Comparative Analysis of ANDE 6C Rapid DNA Analysis System and Traditional Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Committee Aproval
2.2. ANDE 6C Rapid DNA Analysis System
2.3. Reliability of ANDE 6C Rapid DNA Analysis System
2.4. Repeatability and Reproducibility
3. Results and Discussion
3.1. Genotyping Success Rate and Concordance
3.2. Precision in Terms of Repeatability and Reproducibility
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Parson, W. Age Estimation with DNA: From Forensic DNA Fingerprinting to Forensic (Epi)Genomics: A Mini-Review. Gerontology 2018, 64, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.M.; Willis, S. Interpol review of forensic biology and forensic DNA typing 2016–2019. Forensic Sci. Int. Synerg. 2020, in press. [Google Scholar] [CrossRef]
- 1 DECRETO DEL PRESIDENTE DELLA REPUBBLICA 7 aprile 2016, n. 87 (GU Serie Generale n.122 del 26-05-2016). Available online: https://www.gazzettaufficiale.it/eli/id/2016/05/26/16G00091/sg (accessed on 1 March 2020).
- Giardina, E.; Emiliano, G.; Giulio, P.; Francesca, D.V.B.; Lucia, N.A.; Michele, R.; Francesco, B.; Manuela, D.N.; Ilenia, P.; Nunzia, P.; et al. Essential Quality Analysis Criteria in Forensic Genetics Identification: A Position Statement of Italian Society of Human Genetics. Biomed. J. Sci. Tech. Res. 2018, 12, 001–004. [Google Scholar] [CrossRef]
- Butler, J.M. The future of forensic DNA analysis. Philos. Trans. R. Soc. B: Boil. Sci. 2015, 370, 20140252. [Google Scholar] [CrossRef] [Green Version]
- Bruijns, B.; Van Asten, A.; Tiggelaar, R.M.; Gardeniers, H. Microfluidic Devices for Forensic DNA Analysis: A Review. Biosensors 2016, 6, 41. [Google Scholar] [CrossRef] [Green Version]
- Gin, K.; Tovar, J.; Bartelink, E.J.; Kendell, A.; Milligan, C.; Willey, P.; Wood, J.; Tan, E.; Turingan, R.S.; Selden, R.F. The 2018 California Wildfires: Integration of Rapid DNA to Dramatically Accelerate Victim Identification. J. Forensic Sci. 2020, 65, 791–799. [Google Scholar] [CrossRef] [Green Version]
- Turingan, R.S.; Tan, E.; Jiang, H.; Brown, J.; Estari, Y.; Krautz-Peterson, G.; Selden, R.F. Developmental Validation of the ANDE 6C System for Rapid DNA Analysis of Forensic Casework and DVI Samples. J. Forensic Sci. 2020, in press. [Google Scholar] [CrossRef] [Green Version]
- Romsos, E.; French, J.L.; Smith, M.; Figarelli, V.; Harran, F.; Vandegrift, G.; Moreno, L.I.; Callaghan, T.F.; Brocato, J.; Vaidyanathan, J.; et al. Results of the 2018 Rapid DNA Maturity Assessment. J. Forensic Sci. 2020, 65, 953–959. [Google Scholar] [CrossRef]
- The Rapid DNA Act of 2017. Available online: https://www.congress.gov/bill/115thcongress/house-bill/510 (accessed on 26 March 2020).
- Turingan, R.S.; Brown, J.; Kaplun, L.; Smith, J.; Watson, J.; Boyd, D.A.; Steadman, D.W.; Selden, R.F. Identification of human remains using Rapid DNA analysis. Int. J. Leg. Med. 2019, 134, 863–872. [Google Scholar] [CrossRef] [Green Version]
- Carney, C.; Whitney, S.; Vaidyanathan, J.; Persick, R.; Noel, F.; Vallone, P.M.; Romsos, E.; Tan, E.; Grover, R.; Turingan, R.S.; et al. Developmental validation of the ANDE™ rapid DNA system with FlexPlex™ assay for arrestee and reference buccal swab processing and database searching. Forensic Sci. Int. Genet. 2019, 40, 120–130. [Google Scholar] [CrossRef] [Green Version]
- Grover, R.; Jiang, H.; Turingan, R.S.; French, J.L.; Tan, E.; Selden, R.F. FlexPlex27—highly multiplexed rapid DNA identification for law enforcement, kinship, and military applications. Int. J. Leg. Med. 2017, 131, 1489–1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, R.; Illidge, S.; Wilson-Wilde, L. Assessment of the potential investigative value of a decentralised rapid DNA workflow for reference DNA samples. Forensic Sci. Int. 2019, 294, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Cascella, R.; Strafella, C.; Longo, G.; Manzo, L.; Ragazzo, M.; De Felici, C.; Gambardella, S.; Marsella, L.T.; Novelli, G.; Borgiani, P.; et al. Assessing individual risk for AMD with genetic counseling, family history, and genetic testing. Eye 2017, 32, 446–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lepre, T.; Cascella, R.; Missiroli, F.; De Felici, C.; Taglia, F.; Zampatti, S.; Cusumano, A.; Ricci, F.; Giardina, E.; Eandi, C.M.; et al. Polymorphisms in ARMS2 (LOC387715) and LOXL1 genes in the Japanese with age-related macular degeneration. Am. J. Ophthalmol. 2011, 152, 325–326. [Google Scholar] [CrossRef]
- Strafella, C.; Caputo, V.; Pagliaroli, G.; Iozzo, N.; Campoli, G.; Carboni, S.; Peconi, C.; Galota, R.M.; Zampatti, S.; Minozzi, G.; et al. NGS Analysis for Molecular Diagnosis of Retinitis Pigmentosa (RP): Detection of a Novel Variant in PRPH2 Gene. Genes 2019, 10, 792. [Google Scholar] [CrossRef] [Green Version]
- Cascella, R.; Stocchi†, L.; Strafella, C.; Mezzaroma, I.; Mannazzu, M.; Vullo, V.; Montella, F.; Parruti, G.; Borgiani, P.; Sangiuolo, F.C.; et al. Comparative analysis between saliva and buccal swabs as source of DNA: Lesson from HLA-B*57:01 testing. Pharmacogenomics 2015, 16, 1039–1046. [Google Scholar] [CrossRef] [Green Version]
- Giardina, E.; Peconi, C.; Cascella, R.; Sinibaldi, C.; Cuzzola, V.F.; Nardone, A.M.; Bramanti, P.; Novelli, G. A multiplex molecular assay for the detection of uniparental disomy for human chromosome 7. Electrophoresis 2009, 30, 2008–2011. [Google Scholar] [CrossRef]
- Messina, F.; Di Corcia, T.; Ragazzo, M.; Mellado, C.S.; Contini, I.; Malaspina, P.; Ciminelli, B.M.; Rickards, O.; Jodice, C. Signs of continental ancestry in urban populations of Peru through autosomal STR loci and mitochondrial DNA typing. PLoS ONE 2018, 13, e0200796. [Google Scholar] [CrossRef]
- Della Manna, A.; Nye, J.V.; Carney, C.; Hammons, J.S.; Mann, M.; Al Shamali, F.; Vallone, P.M.; Romsos, E.; Marne, B.A.; Tan, E.; et al. Developmental validation of the DNAscan™ Rapid DNA Analysis™ instrument and expert system for reference sample processing. Forensic Sci. Int. Genet. 2016, 25, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Tan, E.; Turingan, R.S.; Hogan, C.; Vasantgadkar, S.; Palombo, L.; Schumm, J.W.; Selden, R.F. Fully integrated, fully automated generation of short tandem repeat profiles. Investig. Genet. 2013, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Luckey, J.A.; Norris, T.B.; Smith, L.M. Analysis of resolution in DNA sequencing by capillary gel electrophoresis. J. Phys. Chem. 1993, 97, 3067–3075. [Google Scholar] [CrossRef]
- Moreno, L.I.; Brown, A.L.; Callaghan, T.F. Internal validation of the DNAscan/ANDE™ Rapid DNA Analysis™ platform and its associated PowerPlex® 16 high content DNA biochip cassette for use as an expert system with reference buccal swabs. Forensic Sci. Int. Genet. 2017, 29, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Scientific Working Group on DNA Analysis Methods (SWGDAM) Communications—Position Statement on Rapid DNA Analysis. 2017. Available online: https://1ecb9588-ea6f-4feb-971a73265dbf079c.filesusr.com/ugd/4344b0_f84df0465a2243218757fac1a1ccffea.pdf (accessed on 11 April 2020).
- The FBI Director’s Quality Assurance Standards Audit for Laboratories using Rapid DNA Analysis for DNA Databasing—Addendum to the Quality Assurance Standards Audit for DNA Databasing Laboratories performing Rapid DNA Analysis and Modified Rapid DNA Analysis Using a Rapid DNA Instrument—Effective December 2014. Available online: https://1ecb9588-ea6f-4feb-971a-73265dbf079c.filesusr.com/ugd/4344b0_aaf3d0c4db334c4e9bbbe896624e45a4.pdf (accessed on 11 April 2020).
- FBI Laboratory National DNA Index System (NDIS)—Operational Procedures Manual—Version 8—Effective May 1, 2019. Available online: https://www.fbi.gov/file-repository/ndis-operational-procedures-manual.pdf (accessed on 11 April 2020).
- NZPAA NIFS, Rapid DNA Project—Phase 2: Detailed Technical Evaluation Report for the DNAscan System. 2016. Available online: http://www.anzpaa.org.au/ArticleDocuments/220/Rapid%20DNA%20Project%20-%20Phase%202%20Report.pdf.aspx (accessed on 11 April 2020).
- Databanks/Testing Laboratories. Available online: https://www.accredia.it/ (accessed on 28 February 2020).
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ragazzo, M.; Melchiorri, S.; Manzo, L.; Errichiello, V.; Puleri, G.; Nicastro, F.; Giardina, E. Comparative Analysis of ANDE 6C Rapid DNA Analysis System and Traditional Methods. Genes 2020, 11, 582. https://doi.org/10.3390/genes11050582
Ragazzo M, Melchiorri S, Manzo L, Errichiello V, Puleri G, Nicastro F, Giardina E. Comparative Analysis of ANDE 6C Rapid DNA Analysis System and Traditional Methods. Genes. 2020; 11(5):582. https://doi.org/10.3390/genes11050582
Chicago/Turabian StyleRagazzo, Michele, Stefano Melchiorri, Laura Manzo, Valeria Errichiello, Giulio Puleri, Fabio Nicastro, and Emiliano Giardina. 2020. "Comparative Analysis of ANDE 6C Rapid DNA Analysis System and Traditional Methods" Genes 11, no. 5: 582. https://doi.org/10.3390/genes11050582
APA StyleRagazzo, M., Melchiorri, S., Manzo, L., Errichiello, V., Puleri, G., Nicastro, F., & Giardina, E. (2020). Comparative Analysis of ANDE 6C Rapid DNA Analysis System and Traditional Methods. Genes, 11(5), 582. https://doi.org/10.3390/genes11050582