Quantitative Proteomics Comparison of Total Expressed Proteomes of Anisakis simplex Sensu Stricto, A. pegreffii, and Their Hybrid Genotype
Abstract
:1. Introduction
2. Materials and Methods
2.1. Taxonomic Identification of Nematodes and Selection of Specimens for Proteins Extraction
Selection of Specimens for Proteomics
2.2. Extraction of Nematodes Proteins
2.3. Protein Digestion and Tagging with iTRAQ-4-plex® Reagent
2.4. Liquid Chromatography and Mass Spectrometer Analysis
2.5. Data Analysis
2.5.1. Coding Protein Regulation Values
2.5.2. Statistical Comparison and Validation Experiments
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mattiucci, S.; Cipriani, P.; Webb, S.C.; Paoletti, M.; Marcer, F.; Bellisario, B.; Gibson, D.I.; Nascetti, G. Genetic and morphological approaches distinguish the three sibling species of the Anisakis simplex species complex, with a speciesdesignation as Anisakis berlandi n. Sp. for a. Simplex sp. C (Nematoda:Anisakidae). J. Parasitol. 2014, 100, 199–214. [Google Scholar] [CrossRef] [PubMed]
- Mattiucci, S.; Nascetti, G. Molecular systematics, phylogeny and ecology of anisakid nematodes of the genus Anisakis Dujardin, 1845: An update. Parasite 2006, 13, 99–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattiucci, S.; Paoletti, M.; Webb, S.C. Anisakis nascettii n. sp. (Nematoda: Anisakidae) from beaked whales of the southern hemisphere: Morphological description, genetic relationships between congeners and ecological data. Syst. Parasitol. 2009, 74, 199–217. [Google Scholar] [CrossRef] [PubMed]
- Cavallero, S.; Nadler, S.A.; Paggi, L.; Barros, N.B.; D’Amelio, S. Molecular characterization and phylogeny of anisakid nematodes from cetaceans from southeastern Atlantic coasts of USA, Gulf of Mexico, and Caribbean Sea. Parasitol. Res. 2011, 108, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Nadler, S.A.; D’Amelio, S.; Dailey, M.D.; Paggi, L.; Siu, S.; Sakanari, J.A. Molecular phylogenetics and diagnosis of Anisakis, Pseudoterranova, and Contracaecum from northern Pacific marine mammals. J. Parasitol. 2005, 91, 1413–1429. [Google Scholar] [CrossRef] [Green Version]
- Hartwich, G. Die Vorderarmstrukturen, das Exkretionssytem sowie der Kopfbau der Ascariden und ihre taxonomische Bedeutung. Wiss. Martin Luther Univ. Halle Wittenb. Math. Nat. Reihe 1954, 3, 1171–1212. [Google Scholar]
- Hartwich, G. Zur Systematik der Nematoden-Superfamilie Ascaridoidea. Zool. Jahrb. Abt. Anat. Ontog. Tiere. 1957, 85, 211–252. [Google Scholar]
- Fagerholm, H.P. Systematic implications of male caudal morphology in ascaridoid nematode parasites. Syst. Parasitol. 1991, 19, 215–228. [Google Scholar] [CrossRef]
- Anderson, R.C.; Chabaud, A.G.; Willmott, S. Keys to the Nematodes Parasites of Vertebrates; CABI International: Oxfordshire, UK; Cambridge, MA, USA, 2009; 463p. [Google Scholar]
- Mattiucci, S.; Nascetti, G. Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host–parasite co-evolutionary processes. In Advances in Parasitology; Rollison, S., Ed.; Academic Press: London, UK, 2004; Volume 66, pp. 47–148. [Google Scholar]
- D’Amelio, S.; Mathiopoulos, K.D.; Santos, C.P.; Pugachev, O.N.; Webb, S.C.; Picanco, M.; Paggi, L. Genetic markers in ribosomal DNA for the identification of members of the genus Anisakis (Nematoda: Ascaridoidea) defined by polymerase-chain-reaction-based restriction fragment length polymorphism. Int. J. Parasitol. 2000, 30, 223–226. [Google Scholar] [CrossRef]
- Umehara, A.; Kawakami, Y.; Ooi, H.K.; Uchida, A.; Ohmae, H.; Sugiyama, H. Molecular identification of Anisakis type I larvae isolated from hairtail fish off the coasts of Taiwan and Japan. Int. J. Food Microbiol. 2010, 143, 161–165. [Google Scholar] [CrossRef]
- Martin-Sanchez, J.; Artacho-Reinoso, M.E.; Diaz-Gavilán, M.; Valero-Lopez, A. Structure of Anisakis simplex s.l. populations in a region sympatric for A. Pegreffii and A. Simplex s.s. Absence of reproductive isolation between both species. Mol. Biochem. Parasitol. 2005, 141, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Abollo, E.; Paggi, L.; Pascual, S.; D’Amelio, S. Occurrence of recombinant genotypes of Anisakis simplex s.s. and Anisakis pegreffii (Nematoda: Anisakidae) in an area of sympatry. Infect. Genet. Evol. 2003, 3, 175–181. [Google Scholar] [CrossRef]
- Umehara, A.; Kawakami, Y.; Araki, J.; Uchida, A. Molecular identification of the etiological agent of the human anisakiasis in Japan. Parasitol. Int. 2007, 56, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Arizono, N.; Yamada, M.; Tegoshi, T.; Yoshikawa, M. Anisakis simplex sensu stricto and Anisakis pegreffii: Biological characteristics and pathogenetic potential in human anisakiasis. Foodborne Pathog. Dis. 2012, 9, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Fumarola, L.; Monno, R.; Ierardi, E.; Rizzo, G.; Giannelli, G.; Lalle, M.; Pozio, E. Anisakis pegreffii etiological agent of gastric infections in two Italian women. Foodborne Pathog. Dis. 2009, 6, 1157–1159. [Google Scholar] [CrossRef]
- Mattiucci, S.; Paoletti, M.; Borrini, F.; Palumbo, M.; Palmieri, R.M.; Gomes, V.; Casati, A.; Nascetti, G. First molecular identification of the zoonotic parasite Anisakis pegreffii (Nematoda: Anisakidae) in a paraffin- embedded granuloma taken from a case of human intestinal anisakiasis in Italy. BMC Infect. Dis. 2011, 11, 82. [Google Scholar] [CrossRef]
- Mattiucci, S.; Fazii, P.; De Rosa, A.; Paoletti, M.; Megna, A.S.; Glielmo, A.; De Angelis, M.; Costa, A.; Meucci, C.; Calvaruso, V.; et al. Anisakiasis and gastroallergic reactions associated with Anisakis pegreffii infection, Italy. Emerg. Infect. Dis. 2013, 19, 496–499. [Google Scholar] [CrossRef]
- Umehara, A.; Kawakami, Y.; Matsui, T.; Araki, J.; Uchida, A. Molecular identification of Anisakis simplex sensu stricto and Anisakis pegreffii (Nematoda: Anisakidae) from fish and cetacean in Japanese waters. Parasitol. Int. 2006, 55, 267–271. [Google Scholar] [CrossRef]
- Valero, A.; Lopez-Cuello, M.; Benítez, R.; Adroher, F.J. Anisakis spp. In European hake, Merluccius merluccius (L.) from the Atlantic off north- West Africa and the Mediterranean off southern Spain. Acta Parasitol. 2006, 51, 209–212. [Google Scholar] [CrossRef]
- Arcos, S.C.; Ciordia, S.; Roberston, L.; Zapico, I.; Jimenez-Ruiz, Y.; Gonzalez-Muñoz, M.; Moneo, I.; Carballeda-Sangiao, N.; Rodriguez-Mahillo, A.; Albar, J.P.; et al. Proteomic profiling and characterization of differential allergens in the nematodes Anisakis simplex sensu stricto and A. Pegreffii. Proteomics 2014, 14, 1547–1568. [Google Scholar] [CrossRef]
- Cavallero, S.; Lombardo, F.; Su, X.; Salvemini, M.; Cantacessi, C.; D’Amelio, S. Tissue-specific transcriptomes of Anisakis simplex (sensu stricto) and Anisakis pegreffii reveal potential molecular mechanisms involved in pathogenicity. Parasites Vectors 2018, 11, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavallero, S.; Lombardo, F.; Salvemini, M.; Pizzarelli, A.; Cantacessi, C.; D’Amelio, S. Comparative Transcriptomics Reveals Clues for Differences in Pathogenicity between Hysterothylacium aduncum, Anisakis simplex sensu stricto and Anisakis pegreffii. Genes 2020, 11, 321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llorens, C.; Arcos, S.C.; Robertson, L.; Ramos, R.; Futami, R.; Soriano, B.; Ciordia, S.; Careche, M.; González-Muñoz, M.; Jiménez-Ruiz, Y.; et al. Functional insights into the infective larval stage of Anisakis simplex s.s., Anisakis pegreffii and their hybrids based on gene expression patterns. BMC Genom. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiktorowicz, J.E.; Brasier, A.R. Introduction to Clinical Proteomics. In Modern Proteomics–Sample Preparation, Analysis and Practical Applications; Mirzaei, H., Carrasco, M., Eds.; Springer: Cham, Switzerland, 2016; Volume 919, pp. 435–443. [Google Scholar] [CrossRef]
- Wiktorowicz, J.E.; Soman, K.V. Discovery of Candidate Biomarkers. In Modern Proteomics–Sample Preparation, Analysis and Practical Applications; Mirzaei, H., Carrasco, M., Eds.; Springer: Cham, Switzerland, 2016; Volume 919, pp. 443–463. [Google Scholar] [CrossRef]
- Biron, D.G.; Loxdale, H.D.; Ponton, F.; Moura, H.; Marche, L.; Brugidou, C.; Thomas, F. Population proteomics: An emerging discipline to study metapopulation ecology. Proteomics 2006, 6, 1712–1715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navas, A.; Albar, J.P. Application of proteomics in phylogenetic and evolutionary studies. Proteomics 2004, 4, 299–302. [Google Scholar] [CrossRef]
- Telleria, J.; Biron, D.G.; Brizard, J.P.; Demettre, E.; Séveno, M.; Barnabé, C.; Ayala, F.J.; Tibayrenc, M. Phylogenetic character mapping of proteomic diversity shows high correlation with subspecific phylogenetic diversity in Trypanosoma cruzi. Proc. Natl. Acad. Sci. USA 2010, 107, 20411–20416. [Google Scholar] [CrossRef] [Green Version]
- Holzmuller, P.; Grébaut, P.; Brizard, J.P.; Berthier, D.; Chantal, I.; Bossard, G.; Bucheton, B.; Vezilier, F.; Chuchana, P.; Bras-Gonçalves, R.; et al. “Pathogen-proteomics”: Toward a new approach of host-vector-pathogen interactions. Ann. N. Y. Acad. Sci. 2008, 1149, 66–70. [Google Scholar] [CrossRef]
- Polak, I.; Lopienska-Biernat, E.; Stryinski, R.; Mateos, J.; Carrera, M. Comparative Proteomics analysis of Anisakis simplex s.s. Evaluation of the response of invasive larvae to invermectin. Genes 2020, 11, 710. [Google Scholar] [CrossRef]
- Di, G.; You, W.; Yu, J.; Wang, D.; Ke, C. Genetic changes in muscle protein following hybridization between Haliotis diversicolor Reeve Japan and Taiwan populations, revealed using a proteomic approach. Proteomics 2013, 13, 845–859. [Google Scholar] [CrossRef]
- Navas, A.; López, J.A.; Espárrago, G.; Camafeita, E.; Albar, J.P. Protein variability in Meloidogyne spp. (Nematoda: Meloidogynidae) revealed by two-dimensional gel electrophoresis and mass spectrometry. J. Proteome Res. 2002, 1, 421–427. [Google Scholar] [CrossRef]
- Ciordia, S.; Robertson, L.; Arcos, S.C.; González, M.R.; Mena, M.C.; Zamora, P.; Vieira, P.; Abrantes, I.; Mota, M.; Castagnone-Sereno, P.; et al. Protein markers of Bursaphelenchus xylophilus Steiner & Buhrer, 1934 (Nickle, 1970) populations using quantitative proteomics and character compatibility. Proteomics 2016, 16, 1006–1014. [Google Scholar] [PubMed]
- Iglesias, L.; Valero, A.; Adroher, F.J. Some factors which influence the in vitro maintenance of Anisakis simplex (Nematoda). Folia Parasitol. 1997, 44, 297–301. [Google Scholar] [PubMed]
- Zhu, X.Q.; Podolska, M.; Liu, J.S.; Yu, H.Q.; Chen, H.H.; Lin, Z.X.; Luo, C.B.; Song, H.Q.; Lin, R.Q. Identification of anisakid nematodes with zoonotic potential from Europe and China by single-strand conformation polymorphism analysis of nuclear ribosomal DNA. Parasitol. Res. 2007, 101, 1703–1707. [Google Scholar] [CrossRef] [PubMed]
- Wessel, D.; Flugge, U.I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem. 1984, 138, 141–143. [Google Scholar] [CrossRef]
- Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Llinares, M.; Hewapathirana, S.; Kundu, D.J.; Inuganti, A.; Griss, J.; Mayer, G.; Eisenacher, M.; et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019, 47, D442–D450. [Google Scholar] [CrossRef]
- Oliveros, J.C. (2007–2015) Venny. An Interactive Tool for Comparing Lists with Venn’s Diagrams. Available online: https://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed on 10 July 2020).
- Archie, J.W. Methods for coding variable morphological features for numerical taxonomic analysis. Syst. Zool. 1985, 34, 326–345. [Google Scholar] [CrossRef]
- Cranstron, P.S.; Huphries, C.J. Cladistic and computers: A chironomid conundrum. Cladistics 1988, 4, 72–92. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, D607–D613. [Google Scholar] [CrossRef] [Green Version]
- StatSoft, Inc. STATISTICA (Data Analysis Software System), Version 6. 2001. Available online: https://www.statsoft.com (accessed on 13 July 2020).
- Goldman, N. Methods for discrete coding of morphological characters for numerical analysis. Cladistics 1988, 4, 59–71. [Google Scholar] [CrossRef]
- García-Cruz, J.; Sosa, V. Coding quantitative character data for phylogenetic analysis: A comparison of five methods. Syst. Bot. 2006, 31, 302–309. [Google Scholar] [CrossRef]
- Marzano, V.; Pane, S.; Foglietta, G.; Levi Mortera, S.; Vernocchi, P.; Onetti Muda, A.; Putignani, L. Mass spectrometry based-proteomic analysis of Anisakis spp.: A preliminary study towards a new diagnostic tool. Genes 2020, 11, 693. [Google Scholar] [CrossRef] [PubMed]
- Chapus, C.; Rovery, M.; Sarda, L.; Verger, R. Minireview on pancreatic lipase and colipase. Biochimie 1988, 70, 1223–1233. [Google Scholar] [CrossRef]
- Ng, A.; Xavier, R.J. Leucine-rich repeat (LRR) proteins: Integrators of pattern recognition and signaling in immunity. Autophagy 2011, 7, 1082–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbert, J.; Wilcox, J.N.; Pham, K.T.; Fremeau, R.T.; Zeviani, M.; Dwork, A.; Soprano, D.R.; Makover, A.; Goodman, D.S.; Zimmerman, E.A.; et al. Transthyretin A choroid plexus-specific transport protein in human brain: The 1986 S. Weir Mitchell award. Neurology 1986, 36, 900. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, M.L.; Rejzek, M.; Fidock, M.; Field Robert, A.; Wheeler, G.N. Chemical genomics identifies compounds affecting Xenopus laevis pigment cell development. Mol. BioSyst. 2009, 5, 376. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Ohsaki, K.; Ikeda, K.; Kakemoto, S.; Ishizaki, S.; Shimakura, K.; Nagashima, Y.; Shiomi, K. Identification of novel three allergens from Anisakis simplex by chemiluminescent immunoscreening of an expression cDNA library. Parasitol. Int. 2011, 60, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Kakemoto, S.; Shimakura, K.; Shiomi, K. Molecular Cloning and Expression of a New Major Allergen, Ani s 14, from Anisakis simplex. Shokuhin Eiseigaku Zasshi 2015, 56, 194–199. [Google Scholar] [CrossRef] [Green Version]
- Daschner, A.; Cuéllar, C.; Rodero, M. The Anisakis allergy debate: Does an evolutionary approach help? Trends Parasitol. 2012, 28, 9–15. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Ishizaki, S.; Shimakura, K.; Nagashima, Y.; Shiomi, K. Molecular cloning and expression of two new allergens from Anisakis simplex. Parasitol. Res. 2007, 100, 1233–1241. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Shimakura, K.; Ishizaki, S.; Nagashima, Y.; Shiomi, K. Purification and cDNA cloning of a new heat-stable allergen from Anisakis simplex. Mol. Biochem. Parasitol. 2007, 155, 138–145. [Google Scholar] [CrossRef]
- Rodríguez, E.; Anadón, A.M.; García-Bodas, E.; Romarís, F.; Iglesias, R.; Gárate, T.; Ubeira, F.M. Novel sequences and epitopes of diagnostic value derived from the Anisakis simplex Ani s 7 major allergen. Allergy 2008, 63, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Caballero, M.L.; Umpierrez, A.; Moneo, I.; Rodriguez-Perez, R. Ani s 10, a new Anisakis simplex allergen: Cloning and heterologous expression. Parasitol. Int. 2011, 60, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Carballeda-Sangiao, N.; Rodríguez-Mahillo, A.I.; Careche, M.; Navas, A.; Caballero-Molina, T.; Dominguez-Ortega, J.; Jurado-Palomo, J.; González-Muñoz, M. Ani s 11-like protein is a pepsin and heat-resistant major allergen of Anisakis spp. and a valuable tool for Anisakis allergy component-resolved diagnosis. Int. Arch. Allergy Immunol. 2016, 169, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Wilbers, R.H.P.; Schneiter, R.; Holterman, M.H.M.; Drurey, C.; Smant, G.; Asojo, O.A.; Maizels, R.M.; Lozano-Torres, J.L. Secreted venom allergen-like proteins of helminths: Conserved modulators of host responses in animals and plants. PLoS Pathog. 2018, 14, 1007300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiedemann, N.; Frazier, A.E.; Pfanner, N. The Protein Import Machinery of Mitochondria. J. Biol. Chem. 2004, 279, 14473–14476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, A.A.; English, B.A. Acetylcholinesterase and its Inhibitors. In Primer on the Autonomic Nervous System; Robertson, D., Biaggioni, I., Burnstock, G., Low, P.A., Paton, J.F.R., Eds.; Academic Press: Oxford, UK, 2012; pp. 631–634. [Google Scholar]
- Thacker, C.; Sheps, J.A.; Rose, A.M. Caenorhabditis elegans dpy-5 is a cuticle procollagen processed by a proprotein convertase. Cell. Mol. Life Sci. CMLS 2006, 63, 1193–1204. [Google Scholar] [CrossRef]
- Meng, Z.; Veenstra, T.D. Targeted mass spectrometry approaches for protein biomarker verification. J. Proteom. 2011, 74, 2650–2659. [Google Scholar] [CrossRef]
- Borràs, E.; Sabidó, E. What is targeted proteomics? A concise revision of targeted acquisition and targeted data analysis in mass spectrometry. Proteomics 2017, 17, 17–18. [Google Scholar] [CrossRef]
- Zhao, Y.; Brasier, A. Qualification and Verification of Protein Biomarker Candidates. In Modern Proteomics–Sample Preparation, Analysis and Practical Applications; Mirzaei, H., Carrasco, M., Eds.; Springer: Cham, Switzerland, 2016; Volume 919, pp. 493–515. [Google Scholar]
A. pegreffii/A. simplex | A. hybrid/A. simplex | A. simplex/A. simplex | Binary States (0), Downregulated; (1), Upregulated; No Differences in Regulation) | C. elegans Ortholog | STRING Proteins | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Replicate_1 (iTRAQ-2) A. pegreffii-1 vs. A. simplex-1 | Replicate_2 (iTRAQ-3) A. pegreffii-2 vs. A. simplex-3 | Replicate_1 (iTRAQ-2) Hybrid1 vs. A. simplex-2 | Replicate_2 (iTRAQ-3) Hybrid2 vs. A. simplex-4 | Replicate_1 (iTRAQ-2) A. simplex-2 vs. A. simplex-1 | Replicate_2 (iTRAQ-3) A. simplex-4 vs. A. simplex-3 | Ratio Average | Standard Deviation | A. pegreffii | Hybrid genotype | A. simplex | |||
Protein-AC | Ratio | Ratio | Ratio | Ratio | Ratio | Ratio | |||||||
2. ANAH10496_4TR | 5.11 | 4.44 | 2.38 | 2.46 | 0.78 | 0.91 | 2.680675 | 1.784102 | 1 | 0 | 0 | Q9XTR8 | ZK262.3 |
4. ANAH1227_2TR | 0.49 | 0.42 | 0.40 | 0.42 | 1.18 | 1.03 | 0.658703 | 0.350961 | 0 | 0 | 1 | ||
10. ANAH1517_2TR | 0.98 | 0.69 | 0.49 | 0.60 | 1.25 | 1.05 | 0.842266 | 0.293623 | 1 | ? | 1 | ||
13. ANAH1652_3TR | 0.38 | 0.53 | 0.52 | 0.60 | 0.96 | 1.00 | 0.663876 | 0.255699 | ? | 1 | 1 | O17389 | tth-1 |
15. ANAH19571_1TR | 0.40 | 0.58 | 1.11 | 1.10 | 1.00 | 0.94 | 0.855733 | 0.296167 | 0 | 1 | 1 | Q23378 | ttr-48 |
16. ANAH1985_1TR | 0.93 | 0.82 | 1.12 | 0.59 | 0.93 | 1.11 | 0.913812 | 0.198826 | 1 | 1 | 1 | Q10576 | dpy-18 |
17. ANAH2130_3TR | 7.92 | 6.63 | 4.50 | 3.04 | 0.88 | 0.92 | 3.981989 | 2.920965 | 1 | 0 | 0 | Q20191 | nas-13 |
20. ANAH23051_1TR | 0.97 | 0.91 | 0.85 | 0.62 | 1.06 | 1.14 | 0.925959 | 0.180845 | 1 | 1 | 1 | ||
21. ANAH23235_2TR | 1.63 | 1.41 | 1.98 | 1.32 | 0.89 | 0.96 | 1.366078 | 0.412306 | 1 | 1 | 1 | ||
24. ANAH24424_1TR | 0.38 | 0.44 | 0.37 | 0.47 | 1.06 | 1.05 | 0.628614 | 0.331899 | 0 | 0 | 1 | ||
25. ANAH276_4TR | 1.90 | 1.04 | 1.31 | 0.92 | 1.08 | 1.21 | 1.243492 | 0.348480 | 1 | 1 | 1 | H2L2L1 | tag-273 |
26. ANAH2918_2TR | 1.91 | 2.03 | 2.37 | 2.60 | 1.08 | 1.00 | 1.832552 | 0.658529 | 1 | 1 | 0 | ||
30. ANAH3118_1TR | 0.69 | 0.59 | 0.62 | 0.73 | 1.12 | 1.00 | 0.791315 | 0.217149 | 1 | 1 | 1 | Q23545 | ZK596.1 |
31. ANAH3489_5TR | 1.07 | 0.53 | 1.00 | 0.65 | 1.05 | 1.06 | 0.892934 | 0.238308 | 1 | 1 | 1 | P41988 | cct-1 |
32. ANAH3571_1TR | 1.76 | 1.26 | 2.05 | 1.63 | 0.92 | 1.01 | 1.439694 | 0.444919 | 1 | 1 | 1 | ||
33. ANAH357_3TR | 0.80 | 0.39 | 1.01 | 0.62 | 1.28 | 0.83 | 0.819474 | 0.305428 | ? | 1 | 1 | ||
34. ANAH3624_1TR | 3.11 | 0.93 | 1.66 | 0.86 | 1.12 | 1.18 | 1.477237 | 0.847699 | ? | 0 | 0 | P34697 | sod-1 |
35. ANAH4078_4TR | 0.61 | 0.74 | 0.79 | 0.63 | 0.99 | 1.13 | 0.815939 | 0.205690 | 1 | 1 | 1 | Q22850 | T28F4.5 |
38. ANAH4433_8TR | 11.21 | 1.68 | 5.98 | 1.01 | 1.00 | 1.11 | 3.666057 | 4.166937 | ? | 0 | 0 | ||
41. ANAH5032_5TR | 0.45 | 0.51 | 0.68 | 0.59 | 0.90 | 0.94 | 0.679135 | 0.205099 | 1 | 1 | 1 | Q17522 | val-1 |
42. ANAH5172_1TR | 0.91 | 0.83 | 0.66 | 0.57 | 1.03 | 0.98 | 0.831024 | 0.180319 | 1 | 1 | 1 | Q21774 | R06C7.5 |
43. ANAH5273_1TR | 4.23 | 1.22 | 1.31 | 1.20 | 0.94 | 1.14 | 1.673703 | 1.260709 | ? | 0 | 0 | ||
44. ANAH6141_1TR | 2.88 | 2.27 | 2.72 | 2.66 | 1.08 | 0.91 | 2.087151 | 0.871078 | 1 | 1 | 0 | ||
46. ANAH6329_2TR | 3.93 | 2.36 | 2.40 | 2.37 | 1.04 | 0.93 | 2.171381 | 1.098905 | 1 | 1 | 0 | P55115 | nas-15 |
51. ANAH7542_3TR | 3.06 | 2.86 | 2.77 | 1.82 | 0.91 | 0.95 | 2.060886 | 0.976528 | 1 | ? | 0 | ||
53. ANAH777_1TR | 0.30 | 0.25 | 0.13 | 0.25 | 1.04 | 1.01 | 0.497237 | 0.412228 | 0 | 0 | 1 | ||
54. ANAH777_4TR | 0.38 | 0.29 | 0.43 | 0.30 | 1.00 | 1.01 | 0.568653 | 0.344521 | 0 | 0 | 1 | A0A078BPG0 | F09E10.7 |
58. ANAH9144_1TR | 3.84 | 3.10 | 2.70 | 2.00 | 1.03 | 1.03 | 2.285082 | 1.139551 | 1 | ? | 0 | ||
60. ANAH9523_1TR | 0.39 | 0.15 | 0.58 | 0.33 | 0.89 | 0.98 | 0.554457 | 0.327235 | 0 | 0 | 1 | P90781 | C55A6.7 |
61. ANAH9572_5TR | 1.98 | 0.78 | 0.98 | 0.88 | 1.30 | 1.08 | 1.167379 | 0.439292 | ? | 1 | 1 | ||
62. ANAH9579_2TR | 2.09 | 2.07 | 2.94 | 2.32 | 0.90 | 0.97 | 1.880837 | 0.798899 | 1 | 1 | 0 | Q09567 | F48E8.3 |
63. ANAH964_1TR | 1.52 | 1.72 | 1.00 | 1.76 | 1.06 | 1.05 | 1.351465 | 0.357845 | 1 | 1 | 1 | A0A0K3AST9 | scl-22 |
65. ANAP10737_1TR | 3.95 | 2.73 | 3.17 | 2.70 | 0.91 | 1.01 | 2.413920 | 1.212109 | 1 | 1 | 0 | O02161 | T09B4.9 |
66. ANAP1108_1TR | 0.96 | 1.23 | 2.65 | 1.42 | 0.88 | 1.12 | 1.377658 | 0.652672 | 0 | 1 | 0 | ||
74. ANAP13823_2TR | 0.55 | 0.53 | 0.48 | 0.46 | 1.04 | 1.01 | 0.676710 | 0.269445 | ? | 0 | 1 | ||
75. ANAP14229_1TR | 1.34 | 1.03 | 3.00 | 2.25 | 0.92 | 1.16 | 1.617101 | 0.827149 | 0 | 1 | 0 | ||
76. ANAP16339_1TR | 0.53 | 0.46 | 0.80 | 0.85 | 1.04 | 0.92 | 0.766507 | 0.225415 | ? | 1 | 1 | ||
77. ANAP16888_4TR | 1.13 | 0.91 | 1.87 | 1.50 | 1.16 | 1.00 | 1.260748 | 0.360601 | 1 | 1 | 1 | ||
78. ANAP17930_1TR | 1.20 | 0.93 | 3.67 | 1.78 | 0.81 | 1.20 | 1.598792 | 1.069051 | 0 | ? | 0 | Q9U295 | ace-3 |
79. ANAP1821_4TR | 3.18 | 2.37 | 1.70 | 1.67 | 1.20 | 0.85 | 1.827840 | 0.837408 | 1 | ? | 0 | ||
83. ANAP228_1TR | 10.84 | 4.02 | 3.05 | 3.07 | 0.82 | 0.98 | 3.795073 | 3.676560 | ? | 0 | 0 | ||
86. ANAP245_9TR | 1.84 | 1.96 | 2.42 | 2.69 | 1.07 | 0.92 | 1.816920 | 0.710125 | 1 | 1 | 0 | ||
87. ANAP258_1TR | 0.51 | 0.45 | 0.49 | 0.43 | 1.05 | 1.03 | 0.660602 | 0.294249 | 0 | 0 | 1 | ||
88. ANAP258_2TR | 0.62 | 0.70 | 0.55 | 0.64 | 1.00 | 1.03 | 0.757335 | 0.207204 | 1 | 1 | 1 | ||
89. ANAP258_4TR | 0.62 | 0.84 | 0.63 | 0.61 | 1.00 | 1.03 | 0.788300 | 0.196369 | 1 | 1 | 1 | ||
92. ANAP293_7TR | 0.52 | 0.48 | 0.86 | 0.86 | 1.14 | 0.86 | 0.787651 | 0.249029 | ? | 1 | 1 | ||
97. ANAP3585_1TR | 4.09 | 2.62 | 2.55 | 1.83 | 0.93 | 0.87 | 2.149391 | 1.215058 | 1 | ? | 0 | ||
102. ANAP4471_3TR | 0.43 | 0.45 | 0.40 | 0.42 | 0.98 | 1.04 | 0.620592 | 0.301599 | 0 | 0 | 1 | E3W744 | C27A7.3 |
106. ANAP5435_12TR | 1.93 | 1.48 | 1.90 | 1.64 | 1.19 | 0.86 | 1.499992 | 0.415442 | 1 | 1 | 1 | ||
109. ANAP6590_1TR | 0.59 | 0.65 | 1.17 | 1.14 | 0.97 | 0.84 | 0.893992 | 0.243219 | 1 | 1 | 1 | ||
110. ANAP667_10TR | 1.70 | 1.44 | 2.30 | 2.14 | 1.03 | 0.96 | 1.595647 | 0.559270 | 1 | 1 | 0 | ||
111. ANAP667_11TR | 1.56 | 1.56 | 1.93 | 2.11 | 1.11 | 0.96 | 1.537201 | 0.448659 | 1 | 1 | 1 | ||
112. ANAP667_16TR | 1.48 | 1.34 | 2.69 | 2.22 | 0.90 | 0.90 | 1.589128 | 0.727740 | ? | 1 | 0 | ||
113. ANAP667_20TR | 1.74 | 1.38 | 2.57 | 2.66 | 0.94 | 0.86 | 1.692057 | 0.785112 | ? | 1 | 0 | Q20140 | F38B2.4 |
114. ANAP67_16TR | 0.53 | 0.54 | 0.72 | 0.67 | 1.08 | 1.02 | 0.760630 | 0.236209 | 1 | 1 | 1 | ||
117. ANAP770_2TR | 0.45 | 0.71 | 0.69 | 0.79 | 0.90 | 1.04 | 0.763521 | 0.200851 | 1 | 1 | 1 | Q18785 | mif-2 |
118. ANAP7903_1TR | 0.44 | 0.91 | 0.75 | 0.80 | 0.91 | 1.07 | 0.812855 | 0.215385 | 1 | 1 | 1 | G5EEA8 | nex-1 |
119. ANAP791_1TR | 1.09 | 0.56 | 1.51 | 0.98 | 1.00 | 1.03 | 1.027052 | 0.303891 | ? | 1 | 1 | Q9NAB0 | gst-39 |
125. ANAP975_1TR | 2.00 | 1.61 | 1.82 | 1.22 | 0.96 | 1.10 | 1.452455 | 0.420447 | 1 | 1 | 1 | ||
127. ANAS1021_17TR | 0.55 | 0.61 | 0.75 | 0.75 | 0.94 | 0.92 | 0.751676 | 0.156521 | 1 | 1 | 1 | ||
128. ANAS1030_2TR | 1.09 | 0.56 | 0.97 | 0.76 | 0.99 | 0.92 | 0.880618 | 0.193530 | 1 | 1 | 1 | ||
129. ANAS1197_1TR | 1.13 | 0.35 | 0.75 | 0.59 | 1.26 | 0.90 | 0.830480 | 0.338069 | ? | ? | 1 | ||
130. ANAS12312_1TR | 1.59 | 1.44 | 2.94 | 2.67 | 0.82 | 0.93 | 1.732642 | 0.886435 | 0 | 1 | 0 | ||
135. ANAS163_8TR | 0.60 | 0.44 | 2.36 | 2.53 | 0.95 | 1.04 | 1.319332 | 0.899014 | 0 | 1 | 0 | O62213 | cey-1 |
136. ANAS1679_11TR | 0.45 | 0.58 | 0.69 | 0.77 | 0.90 | 0.87 | 0.709232 | 0.174788 | 1 | 1 | 1 | A0A1I6CMC9 | Y55F3BR.6 |
137. ANAS1685_8TR | 1.33 | 1.24 | 1.85 | 1.05 | 0.85 | 1.17 | 1.248270 | 0.338370 | 1 | 1 | 1 | ||
138. ANAS1813_1TR | 2.08 | 2.16 | 2.93 | 2.45 | 0.91 | 0.98 | 1.919019 | 0.812140 | 1 | 1 | 0 | Q9N5N3 | scl-12 |
139. ANAS1813_2TR | 1.88 | 1.76 | 2.82 | 2.68 | 0.89 | 1.02 | 1.840418 | 0.804574 | 1 | 1 | 0 | ||
140. ANAS18294_1TR | 1.78 | 1.55 | 2.39 | 1.95 | 1.01 | 0.95 | 1.604383 | 0.559189 | 1 | 1 | 0 | ||
141. ANAS18621_6TR | 0.33 | 0.50 | 0.79 | 0.69 | 0.95 | 1.02 | 0.714755 | 0.264832 | 0 | 1 | 1 | Q23683 | ZK970.7 |
142. ANAS188_11TR | 0.30 | 0.26 | 0.26 | 0.25 | 1.03 | 1.09 | 0.532123 | 0.407959 | 0 | 0 | 1 | Q86NE3 | col-170 |
144. ANAS19190_3TR | 1.01 | 0.53 | 0.89 | 0.90 | 0.97 | 1.11 | 0.900457 | 0.199744 | 1 | 1 | 1 | Q18949 | D1054.3 |
145. ANAS1945_1TR | 0.63 | 0.76 | 0.93 | 0.51 | 0.87 | 1.31 | 0.836623 | 0.280022 | 1 | ? | 1 | O44441 | mai-2 |
146. ANAS1981_2TR | 0.71 | 0.47 | 0.78 | 0.58 | 1.16 | 1.04 | 0.790438 | 0.266683 | ? | 1 | 1 | P91285 | dpy-5 |
147. ANAS2128_5TR | 0.24 | 0.19 | 1.15 | 1.22 | 0.87 | 0.90 | 0.761490 | 0.447108 | 0 | 1 | ? | Q95Y92 | ttr-32 |
148. ANAS2152_3TR | 1.20 | 1.96 | 1.44 | 1.05 | 0.94 | 1.18 | 1.295756 | 0.368101 | 1 | 1 | 1 | Q9U228 | mif-1 |
150. ANAS2269_8TR | 0.73 | 0.73 | 0.79 | 0.66 | 0.97 | 1.01 | 0.814381 | 0.143553 | 1 | 1 | 1 | ||
158. ANAS2659_2TR | 1.21 | 1.20 | 0.59 | 0.86 | 1.17 | 1.11 | 1.023444 | 0.249913 | 1 | 1 | 1 | Q09235 | C13B9.2 |
161. ANAS2998_4TR | 0.64 | 0.59 | 0.69 | 0.83 | 1.06 | 1.09 | 0.816894 | 0.215097 | 1 | 1 | 1 | Q21887 | R102.1 |
163. ANAS3657_3TR | 0.34 | 0.40 | 0.61 | 0.55 | 0.98 | 1.16 | 0.672240 | 0.330083 | 0 | 0 | 1 | Q93615 | F27D4.1 |
169. ANAS4205_3TR | 0.73 | 0.75 | 0.55 | 0.76 | 1.33 | 0.83 | 0.824435 | 0.264690 | 1 | 1 | 1 | Q7Z072 | tnt-2 |
170. ANAS422_5TR | 0.58 | 0.72 | 0.71 | 0.84 | 1.01 | 1.03 | 0.815319 | 0.178573 | 1 | 1 | 1 | ||
171. ANAS422_6TR | 0.51 | 0.72 | 0.71 | 0.83 | 0.98 | 1.04 | 0.797374 | 0.192933 | 1 | 1 | 1 | Q19890 | F28H7.2 |
172. ANAS424_11TR | 0.41 | 0.89 | 0.81 | 1.13 | 0.81 | 0.92 | 0.829663 | 0.238560 | ? | 1 | 1 | ||
173. ANAS4400_1TR | 0.41 | 0.71 | 0.68 | 0.77 | 1.10 | 1.13 | 0.801061 | 0.273388 | ? | 1 | 1 | O76449 | ZK1055.7 |
176. ANAS5415_1TR | 1.03 | 0.85 | 1.02 | 0.61 | 1.09 | 0.90 | 0.915958 | 0.177027 | 1 | 1 | 1 | ||
177. ANAS543_3TR | 0.94 | 0.84 | 0.70 | 0.58 | 1.06 | 1.07 | 0.863539 | 0.199145 | 1 | 1 | 1 | Q9XW75 | Y75B8A.3 |
179. ANAS5529_1TR | 0.59 | 0.65 | 1.17 | 1.14 | 0.97 | 0.84 | 0.893992 | 0.243219 | 1 | 1 | 1 | P91913 | rla-1 |
181. ANAS623_3TR | 0.88 | 0.97 | 0.77 | 0.65 | 1.05 | 1.24 | 0.925777 | 0.208788 | 1 | 1 | 1 | ||
182. ANAS6350_1TR | 0.54 | 0.19 | 0.69 | 0.38 | 0.84 | 1.07 | 0.616636 | 0.316442 | 0 | ? | 1 | ||
183. ANAS651_15TR | 0.92 | 2.33 | 1.25 | 0.85 | 0.89 | 1.30 | 1.256519 | 0.560404 | ? | ? | ? | ||
186. ANAS7239_1TR | 1.02 | 0.68 | 0.75 | 0.64 | 1.23 | 1.06 | 0.896235 | 0.240170 | 1 | 1 | 1 | ||
189. ANAS7857_1TR | 0.61 | 0.68 | 0.68 | 0.58 | 1.01 | 1.02 | 0.764980 | 0.199163 | 1 | 1 | 1 | P53013 | eef-1A.1 |
190. ANAS8_364TR | 0.52 | 0.54 | 0.69 | 0.69 | 1.03 | 0.99 | 0.745290 | 0.218965 | 1 | 1 | 1 | Q9XXJ2 | acbp.6 |
193. ANAS9234_1TR | 0.55 | 0.58 | 0.60 | 0.53 | 1.19 | 1.03 | 0.746691 | 0.289333 | ? | ? | 1 | ||
195. ANAS9683_5TR | 0.73 | 0.66 | 2.75 | 2.51 | 1.05 | 0.98 | 1.446199 | 0.930450 | 0 | 1 | 0 | Q9XTR8 | ZK262.3 |
Sequence Name | A. pegreffii | Hybrid genotype | A. simplex | Seq. Length | Blast Hit Description | Blast Hit Accession UniPrtot | Top-Hit Specie | Blast E-Value | Blast Hit Score | Hit Align Length | Hit Positives | Similarity (%) | Function | Biological Process | Gene Name | C. elegans Ortholog | STRING Protein |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2. ANAH10496_4TR | 1 | 0 | 0 | 269 | class 3 family-containing | KHN81003 | Toxocara canis | 2.43 × 10−75 | 237 | 276 | 178 | 64 | hydrolase activity | Lipid metabolic process GO:0006629 | ZK262.3 Tcan_15614 | Q9XTR8 | ZK262.3 |
4. ANAH1227_2TR | 0 | 0 | 1 | 93 | Putative leucine-rich repeat-containing protein | KHN76765 | Toxocara canis | 8.29 × 10−38 | 138 | 91 | 76 | 84 | Tcan_08746 | ||||
15. ANAH19571_1TR | 0 | 1 | 1 | 165 | Transthyretin 46 | KHN81755 | Toxocara canis | 6.57 × 10−74 | 213 | 128 | 112 | 88 | ttr-46 Tcan_15247 | Q23378 | ttr-48 | ||
17. ANAH2130_3TR | 1 | 0 | 0 | 323 | Predicted Zinc metalloase nas-13 | KHN70807 | Toxocara canis | 5.53 × 10−76 | 239 | 290 | 173 | 60 | Zinc ion binding, metalloendopeptidase activity GO:0008270 GO:0004222 | nas-13 Tcan_18910 | Q20191 | nas-13 | |
24. ANAH24424_1TR | 0 | 0 | 1 | 80 | Putative leucine-rich repeat-containing protein | KHN76765 | Toxocara canis | 5.82 × 10−19 | 83 | 67 | 53 | 79 | Tcan_08746 | ||||
26. ANAH2918_2TR | 1 | 1 | 0 | 1403 | Ani s12 allergen | ABL77410 | Anisakis simplex | 2.39 × 10−78 | 287 | 1199 | 467 | 39 | |||||
44. ANAH6141_1TR | 1 | 1 | 0 | 122 | Ancylostoma secreted (allergen) | KHN71039 | Toxocara canis | 4.22 × 10−45 | 154 | 127 | 90 | 71 | ASP Tcan_02573 | ||||
46. ANAH6329_2TR | 1 | 1 | 0 | 292 | Ancylostoma secreted (allergen) | KHN71039 | Toxocara canis | 2.65 × 10−60 | 201 | 223 | 130 | 58 | ASP Tcan_02573 | ||||
51. ANAH7542_3TR | 1 | ? | 0 | 336 | Zinc metalloase nas-15 | KHN78596 | Toxocara canis | 1.28 × 10−73 | 234 | 284 | 172 | 61 | Zinc ion binding, metalloendopeptidase activity, GO:0008270 GO:0004222 | nas-15 Tcan_05459 | P55115 | nas-15 | |
53. ANAH777_1TR | 0 | 0 | 1 | 101 | SXP/RAL-2 family protein 2 isoform 9 (Ani s8) | BAF75711 | Anisakis simplex | 1.61 × 10−34 | 119 | 84 | 84 | 100 | Ani s 8-9 | ||||
54. ANAH777_4TR | 0 | 0 | 1 | 91 | SXP RAL-2 family 2 isoform 2 (Ani s8) | BAF75704 | Anisakis simplex | 1.01 × 10−32 | 114 | 56 | 56 | 100 | Ani s 8-2 | ||||
58. ANAH9144_1TR | 1 | ? | 0 | 151 | DUF4440 domain-containing protein | A0A0M3KE35 | Ascaris suum | 1.75 × 10−17 | 79 | 111 | 64 | 58 | ASIM_LOCUS18633 | A0A078BPG0 | F09E10.7 | ||
60. ANAH9523_1TR | 0 | 0 | 1 | 134 | Anisakis simplex Ani s11 L1 mRNA for Ani s11-like protein precursor, complete cds | (NCBI: VDK68784.1) | |||||||||||
62. ANAH9579_2TR | 1 | 1 | 0 | 126 | Venom allergen 5.02 | KHN88210 | Toxocara canis | 1.01 × 10−35 | 126 | 118 | 81 | 69 | Tcan_09440 | ||||
65. ANAP10737_1TR | 1 | 1 | 0 | Venom allergen 5.02 | A0A0B2W4Q4 | Toxocara canis | 1.1 × 10−63 | 521 | 225 | 142 | 44 | Tcan_09440 | A0A0K3AST9 | scl-22 | |||
66. ANAP1108_1TR | 0 | 1 | 0 | 465 | Mitochondrial import inner membrane translocase, subunit TIM44 | A0A0M3JR34 | Ascaris suum | 0.00 × 100 | 771 | 465 | 426 | 92 | chaperone binding GO:0051087 | protein import into mitochondrial matrix GO:0030150 | ASIM_LOCUS9900 | O02161 | T09B4.9 |
74. ANAP13823_2TR | ? | 0 | 1 | 241 | Putative leucine-rich repeat-containing protein | KHN76765 | Toxocara canis | 1.15 × 10−77 | 259 | 241 | 182 | 76 | Tcan_08746 | ||||
75. ANAP14229_1TR | 0 | 1 | 0 | 92 | |||||||||||||
79. ANAP1821_4TR | 1 | ? | 0 | 566 | Carboxylic ester hydrolase | A0A044VHF4 | Ascaris suum Toxocara canis | 0.00 × 100 | 713 | 555 | 422 | 76 | (ace-4) | Q9U295 | ace-3 | ||
86. ANAP245_9TR | 1 | 1 | 0 | 1233 | UA3-recognized partial (Ani s7) | ABL77410 | Anisakis simplex | 2.29 × 10−72 | 267 | 1059 | 430 | 41 | (ASIM_LOCUS13453) | ||||
87. ANAP258_1TR | 0 | 0 | 1 | 119 | Putative leucine-rich repeat-containing protein | KHN76765 | Toxocara canis | 5.13 × 10−56 | 191 | 118 | 102 | 86 | Tcan_08746 | ||||
97. ANAP3585_1TR | 1 | ? | 0 | 189 | Uncharacterized protein (predicted) | ERG80299A0A0M3J3R8 | Ascaris suum Anisakis simplex | 2.67 × 10−90 | 282 | 187 | 166 | 89 | (ASIM_LOCUS2050) | ||||
102. ANAP4471_3TR | 0 | 0 | 1 | 88 | Putative leucine-rich repeat-containing protein | KHN76765 | Toxocara canis | 8.20 × 10−31 | 117 | 88 | 72 | 82 | Tcan_08746 | ||||
110. ANAP667_10TR | 1 | 1 | 0 | 1279 | UA3-recognized partial (Ani s7) | ABL77410 | Anisakis simplex | 5.58 × 10−84 | 302 | 1015 | 431 | 42 | ASIM_LOCUS2158) | ||||
112. ANAP667_16TR | ? | 1 | 0 | 1234 | UA3-recognized partial (Ani s7) | ABL77410 | Anisakis simplex | 7.36 × 10−88 | 313 | 1199 | 477 | 40 | (ASIM_LOCUS2158) | ||||
113. ANAP667_20TR | ? | 1 | 0 | 535 | UA3-recognized partial (Ani s7) | ABL77410 | Anisakis simplex | 1.11 × 10−42 | 168 | 596 | 249 | 42 | (ASIM_LOCUS2158) | ||||
130. ANAS12312_1TR | 0 | 1 | 0 | 532 | Ani s14 allergen | BAT62430 | Anisakis simplex | 1.09 × 10−143 | 416 | 217 | 217 | 100 | (ASIM_LOCUS4926) | ||||
135. ANAS163_8TR | 0 | 1 | 0 | 88 | (ASIM_LOCUS14166) | ||||||||||||
138. ANAS1813_1TR | 1 | 1 | 0 | 137 | Ancylostoma secreted (allergen) | KHN88210 | Toxocara canis | 1.13 × 10−39 | 136 | 137 | 90 | 66 | Tcan_09440 | ||||
139. ANAS1813_2TR | 1 | 1 | 0 | 225 | Ancylostoma secreted (allergen) | KHN88210 | Toxocara canis | 1.06 × 10−63 | 201 | 237 | 145 | 61 | Tcan_09440 | Q9N5N3 | scl-12 | ||
140. ANAS18294_1TR | 1 | 1 | 0 | 287 | Zinc metalloase nas-15 | KHN79293 | Toxocara canis | 7.98 × 10−66 | 216 | 231 | 146 | 63 | zinc ion binding, metalloendopeptidase activity GO:0008270 GO:0004222 | nas-15 Tcan_02995 | |||
141. ANAS18621_6TR | 0 | 1 | 1 | 98 | |||||||||||||
142. ANAS188_11TR | 0 | 0 | 1 | 150 | SXP RAL-2 family 2 isoform 1 (Ani s8) | BAF75705 | Anisakis simplex | 1.69 × 10−70 | 212 | 134 | 133 | 99 | Ani s 8-3 | Q23683 | ZK970.7 | ||
147. ANAS2128_5TR | 0 | 1 | ? | 148 | Cuticle collagen dpy-5 | KHN71547 | Toxocara canis | 7.80 × 10−29 | 106 | 87 | 83 | 95 | structural constituent of cuticle GO:0042302 | dpy-5 Tcan_02187 | P91285 | dpy-5 | |
163. ANAS3657_3TR | 0 | 0 | 1 | 121 | hypothetical protein ASU_00001 (DUF4440) | ERG87808 | Ascaris suum C, ekegans | 1.93 × 10−47 | 152 | 120 | 94 | 78 | (ASIM_LOCUS1832) R102.1 | Q21887 | R102.1 | ||
182. ANAS6350_1TR | 0 | ? | 1 | 84 | Allergen Ani s10 | A. simplex | ASIM_LOCUS19307 | ||||||||||
195. ANAS9683_5TR | 0 | 1 | 0 | 217 | briggsae CBR-NAS-13 | XP_002645932 | Caenorhabditis briggsae | 4.79 × 10−58 | 192 | 176 | 126 | 72 | zinc ion binding, metalloendopeptidase activity GO:0008270 GO:0004222 | Cbr-nas-13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
C. Arcos, S.; Robertson, L.; Ciordia, S.; Sánchez-Alonso, I.; Careche, M.; Carballeda-Sanguiao, N.; Gonzalez-Muñoz, M.; Navas, A. Quantitative Proteomics Comparison of Total Expressed Proteomes of Anisakis simplex Sensu Stricto, A. pegreffii, and Their Hybrid Genotype. Genes 2020, 11, 913. https://doi.org/10.3390/genes11080913
C. Arcos S, Robertson L, Ciordia S, Sánchez-Alonso I, Careche M, Carballeda-Sanguiao N, Gonzalez-Muñoz M, Navas A. Quantitative Proteomics Comparison of Total Expressed Proteomes of Anisakis simplex Sensu Stricto, A. pegreffii, and Their Hybrid Genotype. Genes. 2020; 11(8):913. https://doi.org/10.3390/genes11080913
Chicago/Turabian StyleC. Arcos, Susana, Lee Robertson, Sergio Ciordia, Isabel Sánchez-Alonso, Mercedes Careche, Noelia Carballeda-Sanguiao, Miguel Gonzalez-Muñoz, and Alfonso Navas. 2020. "Quantitative Proteomics Comparison of Total Expressed Proteomes of Anisakis simplex Sensu Stricto, A. pegreffii, and Their Hybrid Genotype" Genes 11, no. 8: 913. https://doi.org/10.3390/genes11080913
APA StyleC. Arcos, S., Robertson, L., Ciordia, S., Sánchez-Alonso, I., Careche, M., Carballeda-Sanguiao, N., Gonzalez-Muñoz, M., & Navas, A. (2020). Quantitative Proteomics Comparison of Total Expressed Proteomes of Anisakis simplex Sensu Stricto, A. pegreffii, and Their Hybrid Genotype. Genes, 11(8), 913. https://doi.org/10.3390/genes11080913