Statistics in the Genomic Era
Author Contributions
Funding
Conflicts of Interest
References
- Schena, M.; Shalon, D.; Heller, R.; Chai, A.; Brown, P.O.; Davis, R.W. Parallel human genome analysis: Microarray-based expression monitoring of 1000 genes. Proc. Natl. Acad. Sci. USA 1996, 93, 10614–10619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wu, M.; Ma, S. Integrative Analysis of Cancer Omics Data for Prognosis Modeling. Genes 2019, 10, 604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomczak, K.; Czerwińska, P.; Wiznerowicz, M. The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge. Contemp. Oncol. 2015, 19, A68. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Di, Y. Model-Based Clustering with Measurement or Estimation Errors. Genes 2020, 11, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraley, C.; Raftery, A.E. Enhanced model-based clustering, density estimation, and discriminant analysis software: MCLUST. J. Classif. 2003, 20, 263–286. [Google Scholar] [CrossRef]
- Zeng, L.; Yu, Z.; Zhao, H. A Pathway-Based Kernel Boosting Method for Sample Classification Using Genomic Data. Genes 2019, 10, 670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Z.; Li, H. Nonparametric pathway-based regression models for analysis of genomic data. Biostatistics 2007, 8, 265–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luan, Y.; Li, H. Group additive regression models for genomic data analysis. Biostatistics 2008, 9, 100–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q. Testing Differential Gene Networks under Nonparanormal Graphical Models with False Discovery Rate Control. Genes 2020, 11, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W. Structural similarity and difference testing on multiple sparse Gaussian graphical models. Ann. Stat. 2017, 45, 2680–2707. [Google Scholar] [CrossRef]
- Meissner, A.; Gnirke, A.; Bell, G.W.; Ramsahoye, B.; Lander, E.S.; Jaenisch, R. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 2005, 33, 5868–5877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunbar, F.; Xu, H.; Ryu, D.; Ghosh, S.; Shi, H.; George, V. Detection of Differentially Methylated Regions Using Bayes Factor for Ordinal Group Responses. Genes 2019, 10, 721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belton, J.M.; McCord, R.P.; Gibcus, J.H.; Naumova, N.; Zhan, Y.; Dekker, J. Hi–C: A comprehensive technique to capture the conformation of genomes. Methods 2012, 58, 268–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, M.; Zhuang, Z.; Pan, W. Local Epigenomic Data are more Informative than Local Genome Sequence Data in Predicting Enhancer-Promoter Interactions Using Neural Networks. Genes 2020, 11, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, F.; Ren, J.; Li, G.; Jiang, Y.; Li, X.; Wang, W.; Wu, C. Penalized Variable Selection for Lipid–Environment Interactions in a Longitudinal Lipidomics Study. Genes 2019, 10, 1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Zhou, J.; Qu, A. Penalized Generalized Estimating Equations for High-Dimensional Longitudinal Data Analysis. Biometrics 2012, 68, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Song, Q.; Wang, L. Simultaneous variable selection and estimation in semiparametric modeling of longitudinal/clustered data. Bernoulli 2013, 19, 252–274. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.; Qu, A. Model selection for correlated data with diverging number of parameters. Stat. Sin. 2013, 23, 901–927. [Google Scholar] [CrossRef]
- Fan, Y.; Qin, G.; Zhu, Z. Variable selection in robust regression models for longitudinal data. J. Multivar. Anal. 2012, 109, 156–167. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; He, K. Statistics in the Genomic Era. Genes 2020, 11, 443. https://doi.org/10.3390/genes11040443
Jiang H, He K. Statistics in the Genomic Era. Genes. 2020; 11(4):443. https://doi.org/10.3390/genes11040443
Chicago/Turabian StyleJiang, Hui, and Kevin He. 2020. "Statistics in the Genomic Era" Genes 11, no. 4: 443. https://doi.org/10.3390/genes11040443
APA StyleJiang, H., & He, K. (2020). Statistics in the Genomic Era. Genes, 11(4), 443. https://doi.org/10.3390/genes11040443