The Impact of the CFTR Gene Discovery on Cystic Fibrosis Diagnosis, Counseling, and Preventive Therapy
Abstract
:1. Introduction
2. Development of the IRT/DNA Screening Strategy
3. Improvements in IRT/DNA Screening Protocols
4. Application of Next Generation Sequencing
5. The Potentially Added Value of Genomic Sequencing
6. Prospects for a Primary DNA Screening Test
7. Incidental Findings and Implications of Emerging Data for Genetic Counseling
8. The Opportunities for Preventive Therapies
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scotet, V.; Gutierrez, H.; Farrell, P.M. Newborn Screening for CF across the Globe—Where Is It Worthwhile? Int. J. Neonatal Screen. 2020, 6, 18. [Google Scholar] [CrossRef] [Green Version]
- Grosse, S.D.; Boyle, C.A.; Botkin, J.R.; Comeau, A.M.; Kharrazi, M.; Rosenfeld, M.; Wilfond, B.S. Newborn Screening for Cystic Fibrosis: Evaluation of Benefits and Risks and Recommendations for State Newborn Screening Programs. In MMWR. Recommendations and Reports: Morbidity and Mortality Weekly Report. Recommendations and Reports; Centers for Disease Control and Prevention: Antlanta, GA, USA, 2004; Volume Voume 53, pp. 1–36. [Google Scholar]
- Farrell, P.; Gilbert-Barness, E.; Bell, J.; Gregg, R.; Mischler, E.; Odell, G.; Shahidi, N.; Robertson, I.; Evans, J. Progressive Malnutrition, Severe Anemia, Hepatic Dysfunction, and Respiratory Failure in a Three-Month-Old White Girl. Am. J. Med. Genet. 1993, 45, 725–738. [Google Scholar] [CrossRef] [PubMed]
- Accurso, F.J.; Sontag, M.K.; Wagener, J.S. Complications Associated with Symptomatic Diagnosis in Infants with Cystic Fibrosis. J. Pediatr. 2005, 147, S37–S41. [Google Scholar] [CrossRef] [PubMed]
- Kharrazi, M.; Yang, J.; Bishop, T.; Lessing, S.; Young, S.; Graham, S.; Pearl, M.; Chow, H.; Ho, T.; Currier, R.; et al. Newborn Screening for Cystic Fibrosis in California. Pediatrics 2015, 136, 1062–1072. [Google Scholar] [CrossRef] [Green Version]
- Shwachman, H.; Kulczycki, L.L. Long-Term Study of One Hundred Five Patients with Cystic Fibrosis: Studies Made Over a Five- to Fourteen-Year Period. AMA J. Dis. Child. 1958, 96, 6–15. [Google Scholar] [CrossRef]
- Bruns, W.T.; Connell, T.R.; Lacey, J.A.; Whisler, K.E. Test Strip Meconium Screening for Cystic Fibrosis. Am. J. Dis. Child. 1977, 131, 71–73. [Google Scholar] [CrossRef]
- Guthrie, R.; Susi, A. A Simple Phenylalanne Method for Detecting Phenylketonuria in Large Populations of Newborn Infants. Pediatrics 1963, 32, 338–343. [Google Scholar]
- Crossley, J.R.; Elliott, R.B.; Smith, P.A. Dried-Blood Spot Screening for Cystic Fibrosis in the Newborn. Lancet (Lond. Engl.) 1979, 1, 472–474. [Google Scholar] [CrossRef]
- Hammond, K.B.; Abman, S.H.; Sokol, R.J.; Accurso, F.J. Efficacy of Statewide Neonatal Screening for Cystic Fibrosis by Assay of Trypsinogen Concentrations. N. Engl. J. Med. 1991, 325, 769–774. [Google Scholar] [CrossRef]
- Taussig, L.M.; Boat, T.F.; Dayton, D.; Fost, N.; Hammond, K.; Holtzman, N.; Johnson, W.; Kaback, M.M.; Kennel, J.; Rosenstein, B.J.; et al. Neonatal Screening for Cystic Fibrosis: Position Paper. Pediatrics 1983, 72, 741–745. [Google Scholar]
- Kloosterboer, M.; Hoffman, G.; Rock, M.; Gershan, W.; Laxova, A.; Li, Z.; Farrell, P.M. Clarification of Laboratory and Clinical Variables That Influence Cystic Fibrosis Newborn Screening with Initial Analysis of Immunoreactive Trypsinogen. Pediatrics 2009, 123, e338–e346. [Google Scholar] [CrossRef] [PubMed]
- Therrell, B.L.; Hannon, W.H.; Hoffman, G.; Ojodu, J.; Farrell, P.M. Immunoreactive Trypsinogen (IRT) as a Biomarker for Cystic Fibrosis: Challenges in Newborn Dried Blood Spot Screening. Mol. Genet. Metab. 2012, 106, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kerem, B.S.; Rommens, J.M.; Buchanan, J.A.; Markiewicz, D.; Cox, T.K.; Chakravarti, A.; Buchwald, M.; Tsui, L.C. Identification of the Cystic Fibrosis Gene: Genetic Analysis. Science 1989, 245, 1073–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrell, P.M.; Kosorok, M.R.; Rock, M.J.; Laxova, A.; Zeng, L.; Lai, H.C.; Hoffman, G.; Laessig, R.H.; Splaingard, M.L. Early Diagnosis of Cystic Fibrosis through Neonatal Screening Prevents Severe Malnutrition and Improves Long-Term Growth. Pediatrics 2001, 107, 1–13. [Google Scholar] [CrossRef]
- Wilfond, B.; Gregg, R.G.; Laxova, A.; Hassemer, D.; Mischler, E.F.P. Mutation Analysis for CF Newborn Screening: A Two-Tiered Approach. Pediatr. Pulmonol. Suppl. 1991, 6, 238. [Google Scholar]
- Gregg, R.G.; Wilfond, B.S.; Farrell, P.M.; Laxova, A.; Hassemer, D.; Mischler, E.H. Application of DNA Analysis in a Population-Screening Program for Neonatal Diagnosis of Cystic Fibrosis (CF): Comparison of Screening Protocols. Am. J. Hum. Genet. 1993, 52, 616–626. [Google Scholar]
- Gregg, R.G.; Simantel, A.; Farrell, P.M.; Koscik, R.; Kosorok, M.R.; Laxova, A.; Laessig, R.; Hoffman, G.; Hassemer, D.; Mischler, E.H.; et al. Newborn Screening for Cystic Fibrosis in Wisconsin: Comparison of Biochemical and Molecular Methods. Pediatrics 1997, 99, 819–824. [Google Scholar] [CrossRef]
- Farrell, P.M.; Mischler, E.H.; Fost, N.C.; Wilfond, B.S.; Tluczek, A.; Gregg, R.G.; Bruns, W.T.; Hassemer, D.J.; Laessig, R.H. Current Issues in Neonatal Screening for Cystic Fibrosis and Implications of the CF Gene Discovery. Pediatr. Pulmonol. 1991, 11 (Suppl. 7), 11–18. [Google Scholar] [CrossRef]
- Jinks, D.C.; Minter, M.; Tarver, D.A.; Vanderford, M.; Hejtmancik, J.F.; McCabe, E.R.B. Molecular Genetic Diagnosis of Sickle Cell Disease Using Dried Blood Specimens on Blotters Used for Newborn Screening. Hum. Genet. 1989, 81, 363–366. [Google Scholar] [CrossRef]
- Rommens, J.; Kerem, B.S.; Greer, W.; Chang, P.; Tsui, L.C.; Ray, P. Rapid Nonradioactive Detection of the Major Cystic Fibrosis Mutation. Am. J. Hum. Genet. 1990, 46, 395–396. [Google Scholar]
- Rock, M.J.; Mischler, E.H.; Farrell, P.M.; Wei, L.J.; Bruns, W.T.; Hassemer, D.J.; Laessig, R.H. Newborn Screening for Cystic Fibrosis Is Complicated by Age-Related Decline in Immunoreactive Trypsinogen Levels. Pediatrics 1990, 85, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Farrell, P.M. Improving the Health of Patients with Cystic Fibrosis through Newborn Screening. Wisconsin Cystic Fibrosis Neonatal Screening Study Group. Adv. Pediatr. 2000, 47, 79–115. [Google Scholar] [PubMed]
- Ranieri, E.; Ryall, R.G.; Morris, C.P.; Nelson, P.V.; Carey, W.F.; Pollard, A.C.; Robertson, E.F. Neonatal Screening Strategy for Cystic Fibrosis Using Immunoreactive Trypsinogen and Direct Gene Anylysis. Br. Med. J. 1991, 302, 1237–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Férec, C.; Verlingue, C.; Parent, P.; Morin, J.F.; Codet, J.P.; Rault, G.; Dagorne, M.; Lemoigne, A.; Journel, H.; Roussey, M. Neonatal Screening for Cystic Fibrosis: Result of a Pilot Study Using Both Immunoreactive Trypsinogen and Cystic Fibrosis Gene Mutation Analyses. Hum. Genet. 1995, 96, 542–548. [Google Scholar] [CrossRef]
- Farrell, P.M.; Lai, H.C.J.; Li, Z.; Kosorok, M.R.; Laxova, A.; Green, C.G.; Collins, J.; Hoffman, G.; Laessig, R.; Rock, M.J.; et al. Evidence on Improved Outcomes with Early Diagnosis of Cystic Fibrosis through Neonatal Screening: Enough Is Enough! J. Pediatr. 2005, 147, S30–S36. [Google Scholar] [CrossRef]
- Campbell, P.W.; White, T.B. Newborn Screening for Cystic Fibrosis: An Opportunity to Improve Care and Outcomes. J. Pediatr. 2005, 147, S2–S5. [Google Scholar] [CrossRef]
- Ramsey, B.W.; Davies, J.; McElvaney, N.G.; Tullis, E.; Bell, S.C.; Dřevínek, P.; Griese, M.; McKone, E.F.; Wainwright, C.E.; Konstan, M.W.; et al. A CFTR Potentiator in Patients with Cystic Fibrosis and the G551D Mutation. N. Engl. J. Med. 2011, 365, 1663–1672. [Google Scholar] [CrossRef] [Green Version]
- Middleton, P.G.; Mall, M.A.; Dřevínek, P.; Lands, L.C.; McKone, E.F.; Polineni, D.; Ramsey, B.W.; Taylor-Cousar, J.L.; Tullis, E.; Vermeulen, F.; et al. Elexacaftor-Tezacaftor-Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N. Engl. J. Med. 2019, 381, 1809–1819. [Google Scholar] [CrossRef]
- Borowitz, D.; Robinson, K.A.; Rosenfeld, M.; Davis, S.D.; Sabadosa, K.A.; Spear, S.L.; Michel, S.H.; Parad, R.B.; White, T.B.; Farrell, P.M.; et al. Cystic Fibrosis Foundation Evidence-Based Guidelines for Management of Infants with Cystic Fibrosis. J. Pediatr. 2009, 155 (Suppl. 6), S73–S93. [Google Scholar] [CrossRef]
- Rock, M.J.; Levy, H.; Zaleski, C.; Farrell, P.M. Factors Accounting for a Missed Diagnosis of Cystic Fibrosis after Newborn Screening. Pediatr. Pulmonol. 2011, 46, 1166–1174. [Google Scholar] [CrossRef] [Green Version]
- Comeau, A.M.; Parad, R.B.; Dorkin, H.L.; Dovey, M.; Gerstle, R.; Haver, K.; Lapey, A.; O’Sullivan, B.P.; Waltz, D.A.; Zwerdling, R.G.; et al. Population-Based Newborn Screening for Genetic Disorders When Multiple Mutation DNA Testing Is Incorporated: A Cystic Fibrosis Newborn Screening Model Demonstrating Increased Sensitivity but More Carrier Detections. Pediatrics 2004, 113, 1573–1581. [Google Scholar] [CrossRef] [PubMed]
- Kerem, E.; Kerem, B. Genotype-phenotype Correlations in Cystic Fibrosis. Pediatr. Pulmonol. 1996, 22, 387–395. [Google Scholar] [CrossRef]
- De Boeck, K. Cystic Fibrosis in the Year 2020: A Disease with a New Face. In Acta Paediatrica, International Journal of Paediatrics; Blackwell Publishing Ltd.: Oxford, UK, 2020. [Google Scholar] [CrossRef]
- Sommerburg, O.; Hammermann, J.; Lindner, M.; Stahl, M.; Muckenthaler, M.; Kohlmueller, D.; Happich, M.; Kulozik, A.E.; Stopsack, M.; Gahr, M.; et al. Five Years of Experience with Biochemical Cystic Fibrosis Newborn Screening Based on IRT/PAP in Germany. Pediatr. Pulmonol. 2015, 50, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Munck, A.; Mayell, S.J.; Winters, V.; Shawcross, A.; Derichs, N.; Parad, R.; Barben, J.; Southern, K.W. Cystic Fibrosis Screen Positive, Inconclusive Diagnosis (CFSPID): A New Designation and Management Recommendations for Infants with an Inconclusive Diagnosis Following Newborn Screening. J. Cyst. Fibros. 2015, 14, 706–713. [Google Scholar] [CrossRef] [Green Version]
- Ren, C.L.; Borowitz, D.S.; Gonska, T.; Howenstine, M.S.; Levy, H.; Massie, J.; Milla, C.; Munck, A.; Southern, K.W. Cystic Fibrosis Transmembrane Conductance Regulator-Related Metabolic Syndrome and Cystic Fibrosis Screen Positive, Inconclusive Diagnosis. J. Pediatr. 2017, 181, S45–S51.e1. [Google Scholar] [CrossRef] [Green Version]
- Sontag, M.K.; Wright, D.; Beebe, J.; Accurso, F.J.; Sagel, S.D. A New Cystic Fibrosis Newborn Screening Algorithm: IRT/IRT1↑/DNA. J. Pediatr. 2009, 155, 618–622. [Google Scholar] [CrossRef]
- CLSI. Newborn Screening for Cystic Fibrosis, 2nd ed.; CLSI guideline NBS05; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019. [Google Scholar]
- Di Sant’Agnese, P.A. Neonatal and General Aspects of Cystic Fibrosis. In Current Topics in Clinical Chemistry-Clinical Biochemistry of the Neonate; Young, D.C., Hicks, J.M., Eds.; John Wiley and Sons Inc.: New York, NY, USA, 1976. [Google Scholar]
- Reardon, M.C.; Hammond, K.B.; Accurso, F.J.; Fisher, C.D.; McCabe, E.R.B.; Cotton, E.K.; Bowman, C.M. Nutritional Deficits Exist before 2 Months of Age in Some Infants with Cystic Fibrosis Identified by Screening Test. J. Pediatr. 1984, 105, 271–274. [Google Scholar] [CrossRef]
- Allen, D.B.; Farrell, P.M. Newborn Screening: Principles and Practice. Adv. Pediatr. 1996, 43, 231–270. [Google Scholar]
- Zielenski, J.; Fujiwara, T.M.; Markiewicz, D.; Paradis, A.J.; Anacleto, A.I.; Richards, B.; Schwartz, R.H.; Klinger, K.W.; Tsui, L.C.; Morgan, K. Identification of the M1101K Mutation in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Gene and Complete Detection of Cystic Fibrosis Mutations in the Hutterite Population. Am. J. Hum. Genet. 1993, 52, 609–615. [Google Scholar]
- Watts, K.D.; Layne, B.; Harris, A.; McColley, S.A. Hispanic Infants with Cystic Fibrosis Show Low CFTR Mutation Detection Rates in the Illinois Newborn Screening Program. J. Genet. Couns. 2012, 21, 671–675. [Google Scholar] [CrossRef]
- Baker, M.W.; Atkins, A.E.; Cordovado, S.K.; Hendrix, M.; Earley, M.C.; Farrell, P.M. Improving Newborn Screening for Cystic Fibrosis Using Next-Generation Sequencing Technology: A Technical Feasibility Study. Genet. Med. 2016, 18, 231–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, E.E.; Stevens, C.F.; Saavedra-Matiz, C.A.; Tavakoli, N.P.; Krein, L.M.; Parker, A.; Zhang, Z.; Maloney, B.; Vogel, B.; DeCelie-Germana, J.; et al. Clinical Sensitivity of Cystic Fibrosis Mutation Panels in a Diverse Population. Hum. Mutat. 2016, 37, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Metzker, M.L. Sequencing Technologies the next Generation. Nat. Rev. Genet. 2010, 31–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sosnay, P.R.; Siklosi, K.R.; Van Goor, F.; Kaniecki, K.; Yu, H.; Sharma, N.; Ramalho, A.S.; Amaral, M.D.; Dorfman, R.; Zielenski, J.; et al. Defining the Disease Liability of Variants in the Cystic Fibrosis Transmembrane Conductance Regulator Gene. Nat. Genet. 2013, 45, 1160–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sosnay, P.R.; Salinas, D.B.; White, T.B.; Ren, C.L.; Farrell, P.M.; Raraigh, K.S.; Girodon, E.; Castellani, C. Applying Cystic Fibrosis Transmembrane Conductance Regulator Genetics and CFTR2 Data to Facilitate Diagnoses. J. Pediatr. 2017, 181, S27.e1–S32.e1. [Google Scholar] [CrossRef] [Green Version]
- Baker, M.W.; Grossman, W.J.; Laessig, R.H.; Hoffman, G.L.; Brokopp, C.D.; Kurtycz, D.F.; Cogley, M.F.; Litsheim, T.J.; Katcher, M.L.; Routes, J.M. Development of a Routine Newborn Screening Protocol for Severe Combined Immunodeficiency. J. Allergy Clin. Immunol. 2009, 124, 522–527. [Google Scholar] [CrossRef]
- Vill, K.; Kölbel, H.; Schwartz, O.; Blaschek, A.; Olgemöller, B.; Harms, E.; Burggraf, S.; Röschinger, W.; Durner, J.; Gläser, D.; et al. One Year of Newborn Screening for SMA – Results of a German Pilot Project. J. Neuromuscul. Dis. 2019, 6, 503–515. [Google Scholar] [CrossRef] [Green Version]
- Fabie, N.A.V.; Pappas, K.B.; Feldman, G.L. The Current State of Newborn Screening in the United States. In Pediatric Clinics of North America; W.B. Saunders: Philadelphia, PA, USA, 2019; pp. 369–386. [Google Scholar] [CrossRef]
- O’Neal, W.K.; Knowles, M.R. Cystic Fibrosis Disease Modifiers: Complex Genetics Defines the Phenotypic Diversity in a Monogenic Disease. Annu. Rev. Genomics Hum. Genet. 2018, 19, 201–222. [Google Scholar] [CrossRef] [Green Version]
- Petrikin, J.E.; Willig, L.K.; Smith, L.D.; Kingsmore, S.F. Rapid Whole Genome Sequencing and Precision Neonatology. In Seminars in Perinatology; W.B. Saunders: Philadelphia, PA, USA, 2015; pp. 623–631. [Google Scholar] [CrossRef] [Green Version]
- Willig, L.K.; Petrikin, J.E.; Smith, L.D.; Saunders, C.J.; Thiffault, I.; Miller, N.A.; Soden, S.E.; Cakici, J.A.; Herd, S.M.; Twist, G.; et al. Whole-Genome Sequencing for Identification of Mendelian Disorders in Critically Ill Infants: A Retrospective Analysis of Diagnostic and Clinical Findings. Lancet Respir. Med. 2015, 3, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Lai, H.J.; Shoff, S.M.; Farrell, P.M. Recovery of Birth Weight z Score within 2 Years of Diagnosis Is Positively Associated with Pulmonary Status at 6 Years of Age in Children with Cystic Fibrosis. Pediatrics 2009, 123, 714–722. [Google Scholar] [CrossRef] [Green Version]
- Sanders, D.B.; Zhang, Z.; Farrell, P.M.; Lai, H.C.J. Early Life Growth Patterns Persist for 12 years and Impact Pulmonary Outcomes in Cystic Fibrosis. J. Cyst. Fibros. 2018, 17, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Wilk, M.A.; Braun, A.T.; Farrell, P.M.; Laxova, A.; Brown, D.M.; Holt, J.M.; Birch, C.L.; Sosonkina, N.; Wilk, B.M.; Worthey, E.A. Applying Whole-Genome Sequencing in Relation to Phenotype and Outcomes in Siblings with Cystic Fibrosis. Cold Spring Harb. Mol. Case Stud. 2020, 6. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.J.; Lu, Q.; Chin, L.H.; Wilk, M.; Worthey, E.; the FIRST Study Group. Whole-Genome Sequencing Reveals That Genetic Variations Predict Effectiveness of Vitamin D Supplemntation in Young Children with CF. Cyst. Fibros. Suppl. 2019, 18, S47. [Google Scholar] [CrossRef]
- Watson, M.S.; Cutting, G.R.; Desnick, R.J.; Driscoll, D.A.; Klinger, K.; Mennuti, M.; Palomaki, G.E.; Popovich, B.W.; Pratt, V.M.; Rohlfs, E.M.; et al. Cystic Fibrosis Population Carrier Screening: 2004 Revision of American College of Medical Genetics Mutation Panel. Genet. Med. 2004, 387–391. [Google Scholar] [CrossRef] [Green Version]
- Dankert-Roelse, J.E.; Bouva, M.J.; Jakobs, B.S.; Janssens, H.M.; de Winter-de Groot, K.M.; Schönbeck, Y.; Gille, J.J.P.; Gulmans, V.A.M.; Verschoof-Puite, R.K.; Schielen, P.C.J.I.; et al. Newborn Blood Spot Screening for Cystic Fibrosis with a Four-Step Screening Strategy in The Netherlands. J. Cyst. Fibros. 2019, 18, 54–63. [Google Scholar] [CrossRef]
- Scotet, V.; Audrézet, M.P.; Roussey, M.; Rault, G.; Dirou-Prigent, A.; Journel, H.; Moisan-Petit, V.; Storni, V.; Férec, C. Immunoreactive Trypsin/DNA Newborn Screening for Cystic Fibrosis: Should the R117H Variant Be Included in CFTR Mutation Panels? Pediatrics 2006, 118, e1523–e1529. [Google Scholar] [CrossRef]
- Serre, J.L.; Simon-Bouy, B.; Mornet, E.; Jaume-Roig, B.; Balassopoulou, A.; Schwartz, M.; Taillandier, A.; Boué, J.; Boué, A. Studies of RFLP Closely Linked to the Cystic Fibrosis Locus throughout Europe Lead to New Considerations in Populations Genetics. Hum. Genet. 1990, 84, 449–454. [Google Scholar] [CrossRef]
- Farrell, P.; Férec, C.; Macek, M.; Frischer, T.; Renner, S.; Riss, K.; Barton, D.; Repetto, T.; Tzetis, M.; Giteau, K.; et al. Estimating the Age of p.(Phe508del) with Family Studies of Geographically Distinct European Populations and the Early Spread of Cystic Fibrosis. Eur. J. Hum. Genet. 2018, 26, 1832–1839. [Google Scholar] [CrossRef] [Green Version]
- Poolman, E.M.; Galvani, A.P. Evaluating Candidate Agents of Selective Pressure for Cystic Fibrosis. J. R. Soc. Interface 2007, 4, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Price, T. Europe before Rome; Oxford University Press: New York, NY, USA, 2013. [Google Scholar]
- Romeo, G.; Devoto, M.; Galietta, L.J. Why Is the Cystic Fibrosis Gene so Frequent? Hum. Genet. 1989, 84, 1–5. [Google Scholar] [CrossRef]
- Scotet, V.; De Braekeleer, M.; Audrézet, M.P.; Lodé, L.; Verlingue, C.; Quéré, I.; Mercier, B.; Duguépéroux, I.; Codet, J.P.; Moineau, M.P.; et al. Prevalence of CFTR Mutations in Hypertrypsinaemia Detected through Neonatal Screening for Cystic Fibrosis. Clin. Genet. 2001, 59, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Castellani, C.; Picci, L.; Scarpa, M.; Dechecchi, M.C.; Zanolla, L.; Assael, B.M.; Zacchello, F. Cystic Fibrosis Carriers Have Higher Neonatal Immunoreactive Trypsinogen Values than Non-Carriers. Am. J. Med. Genet. 2005, 135 A, 142–144. [Google Scholar] [CrossRef]
- Sant’Agnese, P.A.; Powell, G.F. The Eccrine Sweat Defect in Cystic Fibrosis of the Pancrease (mucoviscidosis). Ann. N. Y. Acad. Sci. 1962, 93, 555–599. [Google Scholar] [CrossRef]
- Sproul, A.; Huang, N. Diagnosis of Heterozygosity for Cystic Fibrosis by Discriminatory Analysis of Sweat Chloride Distribution. J. Pediatr. 1966, 69, 759–770. [Google Scholar] [CrossRef]
- Farrell, P.M.; Koscik, R.E. Sweat Chloride Concentrations in Infants Homozygous or Heterozygous for F508 Cystic Fibrosis. Pediatrics 1996, 97, 524–528. [Google Scholar] [PubMed]
- Miller, A.C.; Comellas, A.P.; Hornick, D.B.; Stoltz, D.A.; Cavanaugh, J.E.; Gerke, A.K.; Welsh, M.J.; Zabner, J.; Polgreen, P.M. Cystic Fibrosis Carriers Are at Increased Risk for a Wide Range of Cystic Fibrosis-Related Conditions. Proc. Natl. Acad. Sci. USA 2020, 117, 1621–1627. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.J.; Kim, J.; McWilliams, R.; Cutting, G.R. Increased Prevalence of Chronic Rhinosinusitis in Carriers of a Cystic Fibrosis Mutation. Arch. Otolaryngol.-Head Neck Surg. 2005, 131, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Cohn, J.A.; Neoptolemos, J.P.; Feng, J.; Yan, J.; Jiang, Z.; Greenhalf, W.; McFaul, C.; Mountford, R.; Sommer, S.S. Increased Risk of Idiopathic Chronic Pancreatitis in Cystic Fibrosis Carriers. Hum. Mutat. 2005, 26, 303–307. [Google Scholar] [CrossRef]
- Sharer, N.; Schwarz, M.; Malone, G.; Howarth, A.; Painter, J.; Super, M.; Braganza, J. Mutations of the Cystic Fibrosis Gene in Patients with Chronic Pancreatitis. N. Engl. J. Med. 1998, 339, 645–652. [Google Scholar] [CrossRef]
- Bombieri, C.; Claustres, M.; De Boeck, K.; Derichs, N.; Dodge, J.; Girodon, E.; Sermet, I.; Schwarz, M.; Tzetis, M.; Wilschanski, M.; et al. Recommendations for the Classification of Diseases as CFTR-Related Disorders. J. Cyst. Fibros. 2011, 10 (Suppl. 2), S86–S102. [Google Scholar] [CrossRef] [Green Version]
- Tluczek, A.; McKechnie, A.C.; Brown, R.L. Factors Associated with Parental Perception of Child Vulnerability 12 Months after Abnormal Newborn Screening Results. Res. Nurs. Heal. 2011, 34, 389–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, R.M.; Brosious, E.M.; Holland, S.; Wright, J.M.; Serjeant, G.R. Use of Blood Specimens Collected on Filter Paper in Screening for Abnormal Hemoglobins. Clin. Chem. 1976, 22, 685–687. [Google Scholar] [CrossRef] [PubMed]
- Naik, R.P.; Smith-Whitley, K.; Hassell, K.L.; Umeh, N.I.; De Montalembert, M.; Sahota, P.; Haywood, C.; Jenkins, J.; Lloyd-Puryear, M.A.; Joiner, C.H.; et al. Clinical Outcomes Associated with Sickle Cell Trait: A Systematic Review. Ann. Intern. Med. 2018, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Podduturi, V.; Guileyardo, J.M. Sickle Cell Trait as a Contributory Cause of Death in Natural Disease. J. Forens. Sci. 2015, 60, 807–811. [Google Scholar] [CrossRef]
- Pecker, L.H.; Naik, R.P. The Current State of Sickle Cell Trait: Implications for Reproductive and Genetic Counseling. Blood 2018, 2331–2338. [Google Scholar] [CrossRef] [Green Version]
- Shephard, R.J. Sickle Cell Trait: What Are the Costs and Benefits of Screening? In Journal of Sports Medicine and Physical Fitness; Edizioni Minerva Medica: Turin, Italy, 2016; pp. 1562–1573. [Google Scholar]
- Wheeler, P.G.; Smith, R.; Dorkin, H.; Parad, R.B.; Comeau, A.M.; Bianchi, D.W. Genetic Counseling after Implementation of Statewide Cystic Fibrosis Newborn Screening: Two Years’ Experience in One Medical Center. Genet. Med. 2001, 3, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Cavanagh, L.; Compton, C.J.; Tluczek, A.; Brown, R.L.; Farrell, P.M. Long-Term Evaluation of Genetic Counseling Following False-Positive Newborn Screen for Cystic Fibrosis. J. Genet. Couns. 2010, 19, 199–210. [Google Scholar] [CrossRef] [Green Version]
- Clancy, J.P.; Cotton, C.U.; Donaldson, S.H.; Solomon, G.M.; VanDevanter, D.R.; Boyle, M.P.; Gentzsch, M.; Nick, J.A.; Illek, B.; Wallenburg, J.C.; et al. CFTR Modulator Theratyping: Current Status, Gaps and Future Directions. J. Cyst. Fibrosis 2019, 22–34. [Google Scholar] [CrossRef] [Green Version]
- Bellin, M.D.; Laguna, T.; Leschyshyn, J.; Regelmann, W.; Dunitz, J.; Billings, J.; Moran, A. Insulin Secretion Improves in Cystic Fibrosis Following Ivacaftor Correction of CFTR: A Small Pilot Study. Pediatr. Diabetes 2013, 14, 417–421. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, M.; Wainwright, C.E.; Higgins, M.; Wang, L.T.; McKee, C.; Campbell, D.; Tian, S.; Schneider, J.; Cunningham, S.; Davies, J.C.; et al. Ivacaftor Treatment of Cystic Fibrosis in Children Aged 12 to <24 Months and with a CFTR Gating Mutation (ARRIVAL): A Phase 3 Single-Arm Study. Lancet Respir. Med. 2018, 6, 545–553. [Google Scholar] [CrossRef]
- Rosenfeld, M.; Cunningham, S.; Harris, W.T.; Lapey, A.; Regelmann, W.E.; Sawicki, G.S.; Southern, K.W.; Chilvers, M.; Higgins, M.; Tian, S.; et al. An Open-Label Extension Study of Ivacaftor in Children with CF and a CFTR Gating Mutation Initiating Treatment at Age 2–5 years (KLIMB). J. Cyst. Fibros. 2019, 18, 838–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stallings, V.A.; Stark, L.J.; Robinson, K.A.; Feranchak, A.P.; Quinton, H. Evidence-Based Practice Recommendations for Nutrition-Related Management of Children and Adults with Cystic Fibrosis and Pancreatic Insufficiency: Results of a Systematic Review. J. Am. Diet. Assoc. 2008, 108, 832–839. [Google Scholar] [CrossRef] [PubMed]
- Shoff, S.M.; Ahn, H.Y.; Davis, L.; Lai, H.C.; Douglas, J.; Fost, N.; Green, C.; Gregg, R.; Kosorok, M.; Laessig, R.; et al. Temporal Associations among Energy Intake, Plasma Linoleic Acid, and Growth Improvement in Response to Treatment Initiation after Diagnosis of Cystic Fibrosis. Pediatrics 2006, 117, 391–400. [Google Scholar] [CrossRef] [PubMed]
1. Increased sensitivity → improved validity |
2. Accelerated screening test completion by 5–7 days → 2-week diagnoses |
3. Enables simultaneous determination of genotype |
a. Allowing prediction of pancreatic functional status |
b. Facilitating selection of CFTR modulator for preventive therapy |
4. Eliminates 2-week recall specimen collection (avoid loss of infants to follow up) |
5. Avoid problem of rapidly decreasing IRT as infants “age” |
6. Provides presumptive (genetic) diagnosis in at least 75% of cases |
7. Facilitates planning for follow-up of IRT/DNA positive infants |
a. With 2 mutations, the parents’ knowledge of probable CF prior to the |
sweat test facilitates immediate education and treatment |
b. Facilitates rapid interpretation of intermediate sweat chloride levels |
c. With 1 mutation, there is a low (~3%) residual risk or probability of CF |
8. Eliminates low APGAR false IRT positive problems due to perinatal stress, particularly in premature infants with low APGAR scores |
9. Reduces or eliminates the problems associated with higher IRT levels in African American babies |
10. Identifies heterozygote carrier families for the genetic counseling benefit |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farrell, P.M.; Rock, M.J.; Baker, M.W. The Impact of the CFTR Gene Discovery on Cystic Fibrosis Diagnosis, Counseling, and Preventive Therapy. Genes 2020, 11, 401. https://doi.org/10.3390/genes11040401
Farrell PM, Rock MJ, Baker MW. The Impact of the CFTR Gene Discovery on Cystic Fibrosis Diagnosis, Counseling, and Preventive Therapy. Genes. 2020; 11(4):401. https://doi.org/10.3390/genes11040401
Chicago/Turabian StyleFarrell, Philip M., Michael J. Rock, and Mei W. Baker. 2020. "The Impact of the CFTR Gene Discovery on Cystic Fibrosis Diagnosis, Counseling, and Preventive Therapy" Genes 11, no. 4: 401. https://doi.org/10.3390/genes11040401
APA StyleFarrell, P. M., Rock, M. J., & Baker, M. W. (2020). The Impact of the CFTR Gene Discovery on Cystic Fibrosis Diagnosis, Counseling, and Preventive Therapy. Genes, 11(4), 401. https://doi.org/10.3390/genes11040401