Advances in Omic Studies Drive Discoveries in the Biology of Anisakid Nematodes
Abstract
:1. Introduction
2. Advances in the Genomics of Anisakid Species
3. Transcriptomic Analyses: Studies on Specific Developmental Stages and Tissues
4. Anisakids Proteomic Profiling
5. Characterization of Allergens
6. Future Perspectives
Omics Approach | Parasitic Species | Developmental Stage and Tissue | Major Findings | Public Repositories | References |
---|---|---|---|---|---|
Genomics | Anisakis simplex | Not available | First draft with genome size, annotation and gene counts | SRA PRJEB496 | [22] |
Genomics | Anisakis simplex sensu lato | L3 L4/6 days L4/12 days L5 (pre-adult) adult | Carbohydrate metabolism during life cycle (trehalose and glycogen metabolism) | ENA ERS2790326 | [34] |
Transcriptomics | Anisakis simplex sensu stricto Anisakis pegreffii | L3 | First curated list of transcripts with focus on potential allergens | SRA SRP070744 | [92] |
Transcriptomics | Anisakis simplex Anisakis pegreffii | L3 L4 | First comparative study on different developmental stages | [43,44] | |
Transcriptomics | Anisakis simplex sensu stricto Anisakis pegreffii | L3 and dissected pharyngeal region | First comparative study on two anisakid zoonotic species and their tissue-specific molecules | SRA PRJNA374530 | [33] |
Transcriptomics | Anisakis simplex sensu stricto Anisakis pegreffii Hysterothylacium aduncum | L3 and dissected pharyngeal region | First study on a raphidascaridid species | SRA PRJNA601087 | [48] |
Transcriptomics | Anisakis simplex sensu stricto Anisakis pegreffii and their hybrids | L3 | First study on hybrids | SRA SRP072976and AnisakisDB * | [60] |
Proteomics | Anisakis simplex sensu strictoAnisakis pegreffii and their hybrids | L3, mass spectrometry and WB with sera from allergic patients | Description of novel potential allergens | PX PXD000662 | [66] |
Proteomics | Anisakis simplex | L3 and sera from sensitized patients and mass spectrometry | Allergens with focus on cross reactivity | [68] | |
Proteomics | Anisakis sp. Pseudoterranova sp. | Protein biomarker discovery and fast monitoring to identify and detect Anisakids in fishery products | [70] | ||
Proteomics | Anisakis simplex | L3 L4 | First global proteomes of A. simplex L3 and L4 | [71] |
Author Contributions
Funding
Conflicts of Interest
References
- Anderson, R.C. Nematodes Parasites of Vertebrates: Their Development and Transmission, 2nd ed.; CABI Publishing: Wallingford, UK, 2000. [Google Scholar]
- Levsen, A.; Berland, B. Anisakis species. In Fish Parasites: Pathobiology and Protection; Woo, P.T.K., Buchmann, K., Eds.; CAB International: London, UK, 2012; pp. 298–309. [Google Scholar]
- Audicana, M.T.; Ansotegui, I.J.; de Corres, L.F.; Kennedy, M.W. Anisakis simplex: Dangerous-dead and alive? Trends Parasitol. 2002, 18, 20–25. [Google Scholar] [CrossRef]
- Khan, M.Q.; Williams, J. Anisakidosis: A fortuitous mimicker of gastrointestinal malignancy. BMJ Case Rep. 2016, 6, bcr2016216164. [Google Scholar] [CrossRef]
- Murata, Y.; Ando, K.; Usui, M.; Sugiyama, H.; Hayashi, A.; Tanemura, A.; Kato, H.; Kuriyama, N.; Kishiwada, M.; Mizuno, S.; et al. A case of hepatic anisakiasis caused by Pseudoterranova decipiens mimicking metastatic liver cancer. BMC Infect. Dis. 2018, 18, 619. [Google Scholar] [CrossRef] [PubMed]
- Kita, R.; Hashida, H.; Uryuhara, K.; Kaihara, S. Hepatic anisakiasis mimicking metastatic liver tumour. Int. J. Surg. Case Rep. 2019, 60, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Mattiucci, S.; D’Amelio, S. Helminth Infection and Their Impact on Global Public Health; Bruschi, F., Ed.; Publishing Springer: Vienna, Austria, 2014. [Google Scholar]
- Panel EFSA. On biological hazards (BIOHAZ) scientific opinion on risk assessment of parasites in fishery products. EFSA J. 2010, 8, 1543. [Google Scholar] [CrossRef]
- Bouwknegt, M.; Devleesschauwe, B.; Graham, H.; Robertson, L.J.; van der Giessen, J. Prioritization of foodborne parasites in Europe. Eurosurveillance 2018, 23, 17-00161. [Google Scholar]
- Mattiucci, S.; Nascetti, G. Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host-parasite co-evolutionary processes. Adv. Parasitol. 2008, 66, 47–148. [Google Scholar]
- Liu, G.H.; Nadler, S.A.; Liu, S.S.; Podolska, M.; D’Amelio, S.; Shao, R.; Gasser, R.B.; Zhu, X.Q. Mitochondrial Phylogenomics yields Strongly Supported Hypotheses for Ascaridomorph Nematodes. Sci. Rep. 2016, 6, 39248. [Google Scholar] [CrossRef]
- Mattiucci, S.; Cipriani, P.; Levsen, A.; Paoletti, M.; Nascetti, G. Molecular Epidemiology of Anisakis and Anisakiasis: An Ecological and Evolutionary Road Map. Adv. Parasitol. 2018, 99, 93–263. [Google Scholar]
- Van den Elsen, S.; Holovachov, O.; Karssen, G.; van Megen, H.; Helder, J.; Bongers, T.; Bakker, J.; Holterman, M.; Mooyman, P. A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. J. Nematol. 2009, 11, 927–950. [Google Scholar] [CrossRef]
- Kuhn, T.; Cunze, S.; Kochmann, J.; Klimpel, S. Environmental variables and definitive host distribution: A habitat suitability modelling for endohelminth parasites in the marine realm. Sci. Rep. 2016, 6, 30246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, M.; Pierce, G.J.; Pascual, S.; González-Muñoz, M.; Mattiucci, S.; Mladineo, I.; Cipriani, P.; Bušelić, I.; Strachan, N.J. Assessing the risk of an emerging zoonosis of worldwide concern: Anisakiasis. Sci. Rep. 2017, 7, 43699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitreva, M.; Zarlenga, D.S.; McCarter, J.P.; Jasmer, D.P. Parasitic nematodes—From genomes to control. Vet. Parasitol. 2007, 148, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Stoltzfus, J.D.; Pilgrim, A.A.; Herbert, D.R. Perusal of parasitic nematode ‘omics in the post-genomic era. Mol. Biochem. Parasitol. 2017, 215, 11–22. [Google Scholar] [CrossRef]
- Blaxter, M.; Koutsovoulos, G. The evolution of parasitism in Nematoda. Parasitology 2015, 142 (Suppl. 1), S26–S39. [Google Scholar] [CrossRef]
- Hunt, V.L.; Tsai, I.J.; Coghlan, A.; Reid, A.J.; Holroyd, N.; Foth, B.J.; Tracey, A.; Cotton, J.A.; Stanley, E.J.; Beasley, H.; et al. The genomic basis of parasitism in the Strongyloides clade of nematodes. Nat. Genet. 2016, 48, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Viney, M. The genomic basis of nematode parasitism. Brief. Funct. Genom. 2018, 17, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Ghedin, E.; Wang, S.; Spiro, D.; Caler, E.; Zhao, Q. Draft genome of the filarial nematode parasite. Brugia Malayi Sci. 2007, 317, 1756–1760. [Google Scholar]
- Wormbase ParaSite. Release 14. 2019. Available online: https://parasite.wormbase.org/species.html (accessed on 4 June 2020).
- Brindley, P.J.; Mitreva, M.; Ghedin, E.; Lustigman, S. Helminth Genomics: The Implications for Human Health. PLoS Negl. Trop. Dis. 2009, 3, e538. [Google Scholar] [CrossRef] [Green Version]
- Lustigman, S.; Grote, A.; Ghedin, E. The role of ‘omics’ in the quest to eliminate human filariasis. PLoS Negl. Trop. Dis. 2017, 11, e0005464. [Google Scholar] [CrossRef]
- Elsworth, B.; Wasmuth, J.; Blaxter, M. NEMBASE4: The nematode transcriptome resource. Int. J. Parasitol. 2011, 41, 881–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Alonso, I.; Carballeda-Sangiao, N.; Gonzalez-Munoz, M.; Navas, A.; Arcos, S.C.; Mendizabal, A.; Tejada, M. Pathogenic potential of Anisakis L3 after freezing in domestic freezers. Food Control 2018, 84, 61–69. [Google Scholar] [CrossRef]
- Podolska, M.; Pawlikowski, B.; Nadolna-Ałtyn, K.; Pawlak, J.; Komar-Szymczak, K.; Szostakowska, B. How effective is freezing at killing Anisakis simplex, Pseudoterranova krabbei, and P. decipiens larvae? An experimental evaluation of time-temperature conditions. Parasitol. Res. 2019, 118, 2139–2147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieuwenhuizen, N.E. Anisakis-immunology of a foodborne parasitosis. Parasite Immunol. 2016, 38, 548–557. [Google Scholar] [CrossRef] [Green Version]
- Corcuera, M.T.; Rodríguez-Bobada, C.; Zuloaga, J.; Gómez-Aguado, F.; Rodríguez-Perez, R.; Mendizabal, Á.; González, P.; Arias-Díaz, J.; Caballero, M.L. Exploring tumourigenic potential of the parasite Anisakis: A pilot study. Parasitol. Res. 2018, 117, 3127–3136. [Google Scholar] [CrossRef]
- World Health Organization. Neglected Tropical Disease. Available online: https://www.who.int/neglected_diseases/ (accessed on 27 April 2020).
- Łopieńska-Biernat, E.; Stryiński, R.; Dmitryjuk, M.; Wasilewska, B. Infective larvae of Anisakis simplex (Nematoda) accumulate trehalose and glycogen in response to starvation and temperature stress. Biol. Open 2019, 8, bio040014. [Google Scholar] [CrossRef] [Green Version]
- Laing, R.; Kikuchi, T.; Martinelli, A.; Tsai, I.J.; Beech, R.N.; Redman, E.; Holroyd, N.; Bartley, D.J.; Beasley, H.; Britton, C.; et al. The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery. Genome Biol. 2013, 14, R88. [Google Scholar] [CrossRef] [Green Version]
- Cavallero, S.; Lombardo, F.; Su, X.; Salvemini, M.; Cantacessi, C.; D’Amelio, S. Tissue-specific transcriptomes of Anisakis simplex (sensu stricto) and Anisakis pegreffii reveal potential molecular mechanisms involved in pathogenicity. Parasites Vectors 2018, 11, 31. [Google Scholar] [CrossRef] [Green Version]
- Łopieńska-Biernat, E.; Paukszto, Ł.; Jastrzębski, J.P.; Myszczyński, K.; Polak, I.; Stryiński, R. Genome-wide analysis of Anisakis simplex sensu lato: The role of carbohydrate metabolism genes in the parasite’s development. Int. J. Parasitol. 2019, 49, 933–943. [Google Scholar] [CrossRef]
- Jex, A.R.; Liu, S.; Li, B.; Young, N.D.; Hall, R.S.; Li, Y.; Yang, L.; Zeng, N.; Xu, X.; Xiong, Z.; et al. Ascaris suum draft genome. Nature 2011, 479, 529–533. [Google Scholar] [CrossRef] [Green Version]
- Romero, M.C.; Valero, A.; Navarro, M.C.; Hierro, I.; Barón, S.D.; Martín-Sánchez, J. Experimental demonstration of pathogenic potential of Anisakis physeteris and Anisakis paggiae in Wistar rats. Parasitol. Res. 2014, 113, 4377–4386. [Google Scholar] [CrossRef]
- Strøm, S.B.; Haarder, S.; Korbut, R.; Mejer, H.; Thamsborg, S.M.; Kania, P.W.; Buchmann, K. Third-stage nematode larvae of Contracaecum osculatum from Baltic cod (Gadus morhua) elicit eosinophilic granulomatous reactions when penetrating the stomach mucosa of pigs. Parasitol. Res. 2015, 114, 1217–1220. [Google Scholar] [CrossRef] [PubMed]
- Mladineo, I.; Trumbić, Ž.; Radonić, I.; Vrbatović, A.; Hrabar, J.; Bušelić, I. Anisakis simplex complex: Ecological significance of recombinant genotypes in an allopatric area of the Adriatic Sea inferred by genome-derived simple sequence repeats. Int. J. Parasitol. 2017, 47, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Mattiucci, S.; Bello, E.; Paoletti, M.; Webb, S.C.; Timi, J.T.; Levsen, A.; Cipriani, P.; Nascetti, G. Novel polymorphic microsatellite loci in Anisakis pegreffii and A. simplex (s.s.) (Nematoda: Anisakidae): Implications for species recognition and population genetic analysis. Parasitology 2019, 146, 1387–1403. [Google Scholar] [CrossRef] [Green Version]
- Bello, E.; Paoletti, M.; Webb, S.C.; Nascetti, G.; Mattiucci, S. Cross-species utility of microsatellite loci for the genetic characterisation of Anisakis berlandi (Nematoda: Anisakidae). Parasite 2020, 27, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohandas, N.; Jabbar, A.; Podolska, M.; Zhu, X.Q.; Littlewood, D.T.; Jex, A.R.; Gasser, R.B. Mitochondrial genomes of Anisakis simplex and Contracaecum osculatum (sensu stricto)—Comparisons with selected nematodes. Infect. Genet. Evol. 2014, 21, 452–462. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.S.; Liu, G.H.; Zhu, X.Q.; Weng, Y.B. The complete mitochondrial genome of Pseudoterranova azarasi and comparative analysis with other anisakid nematodes. Infect. Genet. Evol. 2015, 33, 293–298. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, J.O.; Jeon, C.H.; Nam, U.H.; Subramaniyam, S.; Yoo, S.I.; Park, J.H. Comparative transcriptome analyses of the third and fourth stage larvae of Anisakis simplex (Nematoda: Anisakidae). Mol. Biochem. Parasitol. 2018, 226, 24–33. [Google Scholar] [CrossRef]
- Nam, U.H.; Kim, J.O.; Kim, J.H. De novo transcriptome sequencing and analysis of Anisakis pegreffii (Nematoda: Anisakidae) third-stage and fourth stage larvae. J. Nematol. 2020, 52, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Clarke, A. Is there a universal temperature dependence of metabolism? Funct. Ecol. 2004, 18, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Palomba, M.; Paoletti, M.; Colantoni, A.; Rughetti, A.; Nascetti, G.; Mattiucci, S. Gene expression profiles of antigenic proteins of third stage larvae of the zoonotic nematode Anisakis pegreffii in response to temperature conditions. Parasite 2019, 26, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Łopieńska-Biernat, E.; Zaobidna, E.A.; Dmitryjuk, M. Expression of Genes Encoding the Enzymes for Glycogen and Trehalose Metabolism in L3 and L4 Larvae of Anisakis simplex. J. Parasitol. Res. 2015, 2015, 438145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavallero, S.; Lombardo, F.; Salvemini, M.; Pizzarelli, A.; Cantacessi, C.; D’Amelio, S. Comparative Transcriptomics Reveals Clues for Differences in Pathogenicity between Hysterothylacium aduncum, Anisakis simplex sensu stricto and Anisakis pegreffii. Genes 2020, 11, 321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iglesias, L.; Valero, A.; Gálvez, L.; Benítez, R.; Adroher, F.J. In vitro cultivation of Hysterothylacium aduncum (Nematoda: Anisakidae) from 3rd-stage larvae to egg-laying adults. Parasitology 2002, 125, 467–475. [Google Scholar] [CrossRef] [Green Version]
- Zółtowska, K.; Dmitryjuk, M.; Rokicki, J.; Lopieńska-Biernat, E. Hydrolases of Hysterothylacium aduncum (Nematoda). Wiad Parazytol. 2007, 53, 91–95. [Google Scholar]
- Dziekońska-Rynko, J.; Rokicki, J. Activity of selected hydrolases in excretion-secretion products and extracts of adult Contracaecum rudolphii. Wiad Parazytol. 2005, 51, 227–231. [Google Scholar]
- Mitsuboshi, A.; Yamaguchi, H.; Ito, Y.; Mizuno, T.; Tokoro, M.; Kasai, M. Extra-gastrointestinal anisakidosis caused by Pseudoterranova azarasi manifesting as strangulated inguinal hernia. Parasitol. Int. 2017, 66, 810–812. [Google Scholar] [CrossRef]
- Yamada, M.; Shishito, N.; Nozawa, Y.; Uni, S.; Nishioka, K.; Nakaya, T. A combined human case of Dirofilaria ursi infection in dorsal subcutaneous tissue and Anisakis simplex sensu stricto (s.s.) infection in ventral subcutaneous tissue. Trop. Med. Health 2017, 45, 26. [Google Scholar] [CrossRef] [Green Version]
- Chung, Y.B.; Lee, J. Clinical characteristics of gastroallergic anisakiasis and diagnostic implications of immunologic tests. Allergy Asthma Immunol. Res. 2014, 6, 228–233. [Google Scholar] [CrossRef] [Green Version]
- Arizono, N.; Yamada, M.; Tegoshi, T.; Yoshikawa, M. Anisakis simplex sensu stricto and Anisakis pegreffii: Biological characteristics and pathogenetic potential in human anisakiasis. Foodborne Pathog. Dis. 2012, 9, 517–521. [Google Scholar] [CrossRef]
- Lim, H.; Jung, B.K.; Cho, J.; Yooyen, T.; Shin, E.H.; Chai, J.Y. Molecular diagnosis of cause of anisakiasis in humans, South Korea. Emerg. Infect. Dis. 2015, 21, 342–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, J.; Murata, R.; Hosaka, M.; Araki, J. Risk factors for human Anisakis infection and association between the geographic origins of Scomber japonicus and anisakid nematodes. Int. J. Food Microbiol. 2010, 137, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Quiazon, K.M.; Yoshinaga, T.; Ogawa, K. Experimental challenge of Anisakis simplex sensu stricto and Anisakis pegreffii (Nematoda: Anisakidae) in rainbow trout and olive flounder. Parasitol. Int. 2011, 60, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Jeon, C.H.; Kim, J.H. Pathogenic potential of two sibling species, Anisakis simplex (s.s.) and Anisakis pegreffii (Nematoda: Anisakidae): In vitro and in vivo studies. Biomed. Res. Int. 2015, 2015, 983656. [Google Scholar] [CrossRef] [Green Version]
- Llorens, C.; Arcos, S.C.; Robertson, L.; Ramos, R.; Futami, R.; Soriano, B.; Ciordia, S.; Careche, M.; González-Muñoz, M.; Jiménez-Ruiz, Y.; et al. Functional insights into the infective larval stage of Anisakis simplex s.s., Anisakis pegreffii and their hybrids based on gene expression patterns. BMC Genom. 2018, 19, 592. [Google Scholar] [CrossRef] [Green Version]
- Anisakis, D.B. Transcriptome. Available online: http://anisakis.mncn.csic.es/public/ (accessed on 29 April 2020).
- Marcilla, A.; Trelis, M.; Cortes, A.; Sotillo, J.; Cantalapiedra, F.; Minguez, M.T.; Valero, M.L.; Sanchez del Pino, M.M.; Munoz-Antoli, C.; Toledo, R.; et al. Extracellular vesicles from parasitic helminths contain specific excretory/secretory proteins and are internalized in intestinal host cells. PLoS ONE 2012, 7, e45974. [Google Scholar] [CrossRef]
- Marcilla, A.; Martin-Jaular, L.; Trelis, M.; de Menezes-Neto, A.; Osuna, A.; Bernal, D.; Fernandez-Becerra, C.; Almeida, I.C.; del Portillo, H.A. Extracellular vesicles in parasitic diseases. J. Extracell. Vesicles 2014, 3, 25040. [Google Scholar] [CrossRef] [Green Version]
- Coakley, G.; Maizels, R.M.; Buck, A.H. Exosomes and other extracellular vesicles: The new communicators in parasite infections. Trends Parasitol. 2015, 31, 477–489. [Google Scholar] [CrossRef] [Green Version]
- Prueksapanich, P.; Piyachaturawat, P.; Aumpansub, P.; Ridtitid, W.; Chaiteerakij, R.; Rerknimitr, R. Liver Fluke-Associated Biliary Tract Cancer. Gut Liver 2018, 12, 236–245. [Google Scholar] [CrossRef] [Green Version]
- Arcos, S.C.; Ciordia, S.; Roberston, L.; Zapico, I.; Jiménez-Ruiz, Y.; Gonzalez-Muñoz, M.; Moneo, I.; Carballeda-Sangiao, N.; Rodriguez-Mahillo, A.; Albar, J.P.; et al. Proteomic profiling and characterization of differential allergens in the nematodes Anisakis simplex sensu stricto and A. pegreffii. Proteomics 2014, 14, 1547–1568. [Google Scholar] [CrossRef]
- Song, H.; Jung, B.K.; Cho, J.; Chang, T.; Huh, S.; Chai, J.Y. Molecular dentification of Anisakis Larvae Extracted by Gastrointestinal Endoscopy from Health Check-up Patients in Korea. Korean J. Parasitol. 2019, 57, 207–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fæste, C.K.; Jonscher, K.R.; Dooper, M.M.; Egge-Jacobsen, W.; Moen, A.; Daschner, A.; Egaas, E.; Christians, U. Characterisation of potential novel allergens in the fish parasite Anisakis simplex. EuPA Open Proteom. 2014, 4, 140–155. [Google Scholar] [CrossRef] [Green Version]
- International Helminth Genomes Consortium. Comparative genomics of the major parasitic worms. Nat. Genet. 2019, 51, 163–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrera, M.; Gallardo, J.M.; Pascual, S.; González, Á.F.; Medina, I. Protein biomarker discovery and fast monitoring for the identification and detection of Anisakids by parallel reaction monitoring (PRM) mass spectrometry. J. Proteom. 2016, 142, 130–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stryiński, R.; Mateos, J.; Pascual, S.; González, Á.F.; Gallardo, J.M.; Łopieńska-Biernat, E.; Medina, I.; Carrera, M. Proteome profiling of L3 and L4 Anisakis simplex development stages by TMT-based quantitative proteomics. J. Proteom. 2019, 201, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Moneo, I.; Carballeda-Sangiao, N.; González-Muñoz, M. New perspectives on the diagnosis of allergy to Anisakis spp. Curr. Allergy Asthma Rep. 2017, 17, 27. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Perez, R.; Moneo, I.; Rodríguez-Mahillo, A.I.; Caballero, M.L. Cloning and expression of Ani s 9, a new Anisakis simplex allergen. Mol. Biochem. Parasitol. 2008, 159, 92–97. [Google Scholar] [CrossRef]
- Carballeda-Sangiao, N.; Olivares, F.; Rodriguez-Mahillo, A.I.; Careche, M.; Tejada, M.; Moneo, I.; González-Muñoz, M. Identification of autoclave-resistant Anisakis simplex allergens. J. Food Prot. 2014, 77, 605–609. [Google Scholar] [CrossRef]
- Carballeda-Sangiao, N.; Rodríguez-Mahillo, A.I.; Careche, M.; Navas, A.; Caballero, T.; Dominguez-Ortega, J.; Jurado-Palomo, J.; González-Muñoz, M. Ani s 11-Like Protein Is a Pepsin- and Heat-Resistant Major Allergen of Anisakis spp. and a Valuable Tool for Anisakis Allergy Component-Resolved Diagnosis. Int. Arch. Allergy Immunol. 2016, 169, 108–112. [Google Scholar] [CrossRef]
- Shimakura, K.; Miura, H.; Ikeda, K.; Ishizaki, S.; Nagashima, Y.; Shirai, T.; Kasuya, S.; Shiomi, K. Purification and molecular cloning of a major allergen from Anisakis simplex. Mol. Biochem. Parasitol. 2004, 135, 69–75. [Google Scholar] [CrossRef]
- Morris, S.R.; Sakanari, J.A. Characterization of the serine protease and serine protease inhibitor from the tissue-penetrating nematode Anisakis simplex. J. Biol. Chem. 1994, 269, 27650–27656. [Google Scholar] [PubMed]
- Moneo, I.; Caballero, M.L.; Gómez, F.; Ortega, E.; Alonso, M.J. Isolation and characterization of a major allergen from the fish parasite Anisakis simplex. J. Allergy Clin. Immunol. 2000, 106, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pérez, J.; Fernández-Caldas, E.; Marañón, F.; Sastre, J.; Bernal, M.L.; Rodríguez, J.; Bedate, C.A. Molecular Cloning of Paramyosin, a New Allergen of Anisakis simplex. Int. Arch. Allergy Immunol. 2000, 123, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Guarnieri, F.; Guarnieri, C.; Benvenga, S. Cross-reactivity of Anisakis simplex: Possible role of Ani s 2 and Ani s 3. Int. J. Dermatol. 2007, 46, 146–150. [Google Scholar] [CrossRef]
- Asturias, J.A.; Eraso, E.; Moneo, I.; Martinez, A. Is tropomyosin an allergen in Anisakis? Allergy 2000, 55, 898–899. [Google Scholar] [CrossRef]
- Moneo, I.; Caballero, M.L.; González-Muñoz, M.; Rodríguez-Mahillo, A.I.; Rodríguez-Perez, R.; Silva, A. Isolation of a heat-resistant allergen from the fish parasite Anisakis simplex. Parasitol. Res. 2005, 96, 285–289. [Google Scholar] [CrossRef]
- Rodriguez-Mahillo, A.I.; Gonzalez-Muñoz, M.; Gomez-Aguado, F.; Rodriguez-Perez, R.; Corcuera, M.T.; Caballero, M.L.; Moneo, I. Cloning and characterisation of the Anisakis simplex allergen Ani s 4 as a cysteine-protease inhibitor. Int. J. Parasitol. 2007, 37, 907–917. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Ishizaki, S.; Shimakura, K.; Nagashima, Y.; Shiomi, K. Molecular cloning and expression of two new allergens from Anisakis simplex. Parasitol. Res. 2007, 100, 1233–1241. [Google Scholar] [CrossRef]
- Rodríguez, E.; Anadón, A.M.; García-Bodas, E.; Romarís, F.; Iglesias, R.; Gárate, T.; Ubeira, F.M. Novel sequences and epitopes of diagnostic value derived from the Anisakis simplex Ani s 7 major allergen. Allergy 2008, 63, 219–225. [Google Scholar] [CrossRef]
- Anadón, A.M.; Romarìs, F.; Escalante, M.; Rodríguez, E.; Gàrate, T.; Cuéllar, C.; Ubeira, F.M. The Anisakis simplex Ani s 7 major allergen as an indicator of true Anisakis infections. Clin. Exp. Immunol. 2009, 156, 471–478. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Shimakura, K.; Ishizaki, S.; Nagashima, Y.; Shiomi, K. Purification and cDNA cloning of a new heat-stable allergen from Anisakis simplex. Mol. Biochem. Parasitol. 2007, 155, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Caballero, M.L.; Umpierrez, A.; Moneo, I.; RodríguezPerez, R. Ani s 10, a new Anisakis simplex allergen: Cloning and heterologous expression. Parasitol. Int. 2011, 60, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Ohsaki, K.; Ikeda, K.; Kakemoto, S.; Ishizaki, S.; Shimakura, K.; Nagashima, Y.; Shiomi, K. Identification of novel three allergens from Anisakis simplex by chemiluminescent immunoscreening of an expression cDNA library. Parasitol. Int. 2011, 60, 144–150. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, J.; Daschner, A.; Nieuwenhuizen, N.E.; Lopata, A.L.; De Frutos, C.; Valls A Cuéllar, C. Haemoglobin, a new major allergen of Anisakis simplex. Int. J. Parasitol. 2015, 46, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Kakemoto, S.; Shimakura, K.; Shiomi, K. Molecular Cloning and Expression of a New Major Allergen, Ani s 14, from Anisakis simplex. Food Hyg. Saf. Sci. 2015, 56, 194–199. [Google Scholar] [CrossRef] [Green Version]
- Baird, F.J.; Su, X.; Aibinu, I.; Nolan, M.J.; Sugiyama, H.; Otranto, D.; Lopata, A.l.; Cantacessi, C. The Anisakis Transcriptome Provides a Resource for Fundamental and Applied Studies on Allergy-Causing Parasites. PLoS Negl. Trop. Dis. 2016, 10, e0004845. [Google Scholar] [CrossRef] [Green Version]
- Kim, V.N. MicroRNA biogenesis: Coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 2005, 6, 376–385. [Google Scholar] [CrossRef]
- Bartel, D.P. Metazoan MicroRNAs. Cell 2018, 173, 20–51. [Google Scholar] [CrossRef]
- Zheng, Y.; Cai, X.; Bradley, J.E. microRNAs in parasites and parasite infection. RNA Biol. 2013, 10, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Tritten, L.; Clarke, D.; Timmins, S. Dirofilaria immitis exhibits sex- and stage-specific differences in excretory/secretory miRNA and protein profiles. Vet. Parasitol. 2016, 232, 1–7. [Google Scholar] [CrossRef]
- Sonoda, H.; Yamamoto, K.; Ozeki, K.; Inoye, H.; Toda, S.; Maehara, Y. An Anisakis larva attached to early gastric cancer: Report of a case. Surg. Today 2015, 45, 1321–1325. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Perez, J.C.; Rodríguez-Perez, R.; Ballestero, A.; Zuloaga, J.; Fernandez-Puntero, B.; Arias-Díaz, J.; Caballero, M.L. Previous Exposure to the Fish Parasite Anisakis as a Potential Risk Factor for Gastric or Colon Adenocarcinoma. Medicine 2015, 94, e1699. [Google Scholar] [CrossRef] [PubMed]
- Chaiyadet, S.; Sotillo, J.; Smout, M.; Cantacessi, C.; Jones, M.K.; Johnson, M.S.; Turnbull, L.; Whitchurch, C.B.; Potriquet, J.; Laohaviroj, M.; et al. Carcinogenic Liver Fluke Secretes Extracellular Vesicles That Promote Cholangiocytes to Adopt a Tumorigenic Phenotype. J. Infect. Dis. 2015, 212, 1636–1645. [Google Scholar] [CrossRef] [PubMed]
- Hrabar, J.; Trumbić, Z.; Bočina, J.; Bušelić, J.; Vrbatović, A.; Mladineo, I. Interplay between proinflammatory cytokines, miRNA, and tissue lesions in Anisakis-infected Sprague-Dawley rats. PLoS Negl. Trop. Dis. 2019, 13, e0007397. [Google Scholar] [CrossRef] [PubMed]
- Messina, C.M.; Pizzo, F.; Santulli, A.; Bušelić, I.; Boban, M.; Orhanović, S.; Mladineo, I. Anisakis pegreffii (Nematoda: Anisakidae) products modulate oxidative stress and apoptosis-related biomarkers in human cell lines. Parasites Vectors 2016, 9, 607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Napoletano, C.; Mattiucci, S.; Colantoni, A.; Battisti, F.; Zizzari, I.G.; Rahimi, H.; Nuti, M.; Rughetti, A. Anisakis pegreffii impacts differentiation and function of human dendritic cells. Parasite Immunol. 2018, 40, e12527. [Google Scholar] [CrossRef] [Green Version]
- Speciale, A.; Trombetta, D.; Saija, A. Exposure to Anisakis extracts can induce inflammation on in vitro cultured human colonic cells. Parasitol. Res. 2017, 116, 2471–2477. [Google Scholar] [CrossRef]
- Verma, S.; Kashyap, S.S.; Robertson, A.P.; Martin, R.J. Functional genomics in Brugia malayi reveal diverse muscle nAChRs and differences between cholinergic anthelmintics. Proc. Natl. Acad. Sci. USA 2017, 114, 5539–5544. [Google Scholar] [CrossRef] [Green Version]
- Dalzell, J.J.; Warnock, N.D.; McVeigh, P.; Marks, N.J.; Mousley, A.; Atkinson, L.; Maule, A.G. Considering RNAi experimental design in parasitic helminths. Parasitology 2012, 139, 589–604. [Google Scholar] [CrossRef]
- Ward, J.D. Rendering the intractable more tractable: Tools from Caenorhabditis elegans ripe for import into parasitic nematodes. Genetics 2015, 201, 1279–1294. [Google Scholar] [CrossRef] [Green Version]
- Knox, D.P.; Geldhof, P.; Visser, A.; Britton, C. RNA interference in parasitic nematodes of animals: A reality check? Trends Parasitol. 2007, 23, 105–107. [Google Scholar] [CrossRef] [Green Version]
- Maule, A.G.; McVeigh, P.; Dalzell, J.J.; Atkinson, L.; Mousley, A.; Marks, N.J. An eye on RNAi in nematode parasites. Trends Parasitol. 2011, 27, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Likely, C.G.; Burt, M.D. In vitro Cultivation of Contracaecum osculatum (Nematoda:Anisakidae) from Third-Stage Larvae to Egg-Laying Adults Can. J. Fish. Aquat. Sci. 1992, 49, 347–348. [Google Scholar] [CrossRef]
- Iglesias, L.; Valero, A.; Benitez, R.; Adroher, F. In vitro cultivation of Anisakis simplex: Pepsin increases survival and moulting from fourth larval to adult stage. Parasitology 2001, 123, 285–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCoy, C.J.; Warnock, N.D.; Atkinson, L.E.; Atcheson, E.; Martin, R.J.; Robertson, A.P.; Mousley, A. RNA interference in adult Ascaris suum—An opportunity for the development of a functional genomics platform that supports organism, tissue- and cell-based biology in a nematode parasite. Int. J. Parasitol. 2015, 45, 673–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dulovic, A.; Streit, A. RNAi-mediated knockdown of daf-12 in the model parasitic nematode Strongyloides ratti. PLoS Pathog. 2019, 15, 1–25. [Google Scholar] [CrossRef] [Green Version]
Allergen (kDa) | AllFam Family ID | Description | UNIPROT | Location of the Products | References |
---|---|---|---|---|---|
Ani s 1 (24) | AF003 | Animal Kunitz serine protease inhibitor | Q7Z1K3 | E/S major allergen | [78] |
Ani s 2 (97) | AF100 | Myosin heavy chain (paramyosin) | Q9NJA9 | S panallergen/major allergen | [79] |
Ani s 3 (41) | AF054 | Tropomyosin | Q9NAS5 | S panallergen/major allergen | [81] |
Ani s 4 (9) | AF005 | Cystatin | Q14QT4 | E/S | [82] |
Ani s 5 (15) | AF137 | SXP/RAL-2 family | A1IKL2 | E/S | [83] |
Ani s 6 (7) | AF027 | Cysteine-rich trypsin inhibitor-like domain | A1IKL3 | E/S major allergen | [83] |
Ani s 7 (139) | Unclass | Armadillo ARM-like | A9XBJ8 | E/S major allergen | [81] |
Ani s 8 (15) | AF137 | SXP/RAL-2 family | A7M6Q6 | E/S | [83] |
Ani s 9 (14) | AF137 | SXP/RAL-2 family | B2XCP1 | E/S | [73] |
Ani s 10 (22) | Unclass | Ani s 10 allergen | D2K835 | S ? | [88] |
Ani s 11 (55) | Unclass | Ani s 11 allergen | E9RFF3 | S ? | [89] |
Ani s 11-like (?) | Unclass | Ani s 11 allergen | E9RFF5 | S ? | [89] |
Ani s 12 (?) | Unclass | Ani s 12 allergen | L7V3P8/E9RFF6 | major allergen | [89] |
Ani s 13 (36.7) | AF009 | Globin | A0A1W7HP35 | ? | [90] |
Ani s 14 (23.5) | Unclass | ARM-like | A9XBJ8 | ? | [91] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Amelio, S.; Lombardo, F.; Pizzarelli, A.; Bellini, I.; Cavallero, S. Advances in Omic Studies Drive Discoveries in the Biology of Anisakid Nematodes. Genes 2020, 11, 801. https://doi.org/10.3390/genes11070801
D’Amelio S, Lombardo F, Pizzarelli A, Bellini I, Cavallero S. Advances in Omic Studies Drive Discoveries in the Biology of Anisakid Nematodes. Genes. 2020; 11(7):801. https://doi.org/10.3390/genes11070801
Chicago/Turabian StyleD’Amelio, Stefano, Fabrizio Lombardo, Antonella Pizzarelli, Ilaria Bellini, and Serena Cavallero. 2020. "Advances in Omic Studies Drive Discoveries in the Biology of Anisakid Nematodes" Genes 11, no. 7: 801. https://doi.org/10.3390/genes11070801
APA StyleD’Amelio, S., Lombardo, F., Pizzarelli, A., Bellini, I., & Cavallero, S. (2020). Advances in Omic Studies Drive Discoveries in the Biology of Anisakid Nematodes. Genes, 11(7), 801. https://doi.org/10.3390/genes11070801