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Abstract: This narrative review aims to provide an overview of the main Machine Learning (ML)
techniques and their applications in pharmacogenetics (such as antidepressant, anti-cancer and
warfarin drugs) over the past 10 years. ML deals with the study, the design and the development
of algorithms that give computers capability to learn without being explicitly programmed. ML is
a sub-field of artificial intelligence, and to date, it has demonstrated satisfactory performance on a
wide range of tasks in biomedicine. According to the final goal, ML can be defined as Supervised
(SML) or as Unsupervised (UML). SML techniques are applied when prediction is the focus of the
research. On the other hand, UML techniques are used when the outcome is not known, and the goal
of the research is unveiling the underlying structure of the data. The increasing use of sophisticated
ML algorithms will likely be instrumental in improving knowledge in pharmacogenetics.

Keywords: pharmacogenetics; supervised machine learning; unsupervised machine learning

1. Introduction

Pharmacogenetics aims to assess the interindividual variations in DNA sequence
related to drug response [1]. Gene variations indicate that a drug can be safe for one
person but harmful for another. The overall prevalence of adverse drug reaction-related
hospitalization varies from 0.2% [2] to 54.5% [3]. Pharmacogenetics may prevent drug
adverse events by identifying patients at risk in order to implement personalized medicine,
i.e., a medicine tailored focused on genomic context of each patient.

The need to obtain increasingly accurate and reliable results, especially in pharma-
cogenetics, is leading to a greater use of sophisticated data analysis techniques based on
experience called Machine Learning (ML). ML can be defined as the study of computer
algorithms that improve automatically through experience. According to Tom M. Mitchell
“A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P if its performance at tasks in T, as measured by P, improves
with experience E.” [4]. According to the final goal, ML can be defined as Supervised (SML)
or as Unsupervised (UML). SML techniques are applied when prediction is the focus of the
research. On the other hand, UML techniques are used when the outcome is not known,
and the goal of the research is unveiling the underlying structure of the data.

This narrative review aims to provide an overview of the main SML and UML tech-
niques and their applications in pharmacogenetics over the past 10 years. The following
search strategy, with a filter on the last 10 years, was run on PubMed “machine learning
AND pharmacogenetics” (Figure 1).
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Figure 1. Word-cloud analysis using the titles of articles obtained based on the following search 
strategy (PubMed): machine learning AND pharmacogenetics. The pre-processing procedures ap-
plied were: (1) removing non-English words or common words that do not provide information; (2) 
changing words to lower case and (3) removing punctuation and white spaces. The size of the word 
is proportional to the observed frequency. 
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Figure 1. Word-cloud analysis using the titles of articles obtained based on the following search
strategy (PubMed): machine learning AND pharmacogenetics. The pre-processing procedures
applied were: (1) removing non-English words or common words that do not provide information;
(2) changing words to lower case and (3) removing punctuation and white spaces. The size of the
word is proportional to the observed frequency.

The paper is organized as follows: Section 2 illustrates the SML approach and its
application on pharmacogenetics; Section 3 reports the principal UML approach and its
application on pharmacogenetics; Section 4 is devoted to discussion.

2. Supervised Machine Learning Approaches

Several SML techniques have been implemented. They can be classified into two
categories: regression methods and classification methods (Figure 2).

2.1. Regression Methods

The simplest regression method is linear regression. A linear model assumes a lin-
ear relationship between the input variables (X) and an output variable (Y) [5]. Stan-
dard formulation of linear regression models with standard estimation techniques is
subject to four assumptions: (i) linearity of the relationship between X and expected
value of Y; (ii) homoscedasticity, i.e., the residual variance is the same for any value of X;
(iii) independence of the observations and (iv) normality: the conditional distribution of
Y|X is normal. To overcome the linear regression model assumptions, the generalized
linear models (GLM) have been developed. The GLM generalize linear regression by
allowing the linear model to be related to the response variable via a link function [6,7]:

E(Y|X) = µi = g−1
(

xT
i β

)
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where µi is the response function, and g is the link function.
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Figure 2. Summary representation of different SML algorithms: examples of regression and classifi-
cation methods.

In order to address more complex problems, sophisticated penalized regression
models have been developed allowing to overcome problems such as multicollinearity
and high dimensionality. In particular, Ridge regression [8] is employed when problems
with multicollinearity occur, and it consists of adding a penalization term to the loss
function as follows:

argmin
β

‖y− Xβ‖+ λ‖β‖2
2

where λ is the amount of penalization (tuning parameter), and ‖β‖2
2 is the norm 2 of the

βs, i.e., ‖β‖2
2 = ∑ β2

i . More recently, Tibshirani et al. introduced LASSO regression, an
elegant and relatively widespread solution to carry out variable selection and parameter
estimation simultaneously, also in high dimensional settings [9]. In LASSO regression, the
objective function to be minimized is the following:

argmin
β

‖y− Xβ‖+ λ‖β‖1

where λ is the amount of penalization (tuning parameter), and ‖β‖1 is the norm 1 of the βs,
i.e., ‖β‖1 = ∑ βi. Some issues concerning the computation of standard errors and inference
have been recently discussed [10]. A combination of LASSO and Ridge regression penalties
leads to the Elastic Net (EN) regression:

argmin
β

‖y− Xβ‖+ λ1‖β‖1 + λ2‖β‖2
2

where λ1‖β‖1 is the L1 penalty (LASSO), and λ2‖β‖2
2 is the L2 penalty (Ridge). Regular-

ization parameters reduce overfitting, decreasing the variance of the estimated regression
parameters; the larger the λ, the more shrunken the estimate; however, more bias will
be added to the estimates. Cross-Validation can be used to select the best value of λ to
use in order to ensure the best model is selected. Another family of regression methods
is represented by regression trees. A regression tree is built by splitting the whole data
sample, constituting the root node of the tree, into subsets (which constitute the successor
children), based on different cut-offs on the input variables [11]. The splitting rules are
based on measures of prediction performances; in general, they are chosen to minimize the
residual sum of squares:

RSS =
n

∑
i=1

(yi − ŷi)
2
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The pseudo algorithm works as follows:

1. Start with a single node containing all the observations. Calculate ŷi and RSS;
2. If all the observations in the node have the same value for all the input variables, stop.

Otherwise, search over all binary splits of all variables for the one which will reduce
RSS as much as possible;

3. Restart from step 1 for each new node.

Random forests (RF) are an ensemble learning method based on a multitude of
decision trees; to make a prediction for new input data, the predictions obtained from each
individual tree are averaged [12].

RuleFit is another ensemble method that combines regression tree methods and
LASSO regression [13]. The structural model takes the form:

F(x) = a0 +
M

∑
m=1

am fm(x)

where M is the size of the ensemble and each ensemble member (“base learner”), and
fm(x) is a different function (usually the indicator function) of the input variables x. Given
a set of base learners fm(x), the parameters of the linear combination are obtained by

{âm}M
0 = arg min

{am}M
0

N

∑
i=1

L(yi, F(x)) + λ
M

∑
m=1
|am|

where L indicates the loss function to minimize. The first term represents the prediction
risk, and the second part penalizes large values for the coefficients of the base learners.

Support Vector Regression (SVR) is an optimization problem of a convex loss function
to be minimized to find, in such a way, the flattest zone around the function (known as
the tube) that contains the most observations [14]. The convex optimization, which has
a unique solution, is solved, using appropriate numerical optimization algorithms. The
function to be minimized is the following:

1
2
‖β‖2

2 + C
N

∑
i=1

Vε(yi − xiβi)

with

Vε(r) =
{

0, |r| < ε

|r| − ε, otherwise

and C is an additional hyperparameter. The greater is C, the greater is our tolerance for
points outside ε.

2.2. Classification Methods

Classification methods are applied when the response variable is binary or, more
generally, categorical. Naive Bayes (NB) is a “probabilistic classifier” based on the appli-
cation of the Bayes’ theorem with strong (naïve) independence assumptions between the
features [15]. Indeed, NB classifier estimates the class C of an observation by maximizing
the posterior probability:

argmax
C

p(x|C)p(C)
p(x)

Support Vector Machine (SVM) builds a model that assigns new examples to one
category or the other, making it a non-probabilistic binary linear classifier [16]. The
underlying idea is to find the optimal separating hyperplane between two classes, by
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maximizing the margin between the closest points of these two classes. To find the optimal
separating hyperplane it needs to minimize:

min
β

1
2

βT β subject to yi

(
xT

i β
)
≥ 1. f or i = 1, . . . , n

A quadratic programming solver is needed to optimize the aforementioned problem.
The k-nearest neighbor (KNN) is a non-parametric ML method which can be used

to solve classification problems [17]. KNN assigns a new case into the category that is
most similar to the available categories. Given a positive integer k, KNN looks at the k
observations closest to a test observation x0 and estimates the conditional probability that
it belongs to class j using the formula

P(Y = j|X = x0) =
1
k ∑

i ∈N0

I(yi = j)

where N0 is the set of k -nearest observations, and I is the indicator function, which is 1 if
a given observation is a member of class j and 0 otherwise. Since the k nearest points are
needed, the first step of the algorithm is calculating the distance between the input data
points. Different distance metrics can be used; the Euclidean distance is the most used.

A Neural Network (NN) is a set of perceptrons (artificial neurons) linked together
in a pattern of connections. The connection between two neurons is characterized by the
connection weight, updated during the training, which measures the degree of influence of
the first neuron on the second one [18]. NN can be also applied in unsupervised learning.
Strengths and limitations of each approach are summarized in Table 1.

Table 1. Supervised machine learning approaches: strengths and limitations.

Methods Strengths Limitations

GLM
The response variable can follow any distribution in

the exponential family
Easy to interpret

Affected by noisy data, missing values,
multicollinearity and outliers

Ridge Overcomes multicollinearity issues Increased bias

LASSO Avoids overfitting
Effective in high dimensional settings

Selects only one feature from a group of
correlated features

EN Selects more than n predictors when n (sample
size)<<p (# of variables)

Computationally expensive with respect to
LASSO and Ridge

RT
Easy to implement

Ability to work with incomplete information
(missing values)

Computationally expensive

RF High performance and accuracy Less interpretability
High prediction time

SVR Easy to implement
Robust to outliers

Unsuitable for large datasets
Low performance in overlapping situations *

NB Suitable for multi-class prediction problems

Independence assumption
Assigns zero probability to category of a

categorical variable in the test data set that was
not available in the training dataset

SVM Suitable for high dimensional settings
No probabilistic explanation for the classification

Low performance in overlapping situations *
Sensitive to outliers

KNN Easy to implement Affected by noisy data, missing values and
outliers
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Table 1. Cont.

Methods Strengths Limitations

NN
Robust to outliers

Ability to work with incomplete information
(missing values)

Computationally expensive

GLM: Generalized Linear Model; LASSO: Least Absolute Shrinkage and Selection Operator; EN: Elastic-net; RT: Regression Tree; RF:
Random Forest; SVR: Support Vector Regression; NB: Naïve Bayes; SVM: Support Vector Machine; KNN: K-nearest Neighbor; NN: Neural
Network; #: number; * overlapping can arise when samples from different classes share similar attribute values.

2.3. Supervised Machine Learning Approaches in Pharmacogenetics

Recent studies in pharmacogenetics aiming to predict drug response used a SML
approach with satisfactory results (Table 2). In particular, a study assessing the pharma-
cogenetics of antidepressant response compared different supervised techniques such as
NN, recursive partitioning, learning vector quantization, gradient boosted machine and
random forests. Data involved 671 adult patients from three European studies on major
depressive disorder. The best accuracy among the tested models was achieved by NN [19].
Another study on 186 patients with major depressive disorder aimed to predict response to
antidepressants and compared the performance of RT and SVM. SVM reported the best
performance in predicting the antidepressants response. Moreover, in a second step of the
analysis, authors applied LASSO regression for feature selection allowing the selection of
19 most robust SNPs. In addition, application of SML allowed to distinguish remitters and
non-remitters to antidepressants [20].

Table 2. Summary of the study using SML approaches.

Reference AIM Included
Population Methodologies Results

Fabbri 2018
[19]

To predict response to
antidepressants 671 patients NN and RF The best accuracy among the tested

models was achieved by NN

Maciukiewicz 2018
[20]

To predict response to
antidepressants 186 patients RT and SVM

SVM reported the best performance
in predicting the antidepressants

response.

Kim 2019
[21]

To study of the
response to

anti-cancer drugs
1235 samples EN, SVM and RF

Sophisticated machine
learning algorithms allowed to
develop and validate a highly

accurate a
multi-study–derived predictive

model

Cramer 2019
[22]

To study of the
response to

anti-cancer drugs

1001 cancer cell
lines and 265 drugs

linear regression
models

The interaction-based approach
contributes to a holistic view on the

determining factors of drug
response.

Su 2019
[23]

To study of the
response to

anti-cancer drugs

33,275 cancer cell
lines and 24 drugs

Deep learning
and RF

The proposed Deep-Resp-Forest has
demonstrated the promising use of

deep learning and deep forest
approach on the drug response

prediction tasks.

Ma 2018
[24]

To study the warfarin
dosage prediction 5743 patients NN, Ridge, RF,

SVR and LASSO

Novel regression models combining
the advantages of distinct machine

learning algorithms and significantly
improving the prediction accuracy
compared to linear regression have

been obtained.
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Table 2. Cont.

Reference AIM Included
Population Methodologies Results

Liu 2015
[25]

To study the warfarin
dosage prediction 3838 patients NN, RT, SVR, RF

and LASSO

Machine learning-based algorithms
tended to perform better in the low-
and high- dose ranges than multiple

linear regression.

Sharabiani
2015
[26]

To study the warfarin
dosage prediction 4237 patients SVM

A novel methodology for predicting
the initial dose was proposed, which
only relies on patients’ clinical and

demographic data.

Truda 2021
[27]

To study the warfarin
dosage prediction 5741 patients Ridge, NN and

SVR

SVR was the best performing
traditional algorithm, whilst neural

networks performed poorly.

Li 2015
[28]

To study the warfarin
dosage prediction 1295 patients

Linear regression
model, NN, RT,

SVR and RF

Multiple linear regression was the
best performing algorithm.

LASSO: Least Absolute Shrinkage and Selection Operator; EN: Elastic-net; RT: Regression Tree; RF: Random Forest; SVR: Support Vector
Regression; SVM: Support Vector Machine; KNN: K-nearest Neighbor; NN: Neural Network.

A field of pharmacogenetics where SML techniques find wide application is the study
of the response to anti-cancer drugs. In this regard, EN, SVM and RF reported excellent
accuracy, generalizability and transferability [21–23].

Studies on warfarin dosing applied different SML techniques (NN, RIDGE, RF, SVR
and LASSO) showing a significant improvement in the prediction accuracy compared to
standard methods [24–27]. Another study on warfarin stable dosage prediction using seven
SML models (multiple linear regression, NN, RT, SVR and RF) showed that multiple linear
regression may be still the best model in the study population [28].

A comparative study on prediction of various clinical dose values from DNA gene
expression datasets using SML, such as RTs and SVR, reported that the best prediction
performance in nine of 11 datasets was achieved by SVR [29]. Recently, an algorithm
“AwareDX: Analysing Women At Risk for Experiencing Drug toxicity” based on RF was de-
veloped for predicting sex differences in drug response, demonstrating high precision [30].

3. Unsupervised Machine Learning Approaches

Regarding UML, data-driven approaches by using clustering methods can be used to
describe data with the aim of understanding whether observations can be stratified into
different subgroups. Clustering methods can be divided into (i) combinatorial algorithms,
(ii) hierarchical methods and (iii) self-organizing maps (Figure 3).
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3.1. Combinatorial Algorithms

In combinatorial algorithms, objects are partitioned in clusters trying to minimize
a loss function, e.g., the sum of the within clusters variability. In general, the aim is to
maximize the variability among clusters and to minimize the variability within clusters. K-
means is considered the most typical representative of this group of algorithms. Given a set
of input variables (x1, x2, . . . , xn), k-means clustering aims to partition the n observations
into k (≤n) sets S = {S1, S2, . . . , Sk) , minimizing the within-cluster variances. Formally, the
objective function to be minimized is the following:

L =
k

∑
i=1

∑
xj∈Si

∣∣|xj − µi |
∣∣2

where µi is the set of centroids in Si. The k-means algorithm starts with a first group
of randomly selected centroids, which are used as starting points for every cluster, and
then performs iterative calculations to optimize the positions of the centroids. In k-means
clustering, the centroids µi are the means of the cluster Si. The algorithm stops if there
is no change in the centroid or if a maximum number of iterations has been reached [31].
K-means is defined for quantitative variables and Euclidean distance metric; however,
the algorithm can be generalized to any distance D. K-medoids clustering is a variant of
K-means that is more robust to noises and outliers [32]. K-medoids minimizes the sum of
dissimilarities between points labeled to be in a cluster and a point designated as the center
of that cluster (medoids), instead of using the mean point as the center of a cluster.

3.2. Hierarchical Methods

Hierarchical clustering produces, as output, a hierarchical tree, where leaves represent
objects to be clustered, and the root represents a super cluster containing all the objects [33].
Hierarchical trees can be built by consecutive fusions of entities (objects or already formed
clusters) into bigger clusters, and this procedure configures an agglomerative method;
alternatively, consecutive partitions of clusters into smaller and smaller clusters configure
a divisive method.

Agglomerative hierarchical clustering produces a series of data partitions, Pn, Pn−1,
. . . , P1, where Pn consists of n singleton clusters, and P1 is a single group containing all
n observations. Basically, the pseudo algorithm consists in the following steps:

1. Compute the distance matrix D;
2. The most similar observations are merged in a first cluster;
3. Update D;
4. Steps 2 and 3 are repeated until all observations belong to a single cluster.

One of the simplest agglomerative hierarchical clustering methods is the nearest neigh-
bor technique (single linkage), in which the distance between clusters (r, s) is computed
as follows:

D(r, s) = min
i∈r,j∈s

d(i, j)

At each step of hierarchical clustering, the clusters r and s, for which D(r,s) is minimum,
are merged. Therefore, the method merges the two most similar clusters.

In the farthest neighbor (complete linkage), the distance between clusters (r, s) is
defined as follows:

D(r, s) = max
i∈r,j∈s

d(i, j)

At each step of hierarchical clustering, the clusters r and s, for which D(r, s) is mini-
mum, are merged.

In the average linkage clustering, the distance between two clusters is defined as the
average of distances between all pairs of objects, where each pair is made up of one object
from each group.
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Divisive clustering is more complex than agglomerative clustering; a flat clustering
method as “subroutine” is needed to split each cluster until each data have its own singleton
cluster [34]. Divisive clustering algorithms begin with the entire data set as a single cluster
and recursively divide one of the existing clusters into two further clusters at each iteration.
The pseudo algorithm consists in the following steps:

1. All data are in one cluster;
2. The cluster is split using a flat clustering method (K-means, K-medoids);
3. Choose the best cluster among all the clusters to split that cluster through the flat

clustering algorithm;
4. Steps 2 and 3 are repeated until each data is in its own singleton cluster.

3.3. Self Organizing Maps

Self-Organizing Maps (SOM) is the most popular artificial neural network algorithm
in the UML category [35]. SOM can be viewed as a constrained version of K-means
clustering, in which the original high-dimensional objects are constrained to map onto a
two-dimensional coordinate system. Let us consider n observations, M variables (dimen-
sional space) and K neurons. Denoting by wi, i = 1 . . . K, the position of the neurons in the
M-dimensional space, the pseudo-algorithm consists in:

1. Choose random values for the initial weights wi;
2. Randomly choose an object i and find the winner neuron j whose weight wj is the

closest to observation xi;
3. Update the position of wj moving it towards xi;
4. Update the positions of the neuron weights wh with h h ∈ NN j(t) (winner neighborhood);
5. Assign each object i to a cluster based on the distance between observations

and neurons.

In more detail, the winner neuron is detected according to:

wj = min
i=1...K

‖x− wi‖

The winner weight updating rule is the following:

wj(t + 1) = wj(t) + η(t)‖x− wi‖

where η(t) is the learning rate which decreases as iterations increases, and the NN j(t)
updating rule is the following:

wh(t + 1) = wh(t) + f
(

NNj(t), t
)
‖x− wh‖

where the neighborhood function f
(

NNj(t), t
)

gives more weight to neurons closer to
the winner i than to those further away. Strengths and limitations of each approach are
reported in Table 3.

Table 3. Unsupervised machine learning approaches: strengths and limitations.

Methods Strengths Limitations

K-means Reallocation of entities is allowed
No strict hierarchical structure

A priori choice of the number of clusters
Dependent on the initial partition

K-medoids Reallocation of entities is allowed
No strict hierarchical structure

A priori choice of the number of clusters
Dependent on the initial partition

High computational burden

Agglomerative/Divisive
Hierarchical

Easy to implement
Easy interpretation

Strict hierarchical structure
Dependent on the updating rule
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Table 3. Cont.

Methods Strengths Limitations

SOM Reallocation of entities is allowed
No strict hierarchical structure

A priori choice of the number of clusters
Dependent on the number of iterations and initial weights

SOM: self-organizing maps.

3.4. Unsupervised Machine Learning Approaches in Pharmacogenetics

Since the main goal in pharmacogenetics is to predict drug response, only few studies
have used UML techniques (Table 4). These techniques have mainly been used for data pre-
processing to identify groups. Indeed, Tao et al., to balance the dataset of patients treated
with warfarin and improve the predictive accuracy, proposed to solve the data-imbalance
problem using a clustering-based oversampling technique. The algorithm detects the
minority group, based on the association between the clinical features/genotypes and
the warfarin dosage. A new synthetic sample, generated selecting a minority sample
and finding k-nearest neighbors of the minority sample, was added to the dataset. Then,
two SML techniques (RT and RF) were compared in order to predict the warfarin dose.
Both models (RT and RF) achieve the same or higher performance in many cases [36]. A
study aiming to combine the effects of genetic polymorphisms and clinical parameters
on treatment outcome in treatment-resistant depression used a two-step ML approach.
First, patients were analyzed using a RF algorithm, while in a second step, data were
grouped through cluster analysis. Cluster analysis allowed identifying 5 clusters of patients
significantly associated with treatment response [37].

Table 4. Summary of the study using UML approaches.

Reference AIM Included population Methodologies Results

Tao 2020
[36]

To balance the dataset
of patients treated with
warfarin and improve

the predictive accuracy.

592 patients Cluster analysis

The algorithm detects the minority
group, based on the association between
the clinical features/genotypes and the

warfarin dosage.

Kautzky 2015
[37]

To combine the effects
of genetic

polymorphisms and
clinical parameters on
treatment outcome in

treatment-resistant
depression.

225 patients Cluster analysis
Cluster analysis allowed identifying

5 clusters of patients significantly
associated with treatment response.

4. Conclusions

ML techniques are sophisticated methods that allow obtaining satisfactory results
in term of prediction and classification. In pharmacogenetics, ML showed satisfactory
performance in predicting drug response in several fields such as cancer, depression and
anticoagulant therapy. RF proved to be the most frequently applied SML technique. Indeed,
RF creates many trees on different subsets of the data and combines the output of all the
trees, reducing variance and the overfitting problem. Moreover, RF works well with both
categorical and continuous variables and is usually robust to outliers.

Unsupervised learning still appears to not be frequently used. The potential benefits
of these methods have yet to be explored; indeed, using UML as a preliminary step for the
analysis of drug response could provide subgroups of response that are less arbitrary and
more balanced than the standard definition of response.

Although ML methods have shown superior performances with respect to classical
ones, some limitations should be considered. Firstly, ML methods are particularly effective
for analyzing large complex datasets. The amount of data should be large to provide
enough information for solid learning. Indeed, the small sample size may potentially affect
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the stability and reliability of ML models. Moreover, due to algorithm complexity, other
potential limitations could be overfitting, the lack of standardized procedures and the
difficulty of interpreting data.

The main strength of ML technique is to provide very accurate results, with a notable
impact according to precision medicine principles.

In order to overcome the possible limitations of ML, future directions should be
focused on the creation of an open-source system to allow researchers to collaborate in
sharing their data.
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