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Abstract

:

Gene networks have arisen as a promising tool in the comprehensive modeling and analysis of complex diseases. Particularly in viral infections, the understanding of the host-pathogen mechanisms, and the immune response to these, is considered a major goal for the rational design of appropriate therapies. For this reason, the use of gene networks may well encourage therapy-associated research in the context of the coronavirus pandemic, orchestrating experimental scrutiny and reducing costs. In this work, gene co-expression networks were reconstructed from RNA-Seq expression data with the aim of analyzing the time-resolved effects of gene Ly6E in the immune response against the coronavirus responsible for murine hepatitis (MHV). Through the integration of differential expression analyses and reconstructed networks exploration, significant differences in the immune response to virus were observed in Ly6E    Δ H S C    compared to wild type animals. Results show that Ly6E ablation at hematopoietic stem cells (HSCs) leads to a progressive impaired immune response in both liver and spleen. Specifically, depletion of the normal leukocyte mediated immunity and chemokine signaling is observed in the liver of Ly6E    Δ H S C    mice. On the other hand, the immune response in the spleen, which seemed to be mediated by an intense chromatin activity in the normal situation, is replaced by ECM remodeling in Ly6E    Δ H S C    mice. These findings, which require further experimental characterization, could be extrapolated to other coronaviruses and motivate the efforts towards novel antiviral approaches.
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1. Introduction


The recent SARS-CoV-2 pandemic has exerted an unprecedented pressure on the scientific community in the quest for novel antiviral approaches. A major concern regarding SARS-CoV-2 is the capability of the coronaviridae family to cross the species barrier and infect humans [1]. This, along with the tendency of coronaviruses to mutate and recombine, represents a significant threat to global health, which ultimately has put interdisciplinary research on the warpath towards the development of a vaccine or antiviral treatments.



Given the similarities found amongst the members of the coronaviridae family [2,3], analyzing the global immune response to coronaviruses may shed some light on the natural control of viral infection, and inspire prospective treatments. This may well be achieved from the perspective of systems biology, in which the interactions between the biological entities involved in a certain process are represented by means of a mathematical system [4]. Within this framework, gene networks (GN) have become an important tool in the modeling and analysis of biological processes from gene expression data [5]. GNs constitute an abstraction of a given biological reality by means of a graph composed by nodes and edges. In such a graph, nodes represent the biological elements involved (i.e., genes, proteins or RNAs) and edges represent the relationships between the nodes. In addition, GNs are also useful to identify genes of interest in biological processes, as well as to discover relationships among these. Thus, they provide a comprehensive picture of the studied processes [6,7].



Among the different types of GNs, gene co-expression networks (GCNs) are widely used in the literature due to their computational simplicity and good performance in order to study biological processes or diseases [8,9,10]. GCNs usually compute pairwise co-expression indices for all genes. Then, the level of interaction between two genes is considered significant if its score is higher than a certain threshold, which is set ad hoc. Traditionally, statistical-based co-expression indices have been used to calculate the dependencies between genes [5,7]. Some of the most popular correlation coefficients are Pearson, Kendall or Spearman [11,12,13]. Despite their popularity, statistical-based measures present some limitations [14]. For instance, they are not capable of identifying non-linear interactions and the dependence on the data distribution in the case of parametric correlation coefficients. In order to overcome some of these limitations, new approaches, e.g., the use of information theory-based measures or ensemble approaches, are receiving much attention [15,16,17].



Gene Co-expression Networks (GCNs) have already been applied to the study of dramatic impact diseases, such as cancer [18], diabetes [19] or viral infections (e.g., HIV) in order to study the role of immune response to these illnesses [20,21]. Genetic approaches are expected to be the best strategy to understand viral infection and the immune response to it, potentially identifying the mechanisms of infection and assisting the design of strategies to combat infection [22,23]. The current gene expression profiling platforms, in combination with high-throughput sequencing, can provide time-resolved transcriptomic data, which can be related to the infection process. The main objective of this approach is to generate knowledge on the immune functioning upon viral entry into the organism, which means mean a perturbation to the system.



In the context of viral infection, a first defense line is the innate response mediated by interferons, a type of cytokines which eventually leads to the activation of several genes of antiviral function [24]. Globally, these genes are termed interferon-stimulated genes (ISGs), and regulate processes like inflammation, chemotaxis or macrophage activation among others. Furthermore, ISGs are also involved in the subsequent acquired immune response, specific for the viral pathogen detected [25]. Gene Ly6E (lymphocyte antigen 6 family member e), which has been related to T cell maturation and tumorogenesis, is amongst the ISGs [26]. This gene is transcriptionally active in a variety of tissues, including liver, spleen, lung, brain, uterus and ovary. Its role in viral infection has been elusive due to contradictory findings [27]. For example, in Liu et al. [28], Ly6E was associated with the resistance to Marek’s disease virus (MDV) in chickens. Moreover, differences in the immune response to mouse adenovirus type 1 (MAV-1) have been attributed to Ly6E variants [29]. Conversely, Ly6E has also been related to an enhancement of human immunodeficiency viruses (HIV-1) pathogenesis, by promoting HIV-1 entry through virus–cell fusion processes [30]. Also in the work by Mar et al. [31], the loss of function of Ly6E due to gene knockout reduced the infectivity of Influenza A virus (IAV) and yellow fever virus (YFV). This enhancing effect of Ly6E on viral infection has also been observed in other enveloped RNA viruses such as in West Nile virus (WNV), dengue virus (DEN), Zika virus (ZIKV), O’nyong nyong virus (ONNV) and Chikungunya virus (CHIKV) among others [32]. Nevertheless, the exact mechanisms through which Ly6E modulates viral infection virus-wise, and sometimes even cell type-dependently, require further characterization.



In this work we present a time-resolved study of the immune response of mice to a coronavirus, the murine hepatitis virus (MHV), in order to analyze the implications of gene Ly6E. To do so, we have applied a GCN reconstruction method called EnGNet [33], which is able to perform an ensemble strategy to combine three different co-expression measures, and a topology optimization of the final network. EnGNet has outscored other methods in terms of network precision and reduced network size, and has been proven useful in the modeling of disease, as in the case of Human post-traumatic stress disorder.



The rest of the paper is organized as follows. In the next section, we propose a description of related works. In Section 3, we first describe the dataset used in this paper, and then we introduce the EnGNet algorithm and the different methods used to infer and analyze the generated networks. The results obtained are detailed in Section 4, while, in Section 5, we propose a discussion of the results presented in the previous section. Finally, in Section 6, we draw the main conclusions of our work.




2. Related Works


As already mentioned, gene co-expression networks have been extensively applied in the literature for the understanding of the mechanisms underlying complex diseases like cancer, diabetes or Alzheimer [34,35,36]. Globally, GCN serve as an in silico genetic model of these pathologies, highlighting the main genes involved in these at the same time [37]. Besides, the identification of modules in the inferred GCNs, may lead to the discovery of novel biomarkers for the disease under study, following the ’guilt by association’ principle. Along these lines, GCNs are also considered suitable for the study of infectious diseases, as those caused by viruses to the matter at hand [38]. To do so, multiple studies have analyzed the effects of viral infection over the organism, focusing on immune response or tissue damage [39,40].



For instance, the analysis of gene expression using co-expression networks is shown in the work by Pedragosa et al. [41], where the infection caused by Lymphocytic Choriomeningitis Virus (LCMV) is studied over time in mice spleen using GCNs. In Ray et al. [42], GCNs are reconstructed from different microarray expression data in order to study HIV-1 progression, revealing important changes across the different infection stages. Similarly, in the work presented by McDermott et al. [43], the over- and under-stimulation of the innate immune response to severe acute respiratory syndrome coronavirus (SARS-CoV) infection is studied. Using several network-based approaches on multiple knockout mouse strains, authors found that ranking genes based on their network topology made accurate predictions of the pathogenic state, thus solving a classification problem. In [39], co-expression networks were generated by microarray analysis of pediatric influenza-infected samples. Thanks to this study, genes involved in the innate immune system and defense to virus were revealed. Finally, in the work by Pan et al. [44], a co-expression network is constructed based on differentially-expressed microRNAs and genes identified in liver tissues from patients with hepatitis B virus (HBV). This study provides new insights on how microRNAs take part in the molecular mechanism underlying HBV-associated acute liver failure.



The alarm posed by the COVID-19 pandemic has fueled the development of effective prevention and treatment protocols for 2019-nCoV/SARS-CoV-2 outbreak [45]. Due to the novelty of SARS-CoV-2, recent research takes similar viruses, such as SARS-CoV and Middle East Respiratory Syndrome coronavirus (MERS-CoV), as a starting point. Other coronaviruses, like Mouse Hepatitis Virus (MHV), are also considered appropriate for comparative studies in animal models, as demonstrated in the work by De Albuquerque et al. [46] and Ding et al. [47]. MHV is a murine coronavirus (M-CoV) that causes an epidemic illness with high mortality, and has been widely used for experimentation purposes. Works like the ones by Case et al. [48] and Gorman et al. [49], study the innate immune response against MHV arbitrated by interferons, and those interferon-stimulated genes with potential antiviral function. This is the case of gene Ly6E, which has been shown to play an important role in viral infection, as well as various orthologs of the same gene [50,51]. Mechanistic approaches often involved the ablation of the gene under study, like in the work by Mar et al. [31], where gene knockout was used to characterize the implications of Ly6E in Influenza A infection. As it is the case of Giotis et al. [52], these studies often involve global transcriptome analyses, via RNA-seq or microarrays, together with computational efforts, which intend to screen the key elements of the immune system that are required for the appropriate response. This approach ultimately leads experimental research through predictive analyses, as in the case of co-expression gene networks [53].




3. Materials and Methods


In the following subsections, the main methods and GCN reconstruction steps are addressed. First, in Section 3.1, the original dataset used in the present work is described, together with the experimental design. Then, in Section 4.1, the data preprocessing steps are described. Subsequently in Section 3.3, key genes controlling the infection progression are extracted through differential expression analyses. Finally, the inference of GCNs and their analysis are detailed in Section 3.4 and Section 3.5, respectively.



3.1. Original Dataset Description


The original experimental design can be described as follows. The progression of the MHV infection at genetic level was evaluated in two genetic backgrounds: wild type (wt, Ly6Efl/fl) and Ly6E knockout mutants (ko, Ly6EΔHSC). The ablation of gene Ly6E in all cell types is lethal, hence the Ly6EΔHSC strain contains a disrupted version of gene Ly6E only in hematopoietic stem cells (HSC), which give rise to myeloid and lymphoid progenitors of all blood cells. Wild type and Ly6EΔHSC mice were injected intraperitoneally with 5000 PFU MHV-A59. At 3 and 5 days post-injection (d p.i.), mice were euthanized and biological samples for RNA-Seq were extracted. The overall effects of MHV infection in both wt and ko strains was assessed in liver and spleen.



In total 36 samples were analyzed, half of these corresponding to liver and spleen, respectively. From the 18 organ-specific samples, 6 samples correspond to mock infection (negative control), 6 to MHV-infected samples at 3 d p.i. and 6 to MHV-infected samples at 5 d p.i. For each sample, two technical replicates were obtained. Libraries of cDNA generated from the samples were sequenced using Illumina NovaSeq 6000. Further details on sample preparation can be found in the original article by Pfaender et al. [54]. For the sake of simplicity, MHV-infected samples at 3 and 5 d p.i. will be termed ’cases’, whereas mock-infection samples will be termed ’controls’.



The original dataset consists of 72 files, one per sample replicate, obtained upon the mapping of the transcript reads to the reference genome. Reads were recorded in three different ways, considering whether these mapped introns, exons or total genes. Then, a count table was retrieved from these files by selecting only the total gene counts of each sample replicate file.




3.2. Data Pre-Processing


Pre-processing was performed using the   E d g e R   [55] R package. The original dataset by Pfaender et al. [54] was retrieved from GEO (accession ID: GSE146074) using the GEOquery [56] package. Additional files on sample information and treatment were also used to assist the modeling process.



By convention, a sequencing depth per gene below 10 is considered neglectable [57,58]. Genes meeting this criterion are known as low expression genes, and are often removed since they add noise and computational burden to the following analyses [59]. In order to remove genes showing less than 10 reads across all conditions, counts per million (CPM) normalization was performed, so possible differences between library sizes for both replicates would not affect the result.



Afterwards, Principal Components Analyses (PCA) were performed over the data in order to detect the main sources of variability across samples. PCA were accompanied by unsupervised k-medoid clustering analyses, in order to identify different groups of samples. In addition, multidimensional scaling plots (MDS) were applied to further separate samples according to their features. Last, between-sample similarities were assessed through hierarchical clustering.




3.3. Differential Expression Analyses


The analyses of differential expression served a two-way purpose, (i) the exploration of the directionality in the gene expression changes upon viral infection, and (ii) the identification of key regulatory elements for the subsequent network reconstruction. In the present application, differentially-expressed genes (DEG) were filtered from the original dataset and proceeded to the reconstruction process. This approximation enabled the modeling of the genetic relationships that are considered of relevance in the presented comparison [60,61,62]. In the present work mice samples were compared organ-wise depending on whether these corresponded to control, 3 d p.i. and 5 d p.i.



The identification of DEG was performed using the   L i m m a   [63] R package, which provides non-parametric robust estimation of the gene expression variance. This package includes   V o o m  , a method that incorporates RNA-Seq count data into the   L i m m a   workbench, originally designed for microarrays [64]. In this case, a minimum log2-fold-change (log2FC) of 2 was chosen, which corresponds to four fold changes in the gene expression level. P-value was adjusted by Benjamini-Hochberg [65] and the selected adjusted p-value cutoff was 0.05.




3.4. Inference of the Gene Networks: EnGNet


In order to generate gene networks the EnGNet algorithm was used. This technique, presented in Gómez-Vela et al. [33], is able to compute gene co-expression networks with a competitive performance compared other approaches from the literature. EnGNet performs a two-step process to infer gene networks: (a) an ensemble strategy for a reliable co-expression networks generation, and (b) a greedy algorithm that optimizes both the size and the topological features of the network. These two features of EnGNet offer a reliable solution for generating gene networks. In fact, EnGNet relies on three statistical measures in order to obtain networks. In particular, the measures used are the Spearman, Kendall and normalized mutual information (NMI), which are widely used in the literature for inferring gene networks. EnGNet uses these measures simultaneously by applying an ensemble strategy based on major voting, i.e., a relationship will be considered correct if at least 2 of the 3 measures evaluate the relationship as correct. The evaluation is based on different independent thresholds. In this work, the different thresholds were set to the values originally used in [33]:   0.9  ,   0.8   and   0.7   for Spearman, Kendall and NMI, respectively.



In addition, as mentioned above, EnGNet performs an optimization of the topological structure of the networks obtained. This reduction is based on two steps: (i) the pruning of the relations considered of least interest in the initial network, and (ii) the analysis of the hubs present in the network. For this second step of the final network reconstruction, we have selected the same threshold that was used in [33], i.e.,   0.7  . Through this optimization, the final network produced by EnGNet results easier to analyze computationally, due to its reduced size.




3.5. Networks Analyses


Networks were imported to R for the estimation of topology parameters and the addition of network features that are of interest for the latter network analysis and interpretation. These attributes were added to the reconstructed networks to enrich the modeling using the igraph [66] R package. The networks were then imported into Cytoscape [67] through RCy3 [68] for examination and analyses purposes. In this case, two kind of analyses were performed: (i) a topological analysis and (ii) an enrichment analysis.



Regarding the topological analysis, clustering evaluation was performed in order to identify densely connected nodes, which, according to the literature, are often involved in a same biological process [69]. The chosen clustering method was community clustering (GLay) [70], implemented via Cytoscape’s ClusterMaker app [71], which has yielded significant results in the identification of densely connected modules [72,73]. Among the topology parameters, degree and edge betweenness were estimated. The degree of a node refers to the number of its linking nodes. On the other hand, the betweenness of an edge refers to the number of shortest paths which go through that edge. Both parameters are considered as a measure of the implications of respectively nodes and edges in a certain network. Particularly, nodes whose degree exceeds the average network node degree, the so called hubs, are considered key elements of the biological processes modeled by the network. In this particular case, the distribution of nodes’ degree network was analyzed so those nodes whose degree exceeded a threshold were selected as hubs. This threshold is defined as   Q 3 + 1.5 × I Q R  , where Q3 is the third quartile and IQR the interquartile range of the degree distribution. This method has been widely used for the detection of upper outliers in non-parametric distributions [74,75], as it is the case. However, the outlier definition does not apply to this distribution since those nodes whose degree are far above the median degree are considered hubs.



On the other hand, Gene Ontology (GO) Enrichment Analysis provides valuable insights on the biological reality modeled by the reconstructed networks. The Gene Ontology Consortium [76] is a data base that seeks for a unified nomenclature for biological entities. GO has developed three different ontologies, which describe gene products in terms of the biological processes, cell components or molecular functions in which these are involved. Ontologies are built out of GO terms or annotations, which provide biological information of gene products. In this case, the ClusterProfiler [77] R package, allowed the identification of the statistically over-represented GO terms in the gene sets of interest. Additional enrichment analyses were performed using DAVID [78]. For both analyses, the complete genome of Mus musculus was selected as background. Finally, further details on the interplay of the genes under study was examined using the STRING database [79].





4. Results


The reconstruction of gene networks that adequately model viral infection involves multiple steps, which ultimately shape the final outcome. First, in Section 4.1, exploratory analyses and data preprocessing are detailed, which prompted the modeling rationale. Then, in Section 4.2, differential expression is evaluated for the samples of interest. Finally, networks reconstruction and analysis are addressed in Section 4.3. At the end, four networks were generated, both in an organ- and genotype-wise manner. A schematic representation of the GCN reconstruction approach is shown in Figure 1.



4.1. Data Pre-Processing and Exploratory Analyses


In order to remove low expression genes, a sequencing depth of 10 was found to correspond to an average CPM of 0.5, which was selected as threshold. Hence, genes whose expression was found over 0.5 CPM in at least two samples of the dataset were maintained, ensuring that only genes which are truly being expressed in the tissue will be studied. The dataset was Log2-normalized with priority to the following analyses, in accordance to the recommendations posed in Law et al. [64].



The results of both PCA and k-medoid clustering are shown in Figure 2a. Clustering of the Log2-normalized samples revealed clear differences between liver and spleen samples. Also, for each organ, three subgroups of analogous samples that cluster together are identified. These groups correspond to mock infection, MHV-infected mice at 3 d p.i. and MHV-infected mice at 5 d p.i. (dashed lines in Figure 2a). Finally, subtle differences were observed in homologous samples of different genotypes (Figure A1).



Organ-specific PCA revealed major differences between MHV-infected samples for Ly6E    Δ H S C    and wt genotypes, at both 3 and 5 d p.i. These differences were not observed in the mock infection (control situation). Organ-wise PCA are shown in Figure 2b,c. The distances between same-genotype samples illustrate the infection-prompted genetic perturbation from the uninfected status (control) to 5 d p.i., where clear signs of hepatitis were observed according to the original physiopathology studies [54]. On the other hand, the differences observed between both genotypes are indicative of the role of gene Ly6E in the appropriate response to viral infection. These differences are subtle in control samples, but in case samples, some composition biass is observed depending on whether these are ko or wt, especially in spleen samples. The comparative analysis of the top 500 most variable genes confirmed the differences observed in the PCA, as shown in Figure A2. Among the four different features of the samples under study: organ, genotype, sample type (case or control) and days post injection; the dissimilarities in terms of genotype were the subtlest.



In the light of these exploratory findings, the network reconstruction approach was performed as follows. Networks were reconstructed organ-wise, as these exhibit notable differences in gene expression. Additionally, a main objective of the present work is to evaluate the differences in the genetic response in the wt situation compared to the Ly6E    Δ H S C    ko background, upon the viral infection onset in the two mentioned tissues.



For each organ, Log2-normalized samples were coerced to generate time-series-like data, i.e., for each genotype, 9 samples will be considered as a set, namely 3 control samples, 3 case samples at 3 d p.i. and 3 case samples at 5 d p.i. Both technical replicates were included. This rational design seeks for a gene expression span representative of the infection progress. Thereby, control samples may well be considered as a time zero for the viral infection, followed by the corresponding samples at 3 and 5 d p.i. The proposed rationale is supported by the exploratory findings, which position 3 d p.i. samples between control and 5 d p.i. samples. At the same time, the reconstruction of gene expression becomes robuster with increasing number of samples. In this particular case, 18 measuring points are attained for the reconstruction of each one of the four intended networks, since two technical replicates were obtained per sample [80].




4.2. Identification of Differentially-Expressed Genes Between Wild Type and Ly6E    Δ H S C    Samples


The differential expression analyses were performed over the four groups of 9 samples explained above, with the aim of examining the differences in the immune response between Ly6E    Δ H S C    and wt samples.   L i m m a   -   V o o m   differential expression analyses were performed over the Log2-normalized counts, in order to evaluate the different genotypes whilst contrasting the three infection stages: control vs. cases at 3 d p.i., control vs. cases at 5 d p.i. and cases at 3 vs. 5 d p.i. The choice of a minimum absolute log2FC ≥ 2, enabled considering only those genes that truly effect changes between wt and Ly6E    Δ H S C    samples, whilst maintaining a relatively computer-manageable number of DEG for network reconstruction. The latter is essential for the yield of accurate network sparseness values, as this is a main feature of gene networks [5].



For both genotypes and organs, the results of the differential expression analyses reveal that MHV injection triggers a progressive genetic program from the control situation to the MHV-infected scenario at 5 d p.i., as shown in Figure 3a. The absolute number of DEG between control vs. cases at 5 d p.i. was considerably larger than in the comparison between control vs. cases at 3 d p.i. Furthermore, in all cases, most of the DEG in control vs. cases at 3 d p.i. are also differentially-expressed in the control vs. cases at 5 d p.i. comparison, as shown in Figure 4.



Regarding genes fold change, an overall genetic up-regulation is observed upon infection. Around 70% of DEG are upregulated for all the comparisons performed for wt samples, as shown in Figure 3b. Nonetheless, a dramatic reduce in this genetic up-regulation is observed, by contrast, in knockout samples, even limiting upregulated genes to nearly 50% in the control vs. cases at 3 d p.i. comparison of liver Ly6E    Δ H S C    samples. The largest differences are observed in the comparison of controls vs. cases at 5 d p.i (Figure A3 and Figure A4). These DEG are of great interest for the understanding of the immune response of both wt and ko mice to viral infection. These genes were selected to filter the original dataset for latter network reconstruction.



The commonalities between wt and ko control samples for both organs were also verified through differential expression analysis following the same criteria (Log2FC > 2, p value < 0.05). The number of DEG between wt and ko liver control samples (2) and between wt and ko spleen control samples (20) were not considered significant, so samples were taken as analogous starting points for infection.




4.3. Reconstruction and Analysis of Gene Networks


As stated above, the samples were arranged both organ and genotype-wise in order to generate networks which would model the progress of the disease in each scenario. GCNs were inferred from Log2-normalized expression datasets. A count of 1 was added at log2 normalization so the problem with remaining zero values was avoided. Each network was generated exclusively taking into consideration their corresponding DEG at control vs. cases at 5 d p.i., where larger differences were observed. Four networks were then reconstructed from these previously-identified DEG for liver wt samples (1133 genes), liver ko samples (1153 genes), spleen wt samples (506 genes) and spleen ko samples (426 genes). This approach results in the modeling of only those relationships that are related to the viral infection. Each sample set was then fed to EnGNet for the reconstruction of the subsequent network. Genes that remained unconnected due to weak relationships, which do not overcome the set threshold, were removed from the networks. Furthermore, the goodness of EnGNet-generated models outperformed other well-known inference approaches, as detailed in Appendix B.



Topological parameters were estimated and added as node attributes using igraph, together with Log2FC, prior to Cytoscape import. Specifically, networks were simplified by removing potential loops and multiple edges. The clustering topological scrutiny of the reconstructed networks revealed neat modules in all cases, as shown in Figure A5. The number of clusters identified in each network, as well as the number of genes harbored in the clusters is shown in Table A1.



As already mentioned, according to gene networks theory, nodes contained within the same cluster are often involved in the same biological process [5,81]. In this context, the GO-based enrichment analyses over the identified clusters may well provide an idea of the affected functions. Only clusters containing more than 10 genes were considered, since this is the minimum number of elements required by the enrichment tool ClusterProfiler. The results of the enrichment analyses revealed that most GO terms were not shared between wt and ko homologous samples, as shown in Figure 5.



In order to further explore the reconstructed networks, the intersection of ko and wt networks of a same organ was computed. This refers to the genes and relationships that are shared between both genotypes for a specific organ. Additionally, the genes and relationships that were exclusively present at the wt and ko samples were also estimated, as shown in Figure A6. The enrichment analyses over the nodes, separated using this criterion, would reveal the biological processes that make the difference between in Ly6E    Δ H S C    mice compared to wt ones. The results of such analyses are shown in Figure A7.



Finally, the exploration of nodes’ degree distribution would reveal those genes that can be considered hubs. Those nodes comprised within the top genes with highest degree (degree > Q3 + 1.5 × IQ), also known as upper outliers in the nodes distribution, were considered hubs. A representation of nodes’ degree distribution throughout the four reconstructed networks is shown in Figure 6. These distributions are detailed in Figure A8. This method provided four cutoff values for the degree, 24, 39, 21 and 21, respectively for liver wt and ko, spleen wt and ko networks. Above these thresholds, nodes would be considered as hubs in each network. These hubs are shown in Table A2,Table A3,Table A4 and Table A5.





5. Discussion


In this work four gene networks were reconstructed to model the genetic response MHV infection in two tissues, liver and spleen, and in two different genetic backgrounds, wild type and Ly6E    Δ H S C   . Samples were initially explored in order to design an inference rationale. Not only did the designed approach reveal major differences between the genetic programs in each organ, but also, between different subgroups of samples, in a time-series-like manner. Noticeably, disparities between wt and Ly6E    Δ H S C    samples were observed in both tissues, and differential expression analyses revealed relevant differences in terms of the immune response generated. Hereby, our results predict the impact of Ly6E ko on HSC, which resulted in an impaired immune response compared to the wt situation.



5.1. Exploratory Analyses Revealed a Time-Series Llike Behaviour on Raw Data, Assisting Network Reconstruction


Overall, results indicate that the reconstruction rationale, elucidated from exploratory findings, is suitable for the modeling of the viral progression. Regarding the variance in gene expression in response to virus, PCA and K-medoid clustering revealed strong differences between samples corresponding to liver spleen, respectively (Figure 2a). These differences set the starting point for the modeling approach, in which samples corresponding to each organ were analyzed independently. This modus operandi is strongly supported by the tropism that viruses exhibit for certain tissues, which ultimately results in a differential viral incidence and charge depending on the organ [82]. In particular, the liver is the target organ of MHV, identified as the main disease site [83]. On the other hand, the role of the spleen in innate and adaptive immunity against MHV has been widely addressed [84,85]. The organization of this organ allows blood filtration for the presentation of antigens to cognate lymphocytes by the antigen presenting cells (APCs), which mediate the immune response exerted by T and B cells [86].



As stated before, PCA revealed differences between the three sample groups on each organ: control and MHV-infected at 3 and 5 d p.i. Interestingly, between-groups differences are specially clear for liver samples (Figure 2b), whereas spleen samples are displayed in a continuum-like way. This becomes more evident in organ-wise PCA (Figure 2), and was latter confirmed by the exploration of the top 500 most variable genes and differential expression analyses (Figure A2). Furthermore, clear differences between wt and Ly6E    Δ H S C    samples are observed in none of these analyses, although the examination of the differential expression and network reconstruction did exposed divergent immune responses for both genotypes.




5.2. Differential Expression Analyses Revealed Significant Changes between Wild Type and Knockout Samples


The differential expression analyses revealed the progressive genetic response to virus for both organs and genotypes (Figure 3a and Figure 4). In a wt genetic background, MHV infection causes an overall rise in the expression level of certain genes, as most DEG in cases vs. control samples are upregulated. However, in a Ly6E    Δ H S C    genetic background, this upregulation is not as prominent as in a wt background, significantly reducing the number of upregulated genes (Figure 3b). Besides, the number of DEG in each comparison varies from wt to Ly6E    Δ H S C    samples.



Attending at the DEG in the performed comparisons, for both the wt and ko genotypes, liver cases at 3 d p.i. are more similar to liver cases at 5 d p.i. than to liver controls, since the number of DEG between the first two measuring points is significantly lower than the number of DEG between control and case samples at 3 d p.i. (Figure 4a,b). A different situation occurs in the spleen, where wt cases at 3 d p.i. are closer to control samples (Figure 4c), whereas ko cases at 3 d p.i. seem to be more related to cases at 5 d p.i. (Figure 4d). This was already suggested by hierarchical clustering in the analysis of the top 500 most variable genes, and could be indicative of a different progression of the infection impact on both organs, which could be modulated by gene Ly6E, at least for the spleen samples.



Moreover, the results of the DEG analyses indicate that the sole knockout of gene Ly6E in HSC considerably affects the upregulating genetic program normally triggered by viral infection in wild type individuals (in both liver and spleen). Interestingly, there are some genes in each organ and genotype that are differentially expressed in every comparison between the possible three sample types, controls, cases at 3 d p.i. and cases at 5 d p.i. These genes, which we termed highly DEG, could be linked to the progression of the infection, as changes in their expression level occur with days post injection, according to the data. The rest of the DEG, show an uprise or fall when comparing two sample types, which does not change significantly in the third sample type. Alternatively, highly DEG, shown in Table A6, exhibited three different expression patterns: (i) Their expression level, initially low, rises from control to cases at 3 d p.i. and then rises again in cases at 5 d p.i. (ii) Their expression level, initially high in control samples, falls at 3 d p.i. and falls even more at 5 d p.i cases. (iii) Their expression level, initially low, rises from control to cases at 3 d p.i. but then falls at cases at 5 d p.i., when it is still higher than the initial expression level. These expression patterns, which are shown in Figure A9, might be used to keep track of the disease progression, differentiating early from late infection stages.



In some cases, these genes exhibited inconsistent expression levels, specially at 5 d p.i. cases, which indicates the need for further experimental designs targeting these genes. Highly DEG could be correlated with the progression of the disease, as in regulation types (i) and (ii) or by contrast, be required exclusively at initial stages, as in regulation type (iii). Notably, genes Gm10800 and Gm4756 are predicted genes which, to date, have been poorly described. According to the STRING database [79], Gm10800 is associated with gene Lst1 (Leukocyte-specific transcript 1 protein), which has a possible role in modulating immune responses. In fact, Gm10800 is homologous to human gene PIRO (Progranulin-Induced-Receptor-like gene during Osteoclastogenesis), related to bone homeostasis [87,88]. Thus, we hypothesize that bone marrow-derived cell lines, including erythrocytes and leukocytes (immunity effectors), could also be regulated by Gm10800. On the other hand, Gm4756 is not associated to any other gene according to STRING. Protein Gm4756 is homologous to Human protein DHRS7 (dehydrogenase/reductase SDR family member 7) isoform 1 precursor. Nonetheless and to the best of our knowledge, these genes have not been previously related to Ly6E, and could play a role in the immune processes mediated by this gene.



Finally, highly DEG were not found exclusively present in wt nor ko networks, instead, these were common nodes of these networks for each organ. This suggests that highly DEG might be of core relevance upon MHV infection, with a role in those processes independent on Ly6E    Δ H S C   . Besides, genes Hykk, Ifit3 and Ifit3b; identified as highly DEG throughout liver Ly6E    Δ H S C    samples were also identified as hubs in the liver ko network. Also gene Saa3, highly DEG across spleen Ly6E    Δ H S C    samples was considered a hub in the spleen ko network. Nevertheless, these highly DEG require further experimental validation.




5.3. The Ablation of Ly6E in HSC Results in Impaired Immune Response as Predicted by Enrichment Analyses


The enrichment analyses of the identified clusters at each network revealed that most GO terms are not shared between the two genotypes (Figure 5), despite the considerable amount of shared genes between the two genotypes for a same organ. The network reconstructed from liver wt samples reflects a strong response to viral infection, involving leukocyte migration or cytokine and interferon signaling among others. These processes, much related to immune processes, are not observed in its ko counterpart.



The liver wt network presented four clusters (Figure A5a). Its cluster 1 regulates processes related to leukocyte migration, showing the implication of receptor ligand activity and cytokine signaling, which possibly mediates the migration of the involved cells. Cluster 2 is related to interferon-gamma for the response to MHV, whereas cluster 3 is probably involved in the inflammatory response mediated by pro-inflammatory cytokines. Last, cluster 4 is related to cell extravasation, or the leave of blood cells from blood vessels, with the participation of gene Nipal1. The positive regulation observed across all clusters suggests the activation of these processes. Overall, hub genes in this network have been related to the immune response to viral infection, as the innate immune response to the virus is the mediated by interferons. Meanwhile, the liver ko network showed three main clusters (Figure A5b). Its cluster 1 would also be involved in defense response to virus, but other processes observed in the liver wt network, like leukocyte migration or cytokine activity, are not observed in this cluster nor the others. Cluster 2 is then related to the catabolism of small molecules and cluster 3 is involved in acids biosynthesis. These processes are certainly ambiguous and do not correspond the immune response observed in the wt situation, which suggests a decrease in the immune response to MHV as a result of Ly6E ablation in HSC.



On the other hand, spleen wt samples revealed high nuclear activity potentially involving nucleosome remodeling complexes and changes in DNA accessibility. Histone modification is a type of epigenetic modulation which regulates gene expression. Taking into account the central role of the spleen in the development of immune responses, the manifested relevance of chromatin organization could be accompanied by changes in the accessibility of certain DNA regions with implications in the spleen-dependent immune response. This is supported by the reduced reaction capacity in the first days post-infection of Ly6E    Δ H S C    samples compared to wt, as indicated by the number of DEG between control and cases at 3 d p.i for these genotypes. The spleen wt network displayed three clusters (Figure A5c). Cluster 1, whose genes were all upregulated in Ly6E    Δ H S C    samples at 5 d p.i. compared to mock infection, is mostly involved in nucleosome organization and chromatin remodelling, together with cluster 3. Cluster 2 would also be related to DNA packaging complexes, possibly in response to interferon, similarly to liver networks. Instead, in spleen ko most genes take part in processes related to the extracellular matrix. In the spleen ko network, four clusters were identified (Figure A5d). Cluster 1 is related to the activation of an immune response, but also, alongside with clusters 2 and 4, to the extracellular matrix, possibly in relation with collagen, highlighting its role in the response to MHV. Cluster 3 is implied in protease binding. The dramatic shut down in the ko network of the nuclear activity observed in the spleen wt network, leads to the hypothesis that the chromatin remodeling activity observed could be related to the activation of certain immunoenhancer genes, modulated by gene Ly6E. In any case, further experimental validation of these results would provide meaningful insights in the face of potential therapeutic approaches (See Appendix A for more details).



The exploration of nodes memebership, depending on whether these exclusively belonged to wt or ko networks or, by contrast, were present in both networks, helped to understand the impairment caused by Ly6E    Δ H S C   . In this sense, GO enrichment analyses over these three defined categories of the nodes in the liver networks revealed that genes at their intersection are mainly related to cytokine production, leukocyte migration and inflammatory response regulation, in accordance to the phenotype described for MHV-infection [89]. However, a differential response to virus is observed in wt mice compared to Ly6E-ablated. The nodes exclusively present at the wt liver network are related to processes like regulation of immune effector process, leukocyte mediated immunity or adaptive immune response. These processes, which are found at a relatively high gene ratio, are not represented by nodes exclusively present in the liver ko network. Additionally, genes exclusively present at the wt network and the intersection network are upregulated in case samples with respect to controls (Figure A6a), which suggests the activation of the previously mentioned biological processes. On the other hand, genes exclusively-present at the liver ko networks, mostly down-regulated, were found to be associated with catabolism.



As for the spleen networks, genotype-wise GO enrichment results revealed that the previously-mentioned intense nuclear activity involving protein-DNA complexes and nucleosome assembly is mostly due to wt-exclusive genes. Actually, these biological processes could be pinpointing cell replication events. Analogously to the liver case, genes that were found exclusively present in the wt network and the intersection network are mostly upregulated, whereas in the case of ko-exclusive genes the upregulation is not that extensive. Interestingly, the latter are mostly related to extracellular matrix (ECM) organization, which suggest the relevance of Ly6E on these. Other lymphocyte antigen-6 (LY-6) superfamily members have been related to ECM remodelling processes such as the Urokinase receptor (uPAR), which participates in the proteolysis of ECM proteins [90]. However and to the best of our knowledge, the implications of Ly6E in ECM have not been reported.



The results presented are in the main consistent with those by Pfaender et al. [54], who observed a loss of genes associated with the type I IFN response, inflammation, antigen presentation, and B cells in infected Ly6E    Δ H S C    mice. Genes Stat1 and Ifit3, selected in their work for their high variation in absence of Ly6e, were identified as hub genes in the networks reconstructed from liver wild type and knockout samples, respectively. It is to be noticed that our approach significantly differs to the one carried out in the original study. In this particular case, we consider that the reconstruction of GCN enables a more comprehensive analysis of the data, potentially finding the key genes involved in the immune response onset and their relationships with other genes. For instance, the transcriptomic differences between liver and spleen upon Ly6E ablation become more evident using GCN.



Altogether, the presented results show the relevance of gene Ly6E in the immune response against the infection caused by MHV. The disruption of Ly6E significantly reduced the immunogenic response, affecting signaling and cell effectors. These results, combining in vivo and in silico approaches, deepen in our understanding of the immune response to viruses at the gene level, which could ultimately assist the development of new therapeutics. For example, basing on these results, prospective studies on Ly6E agonist therapies could be inspired, with the purpose of enhancing the gene expression level via gene delivery. Given the relevance of Ly6E in SARS-CoV-2 according to previous studies [54,91], the overall effects of Ly6E ablation in HSCs upon SARS-CoV-2 infection, putting special interest in lung tissue, might show similarities with the deficient immune response observed in the present work.





6. Conclusions


In this work we have presented an application of co-expression gene networks to analyze the global effects of Ly6E ablation in the immune response to MHV coronavirus infection. To do so, the progression of the MHV infection on the genetic level was evaluated in two genetic backgrounds: wild type mice (wt, Ly6Efl/fl) and Ly6E knockout mutants (ko, Ly6EΔHSC) mice. For these, viral progression was assessed in two different organs, liver and spleen.



The proposed reconstruction rationale revealed significant differences between MHV-infected wt and Ly6E    Δ H S C    mice for both organs. In addition we observed that MHV infection triggers a progressive genetic response of upregulating nature in both liver and spleen. In addition, the results suggest that the ablation of gene Ly6E at HSC caused an impaired genetic response in both organs compared to wt mice. The impact of such ablation is more evident in the liver, consistently with the disease site. At the same time, the immune response in the spleen, which seemed to be mediated by an intense chromatin activity in the normal situation, is replaced by ECM remodeling in Ly6E    Δ H S C    mice.



We infer that the presence of Ly6E limits the damage in the above mentioned target sites. We believe that the characterization of these processes could motivate the efforts towards novel antiviral approaches. Finally, in the light of previous works, we hypothesize that Ly6E ablation might show analogous detrimental effects on immunity upon the infection caused by other viruses including SARS-CoV, MERS and SARS-CoV-2. In future works, we plan to investigate whether the over-expression of Ly6E in wt mice has an enhancement effect in immunity. In this direction, Ly6E gene mimicking (agonist) therapies could represent a promising approach in the development of new antivirals.
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Appendix A. Figures and Tables




[image: Genes 11 00831 g0a1 550] 





Figure A1. Multidimensional Scaling (MDS) plots showing main differences between individual samples according to the four features these present: organ procedence, genotype, sample type (mock infection or MHV-infected) and days post injection. 
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Figure A2. Top 500 most variable genes in (a) liver and (b) spleen samples. Log2-normalization was applied over the Counts per Million (CPMs) in order to properly compare distributions. Variance estimation reaffirms the homogenity of control vs. case samples. Overall, differences are also observed between 3 and 5 d p.i. case samples. 






Figure A2. Top 500 most variable genes in (a) liver and (b) spleen samples. Log2-normalization was applied over the Counts per Million (CPMs) in order to properly compare distributions. Variance estimation reaffirms the homogenity of control vs. case samples. Overall, differences are also observed between 3 and 5 d p.i. case samples.



[image: Genes 11 00831 g0a2]







[image: Genes 11 00831 g0a3 550] 





Figure A3. Volcano plots showing the differentially-expressed genes (DEG) that proceeded to the analyses. DEG were filtered by log2FC ≥ 2 and adjusted p value ≤ 0.05. These comparisons were performed both organ and genotype-wise: (a) liver wt, (b) liver ko, (c) spleen wt, (d) spleen ko. ko, LyΔ6EDHSC 
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Figure A4. UpSet plot representing the commonalities between the 12 differentially-expressed genes (DEG) groups identified in differential expression analyses. The comparison of controls vs. samples at 5 d p.i. comprised the greatest number of genes for all sample types. 
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Table A1. Number of DEG used as input to EnGNet for network reconstruction and their latter distribution in inferred networks. Genes that were not assigned to a cluster (or were comprised in minoritary clusters) were not taken into consideration for enrichment analyses.
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	Liver wt
	Liver ko
	Spleen wt
	Spleen ko





	Input genes
	1133
	1153
	506
	426



	Network genes
	1118
	1300
	485
	403



	Cluster 1
	262
	284
	180
	109



	Cluster 2
	218
	379
	255
	190



	Cluster 3
	579
	624
	36
	77



	Cluster 4
	59
	
	
	25



	Unconnected/minor clustered
	0
	13
	14
	2
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Figure A5. Inferred networks for (a) liver wt (1118 nodes, 16,281 edges, 4 clusters), (b) liver ko (1300 nodes, 15,727 edges, 3 clusters), (c) spleen wt (485 nodes, 4042 edges, 3 clusters), (d) spleen ko (403 nodes, 4220 edges, 4 clusters). Nodes are colored according to log2FC, upregulated genes in blue, downregulated genes in red. Clusters are numbered from left to right. Node size is represented according to node’s degree. Edge transparency is represented according to edge weight. Networks are displayed using the yfiles organic layout [92]. 
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Figure A6. Networks resulting from the organ-wise merging of (a) wt and (b) ko samples. From left to right, nodes are displayed in circles depending on whether genes are contained exclusively at the wt, in the intersection between the ko and wt networks and in the ko network exclusively. Nodes are sorted and colored according to log2FC, upregulated genes in blue, downregulated genes in red. Node size is represented according to node’s degree. 
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Figure A7. Enrichment analyses based on node exclusiveness of (a) liver and (b) spleen networks. wt refers to nodes exclusively present at those networks reconstructed from wt samples; ko refers to nodes exclusively present at networks reconstructed from Ly6E    Δ H S C    samples; both addresses shared nodes between wt and ko networks. Gene ratio is defined by the number of genes used as input for the ernichment analyses associated with a particular GO term divided by the total number of input genes. 
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Figure A8. Distribution of node’s degree throughout the networks reconstructed from (a) liver wt samples, (b) liver ko samples, (c) spleen wt samples and (d) spleen ko samples. The distribution trendline is shown in red. Nodes that are not present in the zoomed area are considered hubs. Note degree distributions do not fit a normal distribution (Shapiro–Wilk normality test, p-value < 0.05)。 
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Table A2. Hubs identified in the network reconstructed from liver wt samples. Degree cutoff: 24. Reg. regulation.
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	Ensembl ID
	Cluster
	Degree
	Reg.
	Symbol
	Description





	ENSMUSG00000034593
	1
	1033
	up
	Myo5a
	myosin VA



	ENSMUSG00000000982
	3
	1006
	up
	Ccl3
	chemokine (C-C motif) ligand 3



	ENSMUSG00000030745
	2
	997
	up
	Il21r
	interleukin 21 receptor



	ENSMUSG00000032322
	3
	989
	up
	Pstpip1
	proline-serine-threonine

phosphatase-interacting protein 1



	ENSMUSG00000079227
	3
	975
	up
	Ccr5
	chemokine (C-C motif) receptor 5



	ENSMUSG00000031304
	3
	957
	up
	Il2rg
	interleukin 2 receptor,

gamma chain



	ENSMUSG00000069268
	3
	940
	up
	Hist1h2bf
	histone cluster 1, H2bf



	ENSMUSG00000027071
	1
	938
	down
	P2rx3
	purinergic receptor P2X,

ligand-gated ion channel, 3



	ENSMUSG00000019232
	3
	929
	down
	Etnppl
	ethanolamine phosphate

phospholyase



	ENSMUSG00000032643
	3
	921
	up
	Fhl3
	four and a half LIM domains 3



	ENSMUSG00000033763
	3
	904
	down
	Mtss2
	MTSS I-BAR domain containing 2



	ENSMUSG00000032094
	1
	887
	up
	Cd3d
	CD3 antigen, delta polypeptide



	ENSMUSG00000050896
	3
	883
	up
	Rtn4rl2
	reticulon 4 receptor-like 2



	ENSMUSG00000067219
	4
	801
	down
	Nipal1
	NIPA-like domain containing 1



	ENSMUSG00000110439
	3
	780
	down
	Mup22
	major urinary protein 22



	ENSMUSG00000004105
	2
	743
	down
	Angptl2
	angiopoietin-like 2



	ENSMUSG00000081650
	1
	713
	up
	Gm16181
	-



	ENSMUSG00000050395
	2
	538
	up
	Tnfsf15
	tumor necrosis factor (ligand)

superfamily, member 15



	ENSMUSG00000038067
	1
	220
	up
	Csf3
	colony stimulating factor 3

(granulocyte)



	ENSMUSG00000026104
	2
	90
	up
	Stat1
	signal transducer and activator

of transcription 1



	ENSMUSG00000037965
	2
	66
	up
	Zc3h7a
	zinc finger CCCH type

containing 7 A
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Table A3. Hubs identified in the network reconstructed from liver Ly6E    Δ H S C    samples. Degree cutoff: 39. Reg. regulation.
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	Ensembl ID
	Cluster
	Degree
	Reg.
	Symbol
	Description





	ENSMUSG00000029445
	2
	800
	down
	Hpd
	4-hydroxyphenylpyruvic acid

dioxygenase



	ENSMUSG00000037071
	3
	781
	down
	Scd1
	stearoyl-Coenzyme A desaturase 1



	ENSMUSG00000041773
	3
	773
	up
	Enc1
	ectodermal-neural cortex 1



	ENSMUSG00000075015
	3
	760
	up
	Gm10801
	-



	ENSMUSG00000021250
	3
	742
	up
	Fos
	FBJ osteosarcoma oncogene



	ENSMUSG00000031618
	3
	735
	down
	Nr3c2
	nuclear receptor subfamily 3,

group C, member 2



	ENSMUSG00000022419
	1
	732
	down
	Deptor
	DEP domain containing

MTOR-interacting protein



	ENSMUSG00000033610
	3
	700
	down
	Pank1
	pantothenate kinase 1



	ENSMUSG00000024349
	3
	667
	up
	Tmem173
	transmembrane protein 173



	ENSMUSG00000006519
	3
	666
	up
	Cyba
	cytochrome b-245, alpha polypeptide



	ENSMUSG00000035878
	3
	666
	down
	Hykk
	hydroxylysine kinase 1



	ENSMUSG00000054630
	2
	652
	down
	Ugt2b5
	UDP glucuronosyltransferase 2

family, polypeptide B5



	ENSMUSG00000041757
	3
	639
	down
	Plekha6
	pleckstrin homology domain

containing, family A member 6



	ENSMUSG00000053398
	3
	620
	up
	Phgdh
	3-phosphoglycerate dehydrogenase



	ENSMUSG00000022025
	3
	555
	down
	Cnmd
	chondromodulin



	ENSMUSG00000029659
	2
	482
	up
	Medag
	mesenteric estrogen dependent

adipogenesis



	ENSMUSG00000062380
	2
	461
	up
	Tubb3
	tubulin, beta 3 class III



	ENSMUSG00000069309
	3
	408
	up
	Hist1h2an
	histone cluster 1, H2an



	ENSMUSG00000034285
	3
	399
	down
	Nipsnap1
	nipsnap homolog 1



	ENSMUSG00000027654
	3
	355
	up
	Fam83d
	family with sequence similarity 83,

member D



	ENSMUSG00000073435
	2
	355
	down
	Nme3
	NME/NM23 nucleoside diphosphate

kinase 3



	ENSMUSG00000021062
	2
	336
	up
	Rab15
	RAB15, member RAS oncogene family



	ENSMUSG00000037852
	3
	271
	up
	Cpe
	carboxypeptidase E



	ENSMUSG00000096201
	2
	260
	up
	Gm10715
	-



	ENSMUSG00000022754
	2
	245
	up
	Tmem45a
	transmembrane protein 45a



	ENSMUSG00000038233
	1
	239
	down
	Gask1a
	golgi associated kinase 1A



	ENSMUSG00000043456
	2
	236
	up
	Zfp536
	zinc finger protein 536



	ENSMUSG00000095891
	2
	168
	up
	Gm10717
	-



	ENSMUSG00000096688
	1
	126
	down
	Mup17
	major urinary protein 17



	ENSMUSG00000099398
	2
	115
	up
	Ms4a14
	membrane-spanning 4-domains,

subfamily A, member 14



	ENSMUSG00000025002
	1
	99
	down
	Cyp2c55
	cytochrome P450, family 2,

subfamily c, polypeptide 55



	ENSMUSG00000074896
	1
	91
	up
	Ifit3
	interferon-induced protein with

tetratricopeptide repeats 3



	ENSMUSG00000062488
	1
	86
	up
	Ifit3b
	interferon-induced protein with

tetratricopeptide repeats 3B



	ENSMUSG00000029417
	1
	78
	up
	Cxcl9
	chemokine (C-X-C motif) ligand 9



	ENSMUSG00000057465
	1
	77
	up
	Saa2
	serum amyloid A 2



	ENSMUSG00000050908
	2
	69
	up
	Tvp23a
	trans-golgi network vesicle protein 23A



	ENSMUSG00000030142
	1
	63
	up
	Clec4e
	C-type lectin domain family 4,

member e



	ENSMUSG00000038751
	1
	61
	down
	Ptk6
	PTK6 protein tyrosine kinase 6



	ENSMUSG00000068606
	1
	40
	up
	Gm4841
	predicted gene 4841
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Table A4. Hubs identified in the network reconstructed from spleen wt samples. Degree cutoff: 21. Reg. regulation.
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	Ensembl ID
	Cluster
	Degree
	Reg.
	Symbol
	Description





	ENSMUSG00000019505
	2
	365
	up
	Ubb
	ubiquitin B



	ENSMUSG00000094777
	2
	358
	up
	Hist1h2ap
	histone cluster 1, H2ap



	ENSMUSG00000057729
	3
	326
	up
	Prtn3
	proteinase 3



	ENSMUSG00000056071
	1
	323
	up
	S100a9
	S100 calcium binding protein A9

(calgranulin B)



	ENSMUSG00000025403
	2
	308
	up
	Shmt2
	serine hydroxymethyltransferase 2

(mitochondrial)



	ENSMUSG00000023132
	2
	290
	up
	Gzma
	granzyme A



	ENSMUSG00000078920
	2
	284
	up
	Ifi47
	interferon gamma inducible

protein 47



	ENSMUSG00000037894
	1
	274
	up
	H2afz
	H2A histone family, member Z



	ENSMUSG00000035472
	2
	247
	down
	Slc25a21
	solute carrier family 25 (mitochondrial

oxodicarboxylate carrier), member 21



	ENSMUSG00000009350
	1
	244
	up
	Mpo
	myeloperoxidase



	ENSMUSG00000103254
	1
	234
	up
	Ighv1-15
	-



	ENSMUSG00000069274
	1
	230
	up
	Hist1h4f
	histone cluster 1, H4f



	ENSMUSG00000028328
	2
	223
	down
	Tmod1
	tropomodulin 1



	ENSMUSG00000094322
	1
	128
	up
	Ighv9-4
	-



	ENSMUSG00000094124
	1
	114
	up
	Ighv1-74
	-



	ENSMUSG00000094546
	1
	68
	up
	Ighv1-26
	-
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Table A5. Hubs identified in the network reconstructed from spleen Ly6E    Δ H S C    samples. Degree cutoff: 21. Reg. regulation
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	Ensembl ID
	Cluster
	Degree
	Reg.
	Symbol
	Description





	ENSMUSG00000027715
	2
	353
	up
	Ccna2
	cyclin A2



	ENSMUSG00000024742
	3
	349
	up
	Fen1
	flap structure specific

endonuclease 1



	ENSMUSG00000024640
	2
	347
	up
	Psat1
	phosphoserine

aminotransferase 1



	ENSMUSG00000040026
	2
	338
	up
	Saa3
	serum amyloid A 3



	ENSMUSG00000039713
	2
	327
	down
	Plekhg5
	pleckstrin homology domain

containing, family G (with

RhoGef domain) member 5



	ENSMUSG00000075289
	4
	322
	down
	Carns1
	carnosine synthase 1



	ENSMUSG00000067610
	2
	309
	down
	Klri1
	killer cell lectin-like receptor

family I member 1



	ENSMUSG00000031503
	1
	305
	up
	Col4a2
	collagen, type IV, alpha 2



	ENSMUSG00000095700
	3
	298
	up
	Ighv10-3
	-



	ENSMUSG00000076613
	3
	287
	up
	Ighg2b
	-



	ENSMUSG00000051079
	2
	282
	down
	Rgs13
	regulator of G-protein

signaling 13



	ENSMUSG00000036027
	2
	268
	down
	1810046K07Rik
	RIKEN cDNA

1810046K07 gene



	ENSMUSG00000027962
	1
	225
	up
	Vcam1
	vascular cell adhesion

molecule 1



	ENSMUSG00000049130
	1
	184
	up
	C5ar1
	complement component

5a receptor 1



	ENSMUSG00000066861
	1
	35
	up
	Oas1g
	2′-5′ oligoadenylate

synthetase 1G
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Table A6. Highly DEG. List of DEG that are differentially-expressed for every of the comparisons performed: control vs. cases at 3 d p.i., control vs. cases at 5 d p.i. and cases at 3 vs. 5 d p.i. Memb, membership to the group of samples genes belong; ko, Ly6E    Δ H S C    samples. Reg. Type refers to the three expression patterns observed, described in Section 5.
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	Ensembl ID
	Symbol
	Description
	Memb.
	Reg. Type





	ENSMUSG00000032487
	Ptgs2
	prostaglandin-endoperoxide synthase 2
	liver wt
	1



	ENSMUSG00000029816
	Gpnmb
	glycoprotein (transmembrane) nmb
	liver wt
	1



	ENSMUSG00000035385
	Ccl2
	chemokine (C-C motif) ligand 2
	liver wt
	1



	ENSMUSG00000035373
	Ccl7
	chemokine (C-C motif) ligand 7
	liver wt
	1



	ENSMUSG00000015437
	Gzmb
	granzyme B
	liver wt
	1



	ENSMUSG00000038037
	Socs1
	suppressor of cytokine signaling 1
	liver wt
	1



	ENSMUSG00000026839
	Upp2
	uridine phosphorylase 2
	liver ko
	2



	ENSMUSG00000075014
	Gm10800
	-
	liver ko
	1



	ENSMUSG00000040660
	Cyp2b9
	cytochrome P450, family 2,

subfamily b, polypeptide 9
	liver ko
	2



	ENSMUSG00000056978
	Hamp2
	hepcidin antimicrobial peptide 2
	liver ko
	2



	ENSMUSG00000073940
	Hbb-bt
	hemoglobin, beta adult t chain
	liver ko
	2



	ENSMUSG00000052305
	Hbb-bs
	hemoglobin, beta adult major chain
	liver ko
	2



	ENSMUSG00000025473
	Adam8
	a disintegrin and metallopeptidase domain 8
	liver ko
	1



	ENSMUSG00000056973
	Ces1d
	carboxylesterase 1D
	liver ko
	2



	ENSMUSG00000025317
	Car5a
	carbonic anhydrase 5a, mitochondrial
	liver ko
	2



	ENSMUSG00000050578
	Mmp13
	matrix metallopeptidase 13
	liver ko
	1



	ENSMUSG00000049723
	Mmp12
	matrix metallopeptidase 12
	liver ko
	1



	ENSMUSG00000035878
	Hykk
	hydroxylysine kinase 1
	liver ko
	2



	ENSMUSG00000069917
	Hba-a2
	hemoglobin alpha, adult chain 2
	liver ko
	2



	ENSMUSG00000009350
	Mpo
	myeloperoxidase
	liver ko
	1



	ENSMUSG00000109482
	Gm4756
	-
	liver ko
	2



	ENSMUSG00000060807
	Serpina6
	serine (or cysteine) peptidase inhibitor,

clade A, member 6
	liver ko
	2



	ENSMUSG00000079018
	Ly6c1
	lymphocyte antigen 6 complex, locus C1
	liver ko
	1



	ENSMUSG00000074896
	Ifit3
	interferon-induced protein with

tetratricopeptide repeats 3
	liver ko
	3



	ENSMUSG00000062488
	Ifit3b
	interferon-induced protein with

tetratricopeptide repeats 3B
	liver ko
	3



	ENSMUSG00000032808
	Cyp2c38
	cytochrome P450, family 2,

subfamily c, polypeptide 38
	liver ko
	2



	ENSMUSG00000025004
	Cyp2c40
	cytochrome P450, family 2,

subfamily c, polypeptide 40
	liver ko
	2



	ENSMUSG00000042248
	Cyp2c37
	cytochrome P450, family 2,

subfamily c, polypeptide 37
	liver ko
	2



	ENSMUSG00000067225
	Cyp2c54
	cytochrome P450, family 2,

subfamily c, polypeptide 54
	liver ko
	2



	ENSMUSG00000054827
	Cyp2c50
	cytochrome P450, family 2,

subfamily c, polypeptide 50
	liver ko
	2



	ENSMUSG00000001131
	Timp1
	tissue inhibitor of metalloproteinase 1
	liver ko
	1



	ENSMUSG00000015437
	Gzmb
	granzyme B
	spleen wt
	1



	ENSMUSG00000022584
	Ly6c2
	lymphocyte antigen 6 complex, locus C2
	spleen wt
	1



	ENSMUSG00000040026
	Saa3
	serum amyloid A 3
	spleen ko
	1
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Figure A9. CPM-normalized expression values of highly DEG identified across (a) liver wt samples, (b) liver ko samples, (c) spleen wt samples and (d) spleen ko samples. Dashed lines separate samples from the three groups under study: controls, cases at 3 d p.i. and cases at 5 d p.i. Note sample order within same group is exchangeable. 
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Appendix B. Validation of the Reconstruction Method


The reconstruction method employed in this case study was validated against other thee well-known inference methods: ARACNe [93], WGCNA [94] and wTO [95]. The output of each reconstruction method, using default values (including EnGNet) was compared to a gold standard (GS), retrieved from the STRING database.



Four different GSs were taken into consideration, since these were reconstructed from the DEG that were identified in the comparison of control vs. case samples at 5 d p.i., as shown in Section 4.2. These DEG were mapped to the STRING database gene identifiers selecting Mus musculus as model organism (taxid: 10090). A variable percentage of DEG (6–20%) could not be assigned to a STRING identifier, and were thus removed from the analysis. The interactions exclusively concerning the resulting DEG in each case were retrieved from the STRING database. These interaction networks would serve as GSs. The mentioned DEG (without unmapped identifiers) would also serve as input for the four reconstruction methods to be compared.



The ARACNe networks were inferred using the Spearman correlation coefficient following the implementations in the minet [96] R package. In this case, mutual information values were normalized and scaled in the range 0–1. On the other hand, the WGCNA networks were reconstructed following the original tutorial provided by the authors [97]. The power was defined as 5. Additionally, the wTO networks were built using Pearson correlation in accordance to the documentation. Absolute values were taken as relationship weights. Finally, EnGNet networks were inferred using the default parameters described in the original article by Gómez-Vela et al. [33]. For the comparison, the Receiver operating characteristic (ROC)-curve was estimated using the pROC [98] R package. ROC curves are shown in Figure A10.
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Figure A10. Receiver operating characteristic (ROC) curves for the four datasets obtained in our study using different reconstruction methods. Sensitivity is the true positive rate:   T P / ( T P + F N )  . Specificity is the true negative rate:   T N / ( T N + F P )  . TP, true positive; TN, true negative; FN, false negative; FP, false positive. 
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The area under the ROC curve (AUC) was also computed in each case for the quantitative comparison of the methods, as shown in Figure A11a. The AUC compares the reconstruction quality of each method against random prediction. An AUC ≈ 1 corresponds to the perfect classifier whereas am AUC ≈ 0.5 approximates to a random classifier. Thus, the higher the AUC, the better the predictions. On average, EnGNet provided the best AUC results, whilst maintaining a good discovery rate. In addition, EnGNet provided relatively scarce networks compared to WGCNA, as shown in Figure A11b. This is considered of relevance given that sparseness is a main feature of gene networks [7].





[image: Genes 11 00831 g0a11 550] 





Figure A11. (a) Comparison of the average area under the ROC curve (AUC) for the four reconstruction methods under comparison across the four used datasets. On average, EnGNet outperformed the other three methods in terms of AUC. (b) Size comparison of the inferred networks. EnGNet exhibited competitive results in terms of network size, providing considerably sparser networks than WGCNA’s 
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Figure 1. General scheme for the reconstruction method. The preprocessed data was subjected to exploratory and differential expression analyses, which imposed the reconstruction rationale. Four groups of samples were used to generate four independent networks, respectively modeling the immune response in the liver, both in the wt and the ko situations; and in the spleen, also in the wt and the ko scenarios. 
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Figure 2. (a) PCA plot of the Log2-normalized counts for the exploratory analysis of all samples under study. The metric used for k-medoid partitioning was the Euclidean distance. Both replicates are included. Two groups, respectively corresponding to liver and spleen samples, are clearly differentiated. Dashed lines were added for improved visualization of the different groups that are distinguished within each organ. Organ-specific PCA for (b) liver and (c) spleen samples. Both replicates are included. PCA suggests the progressive nature of the MHV infection, where groups corresponding to mock infections, 3 d p.i. and 5 d p.i. are distinguished in varying degrees. Differences between controls and cases are more evident in liver samples. Figure 2a legend is the same for Figure 2b,c. 
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Figure 3. (a) Absolute numbers of DEG in the different comparisons (b) Ratio of up- and downregulated DEG in the different performed comparisons. Three comparisons were performed: control vs. case samples at 3 d p.i., control vs. case samples at 5 d p.i. and case samples at 3 vs. 5 d p.i. ko refers to Ly6EΔHSC samples. 
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Figure 4. Euler diagrams showing the overlapping of DEG between the three possible contrast situations: control vs. cases at 3 d p.i. (red), control vs. cases at 5 d p.i. (yellow) and cases at 3 d p.i. vs. cases at 5 d p.i. (blue) ko refers to Ly6EΔHSC samples. These comparisons were performed both organ and genotype-wise considering four groups of samples: (a) liver wt, (b) liver Ly6EΔHSC, (c) spleen wt, (d) spleen Ly6EΔHSC. 
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Figure 5. Enrichment analyses performed over the main clusters identified in wt and ko networks of (a) liver and (b) spleen networks. Gene ratio is defined by the number of genes used as input for the ernichment analyses associated with a particular GO term divided by the total number of input genes. 
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Figure 6. Boxplots representative of the degree distributions for each one of the four reconstructed networks. Identified hubs, according to the   Q 3 + 1.5 × I Q R   criterion, are highlighted in red. The degree cutoffs, above which nodes would be considered as hubs, were 24, 39, 21 and 21, respectively for liver wt, liver ko, spleen wt and spleen ko networks. Note degree is represented in a log scale given that the reconstructed networks present a scale-free topology. 
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