kinnell, H.L.; Coutts, S.M.; He, J.; Childs, A.J.; Anderson, R.A. GDF9 is transiently expressed in oocytes before follicle formation in the human fetal ovary and is regulated by a novel NOBOX transcript. PLoS ONE 2015, 10, e0119819. [Google Scholar] [CrossRef]
- Monestier, O.; Servin, B.; Auclair, S.; Bourquard, T.; Poupon, A.; Pascal, G.; Fabre, S. Evolutionary origin of bone morphogenetic protein 15 and growth and differentiation factor 9 and differential selective pressure between mono- and polyovulating species. Biol. Reprod. 2014, 91, 83. [Google Scholar] [CrossRef]
Gene (Current GenBank Accession) 1 | Allele Symbol | Nucleotide Change | Amino Acid Change | Breed | Distribution | References |
---|---|---|---|---|---|---|
BMPRIB (NC_040257) | FecBB | c.746A>G | Q249R | Booroola Merino | Australia | [1,2,3] |
Javanese | Indonesia | [8] | ||||
Small | China | [9] | ||||
Hu | China | [10] | ||||
Garole | India | [11] | ||||
Kalehkoohi | Iran | [12] | ||||
Wadi | China | [13] | ||||
BMP15 (NC_040278) | FecXI | c.896T>A | V299D | Romney and Inverdale | New Zealand | [4] |
FecXH | c.871C>T | Q291Ter | Romney | New Zealand | [4] | |
FecXG | c.718C>T | Q239R | Belclare and Cambridge | Ireland and England | [5] | |
FecXB | c.1100G>T | S367I | Belclare | Ireland and England | [5] | |
FecXL | c.962G>A | C321Y | Lacaune | France | [14] | |
FecXR | c.525_541delTG GGTCCAGAAAAGCCC | - | Rasa Aragonesa | Spain | [15] | |
FecXO | c.1009A>C | N337H | Olkuska | Poland | [16] | |
FecXGr | c.950C>T | T317I | Givette | France | [16] | |
FecXBar | c.301G>T, c.302_304delCTA and c.310insC | - | Barbarine | Tunisia | [17] | |
GDF9 (NC_040256) | FecGH | c.1184C>T | S395F | Belclare and Cambridge | Ireland and England | [5] |
FecGT | c.1279A>C | S427R | Thoka | Ireland | [18] | |
FecGE | c.1034T>G | F345C | Santa Inês | Brazil | [19] | |
FecG1 | c.260G>A | R87H | Baluchi | Iran | [20] | |
FecGF | c.1111G>A | V371M | Norwegian White Sheep | Norway | [21,22] | |
FecGV | c.943C>T | R315C | Ile de France | Brazil | [23] | |
FecGA | c.994G>A | V332I | Araucana creole | Chile | [24] | |
B4GALNT2 (NC_040262) | FecLL | g.25929893T>A (g.36938224T>A) 2 | - | Lacaune | France | [6] |
LEPR (NC_040252) | FecDD | c.185C>T | R62C | Davisdale | New Zealand | [7] |
Breed | Abbreviation | Number of Ewes | Type |
---|---|---|---|
Mongolia | MG | 260 (single lamb 183 + twin lambs 77 (MG-T)) | Single birth |
Hulunbuir (big tail type) | HBB | 30 | Single birth |
Hulunbuir (short tail type) | HBS | 30 | Single birth |
Ujimqin | UM | 36 | Single birth |
Small-tailed Han | STH | 30 | Multiple birth |
Hu | Hu | 30 | Multiple birth |
Mutations | Genotypic Frequencies | Allelic Frequencies | Diversity Parameters | |||||||
---|---|---|---|---|---|---|---|---|---|---|
GG | AG | AA | G | A | Ho | He | ne | PIC 1 | χ² (HWE 2) | |
FecBB | 0.000 | 0.038 | 0.962 | 0.019 | 0.981 | 0.962 | 0.038 | 1.039 | 0.037 | 0.100 |
FecG1 | 0.004 | 0.104 | 0.892 | 0.056 | 0.944 | 0.895 | 0.105 | 1.118 | 0.100 | 0.051 |
FecGA | 0.854 | 0.138 | 0.008 | 0.923 | 0.077 | 0.858 | 0.142 | 1.166 | 0.132 | 0.163 |
Variant | Genotype | Number | Litter Size |
---|---|---|---|
g.46548349T>C | TT | 240 | 1.28 a ± 0.20 |
TC | 10 | 1.10 a ± 0.10 | |
g.46547934T>G in LD-M2 | TT | 156 | 1.22 a ± 0.17 |
GT | 85 | 1.36 a ± 0.23 | |
GG | 9 | 1.22 a ± 0.19 | |
g.46547876C>T | CC | 234 | 1.27 a ± 0.20 |
CT | 16 | 1.25 a ± 0.20 | |
g.46547859C>T in LD-M1 | CC | 204 | 1.21 a ± 0.16 |
CT | 44 | 1.57 b ± 0.25 | |
c.1040T>C | TT | 233 | 1.25 e ± 0.19 |
TC | 17 | 1.53 f ± 0.26 | |
g.46544883A>G | AA | 191 | 1.22 c ± 0.17 |
AG | 57 | 1.44 d ± 0.25 |
Haplotype | g.46548349T>C | g.46547934T>G in LD-M2 | g.46547876C>T | g.46547859C>T in LD-M1 | c.1040T>C | g.46544883A>G | Frequency |
---|---|---|---|---|---|---|---|
H1 | T | T | C | C | T | A | 0.734 |
H2 | T | G | C | C | T | A | 0.080 |
H3 | T | G | C | T | T | G | 0.072 |
Haplotype | Number | Frequency | Litter Size |
---|---|---|---|
H1H1 | 129 | 0.516 | 1.20 a ± 0.16 |
H1H2 | 33 | 0.132 | 1.12 c ± 0.11 |
H1H3 | 29 | 0.116 | 1.59 bd ± 0.25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, B.; Wang, J.; Cheng, Z.; Liu, J.; Wu, Y.; Li, Y.; Bai, C.; Zhao, S.; Yu, H.; Li, G. Novel Variants in GDF9 Gene Affect Promoter Activity and Litter Size in Mongolia Sheep. Genes 2020, 11, 375. https://doi.org/10.3390/genes11040375
Tong B, Wang J, Cheng Z, Liu J, Wu Y, Li Y, Bai C, Zhao S, Yu H, Li G. Novel Variants in GDF9 Gene Affect Promoter Activity and Litter Size in Mongolia Sheep. Genes. 2020; 11(4):375. https://doi.org/10.3390/genes11040375
Chicago/Turabian StyleTong, Bin, Jiapeng Wang, Zixuan Cheng, Jiasen Liu, Yiran Wu, Yunhua Li, Chunling Bai, Suwen Zhao, Haiquan Yu, and Guangpeng Li. 2020. "Novel Variants in GDF9 Gene Affect Promoter Activity and Litter Size in Mongolia Sheep" Genes 11, no. 4: 375. https://doi.org/10.3390/genes11040375
APA StyleTong, B., Wang, J., Cheng, Z., Liu, J., Wu, Y., Li, Y., Bai, C., Zhao, S., Yu, H., & Li, G. (2020). Novel Variants in GDF9 Gene Affect Promoter Activity and Litter Size in Mongolia Sheep. Genes, 11(4), 375. https://doi.org/10.3390/genes11040375