Generalizability of GWA-Identified Genetic Risk Variants for Metabolic Traits to Populations from the Arabian Peninsula
Abstract
:1. Introduction
2. GWA Studies for Metabolic Traits on Arab Populations
3. Generalizability of GWA-Identified Association Signals in Arab Populations
4. ‘Novel’ Risk Variants for Lipid Traits in Arab Populations
5. Future Directions
- (a)
- Strength of LD between a GWA variant and the causal variant can vary across populations; hence, the GWA variant may not be equally detectable across population groups. Marked differences in LD have been observed among the European, East Asian, and Arab populations; hence, population-specific differences in LD need to be considered while assessing transferability.
- (b)
- A proper assessment of transferability requires considering gene–environment interacting network models that include gene × environment interactions (involving not only the core genes of GWAS findings but also their peripheral genes) in determining the causality of phenotype. In contrast to Europeans, the Arab population went through recent ‘rapid’ lifestyle changes due to wealth from the post-oil era.
- (c)
- PRS for metabolic disorders is derived by the cumulative effect of multiple genetic variants; differences in allele frequencies at such variants across populations—due to reasons such as natural selection, population expansion, and adaptation to local environmental factors—make the PRS not readily transferable.
- (d)
- Finally, the review emphasizes the need for deeply phenotyped cohorts to properly assess the transferability and to get new insights into established association signals
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crouch, D.J.M.; Bodmer, W.F. Polygenic inheritance, GWAS, polygenic risk scores, and the search for functional variants. Proc. Natl. Acad. Sci. USA 2020, 117, 18924–18933. [Google Scholar] [CrossRef]
- Lichou, F.; Trynka, G. Functional studies of GWAS variants are gaining momentum. Nat. Commun. 2020, 11, 6283. [Google Scholar] [CrossRef]
- Welter, D.; MacArthur, J.; Morales, J.; Burdett, T.; Hall, P.; Junkins, H.; Klemm, A.; Flicek, P.; Manolio, T.; Hindorff, L.; et al. The NHGRI GWAS catalog, a curated resource of snp-trait associations. Nucleic Acids Res. 2014, 42, D1001–D1006. [Google Scholar] [CrossRef]
- Hebbar, P.; Abubaker, J.A.; Abu-Farha, M.; Alsmadi, O.; Elkum, N.; Alkayal, F.; John, S.E.; Channanath, A.; Iqbal, R.; Pitkaniemi, J.; et al. Genome-wide landscape establishes novel association signals for metabolic traits in the Arab population. Hum. Genet. 2021, 140, 505–528. [Google Scholar] [CrossRef] [PubMed]
- Abou Tayoun, A.N.; Rehm, H.L. Genetic variation in the middle east-an opportunity to advance the human genetics field. Genome Med. 2020, 12, 116. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, V.; Brucato, N.; Ferreira, J.C.; Pedro, N.; Cavadas, B.; Ricaut, F.X.; Alshamali, F.; Pereira, L. Genome-wide characterization of arabian peninsula populations: Shedding light on the history of a fundamental bridge between continents. Mol. Biol. Evol. 2019, 36, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Sirugo, G.; Williams, S.M.; Tishkoff, S.A. The missing diversity in human genetic studies. Cell 2019, 177, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Almarri, M.A.; Haber, M.; Lootah, R.A.; Hallast, P.; Al Turki, S.; Martin, H.C.; Xue, Y.; Tyler-Smith, C. The genomic history of the middle east. Cell 2021, 184, 4612–4625. [Google Scholar] [CrossRef]
- Mills, M.C.; Rahal, C. The GWAS diversity monitor tracks diversity by disease in real time. Nat. Genet. 2020, 52, 242–243. [Google Scholar] [CrossRef]
- Eaaswarkhanth, M.; Pathak, A.K.; Ongaro, L.; Montinaro, F.; Hebbar, P.; Alsmadi, O.; Metspalu, M.; Al-Mulla, F.; Thanaraj, T.A. Unraveling a fine-scale high genetic heterogeneity and recent continental connections of an Arabian Peninsula population. Eur. J. Hum. Genet. 2021, 1–3. [Google Scholar]
- Hunter-Zinck, H.; Musharoff, S.; Salit, J.; Al-Ali, K.A.; Chouchane, L.; Gohar, A.; Matthews, R.; Butler, M.W.; Fuller, J.; Hackett, N.R.; et al. Population genetic structure of the people of Qatar. Am. J. Hum. Genet. 2010, 87, 17–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alsmadi, O.; Thareja, G.; Alkayal, F.; Rajagopalan, R.; John, S.E.; Hebbar, P.; Behbehani, K.; Thanaraj, T.A. Genetic substructure of kuwaiti population reveals migration history. PLoS ONE 2013, 8, e74913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petraglia, M.D.; Groucutt, H.S.; Guagnin, M.; Breeze, P.S.; Boivin, N. Human responses to climate and ecosystem change in ancient Arabia. Proc. Natl. Acad. Sci. USA 2020, 117, 8263–8270. [Google Scholar] [CrossRef] [Green Version]
- Eaaswarkhanth, M.; Dos Santos, A.L.C.; Gokcumen, O.; Al-Mulla, F.; Thanaraj, T.A. Genome-wide selection scan in an arabian peninsula population identifies a TNKS haplotype linked to metabolic traits and hypertension. Genome Biol. Evol. 2020, 12, 77–87. [Google Scholar] [CrossRef]
- Hebbar, P.; Elkum, N.; Alkayal, F.; John, S.E.; Thanaraj, T.A.; Alsmadi, O. Genetic risk variants for metabolic traits in Arab populations. Sci. Rep. 2017, 7, 40988. [Google Scholar] [CrossRef]
- Hebbar, P.; Nizam, R.; Melhem, M.; Alkayal, F.; Elkum, N.; John, S.E.; Tuomilehto, J.; Alsmadi, O.; Thanaraj, T.A. Genome-wide association study identifies novel recessive genetic variants for high TGS in an Arab population. J. Lipid Res. 2018, 59, 1951–1966. [Google Scholar] [CrossRef] [Green Version]
- Alhabib, K.F.; Al-Rasadi, K.; Almigbal, T.H.; Batais, M.A.; Al-Zakwani, I.; Al-Allaf, F.A.; Al-Waili, K.; Zadjali, F.; Alghamdi, M.; Alnouri, F.; et al. Familial hypercholesterolemia in the Arabian Gulf region: Clinical results of the gulf fh registry. PLoS ONE 2021, 16, e0251560. [Google Scholar] [CrossRef]
- Arfa, I.; Abid, A.; Malouche, D.; Ben Alaya, N.; Azegue, T.R.; Mannai, I.; Zorgati, M.M.; Ben Rayana, M.C.; Ben Ammar, S.; Blousa-Chabchoub, S.; et al. Familial aggregation and excess maternal transmission of type 2 diabetes in Tunisia. Postgrad. Med J. 2007, 83, 348–351. [Google Scholar] [CrossRef] [Green Version]
- Benrahma, H.; Arfa, I.; Charif, M.; Bounaceur, S.; Eloualid, A.; Boulouiz, R.; Nahili, H.; Abidi, O.; Rouba, H.; Chadli, A.; et al. Maternal effect and familial aggregation in a type 2 diabetic Moroccan population. J. Community Health 2011, 36, 943–948. [Google Scholar] [CrossRef]
- Bener, A.; Yousafzai, M.T.; Al-Hamaq, A.O.; Mohammad, A.G.; Defronzo, R.A. Parental transmission of type 2 diabetes mellitus in a highly endogamous population. World J. Diabetes 2013, 4, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Al-Sinani, S.; Al-Shafaee, M.; Al-Mamari, A.; Woodhouse, N.; Al-Shafie, O.; Hassan, M.; Al-Yahyaee, S.; Albarwani, S.; Jaju, D.; Al-Hashmi, K.; et al. Familial clustering of type 2 diabetes among Omanis. Oman Med. J. 2014, 29, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Zayed, H. Genetic epidemiology of type 1 diabetes in the 22 Arab countries. Curr. Diabetes Rep. 2016, 16, 37. [Google Scholar] [CrossRef]
- Klautzer, L.; Becker, J.; Mattke, S. The curse of wealth-middle eastern countries need to address the rapidly rising burden of diabetes. Int. J. Health Policy Manag. 2014, 2, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Fahed, A.C.; El-Hage-Sleiman, A.K.; Farhat, T.I.; Nemer, G.M. Diet, genetics, and disease: A focus on the middle east and north Africa region. J. Nutr. Metab. 2012, 2012, 109037. [Google Scholar] [CrossRef]
- Jaber, L.A.; Brown, M.B.; Hammad, A.; Nowak, S.N.; Zhu, Q.; Ghafoor, A.; Herman, W.H. Epidemiology of diabetes among Arab Americans. Diabetes Care 2003, 26, 308–313. [Google Scholar] [CrossRef] [Green Version]
- Bennet, L.; Nilsson, C.; Mansour-Aly, D.; Christensson, A.; Groop, L.; Ahlqvist, E. Adult-onset diabetes in middle eastern immigrants to Sweden: Novel subgroups and diabetic complications-the all new diabetes in scania cohort diabetic complications and ethnicity. Diabetes Metab. Res. Rev. 2020, 37, e3419. [Google Scholar] [CrossRef]
- Hebbar, P.; Abubaker, J.A.; Abu-Farha, M.; Tuomilehto, J.; Al-Mulla, F.; Thanaraj, T.A. A perception on genome-wide genetic analysis of metabolic traits in Arab populations. Front. Endocrinol. 2019, 10, 8. [Google Scholar] [CrossRef] [Green Version]
- Thareja, G.; Al-Sarraj, Y.; Belkadi, A.; Almotawa, M.; Qatar Genome Program Research, C.; Suhre, K.; Albagha, O.M.E. Whole genome sequencing in the middle eastern Qatari population identifies genetic associations with 45 clinically relevant traits. Nat. Commun. 2021, 12, 1250. [Google Scholar] [CrossRef]
- Zuk, O.; Schaffner, S.F.; Samocha, K.; Do, R.; Hechter, E.; Kathiresan, S.; Daly, M.J.; Neale, B.M.; Sunyaev, S.R.; Lander, E.S. Searching for missing heritability: Designing rare variant association studies. Proc. Natl. Acad. Sci. USA 2014, 111, E455–E464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moazzam-Jazi, M.; Najd Hassan Bonab, L.; Zahedi, A.S.; Daneshpour, M.S. High genetic burden of type 2 diabetes can promote the high prevalence of disease: A longitudinal cohort study in Iran. Sci. Rep. 2020, 10, 14006. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.R.; Kanai, M.; Kamatani, Y.; Okada, Y.; Neale, B.M.; Daly, M.J. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 2019, 51, 584–591. [Google Scholar] [CrossRef]
- Ahsan, T.; Urmi, N.J.; Sajib, A.A. Heterogeneity in the distribution of 159 drug-response related snps in world populations and their genetic relatedness. PLoS ONE 2020, 15, e0228000. [Google Scholar] [CrossRef] [Green Version]
- Sawyer, S.L.; Mukherjee, N.; Pakstis, A.J.; Feuk, L.; Kidd, J.R.; Brookes, A.J.; Kidd, K.K. Linkage disequilibrium patterns vary substantially among populations. Eur. J. Hum. Genet. 2005, 13, 677–686. [Google Scholar] [CrossRef]
- Kraft, P.; Zeggini, E.; Ioannidis, J.P. Replication in genome-wide association studies. Stat. Sci. 2009, 24, 561–573. [Google Scholar] [CrossRef] [Green Version]
- Scott, E.M.; Halees, A.; Itan, Y.; Spencer, E.G.; He, Y.; Azab, M.A.; Gabriel, S.B.; Belkadi, A.; Boisson, B.; Abel, L.; et al. Characterization of greater middle eastern genetic variation for enhanced disease gene discovery. Nat. Genet. 2016, 48, 1071–1076. [Google Scholar] [CrossRef] [PubMed]
- Mathieson, I. The omnigenic model and polygenic prediction of complex traits. Am. J. Hum. Genet. 2021, 108, 1558–1563. [Google Scholar] [CrossRef] [PubMed]
- Boyle, E.A.; Li, Y.I.; Pritchard, J.K. An expanded view of complex traits: From polygenic to omnigenic. Cell 2017, 169, 1177–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Z.; Lebrun, N.; Clarke, J.; Duriez, P.; Gorwood, P.; Ramoz, N.; Bienvenu, T. Identification of rare variants in cadm1 in patients with anorexia nervosa. Psychiatry Res. 2020, 291, 113191. [Google Scholar] [CrossRef] [PubMed]
- Al Rasadi, K.; Almahmeed, W.; AlHabib, K.F.; Abifadel, M.; Farhan, H.A.; AlSifri, S.; Jambart, S.; Zubaid, M.; Awan, Z.; Al-Waili, K.; et al. Dyslipidaemia in the middle east: Current status and a call for action. Atherosclerosis 2016, 252, 182–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Sifri, S.N.; Almahmeed, W.; Azar, S.; Okkeh, O.; Bramlage, P.; Junger, C.; Halawa, I.; Ambegaonkar, B.; Wajih, S.; Brudi, P. Results of the dyslipidemia international study (dysis)-middle east: Clinical perspective on the prevalence and characteristics of lipid abnormalities in the setting of chronic statin treatment. PLoS ONE 2014, 9, e84350. [Google Scholar] [CrossRef]
- Gitt, A.K.; Drexel, H.; Feely, J.; Ferrieres, J.; Gonzalez-Juanatey, J.R.; Thomsen, K.K.; Leiter, L.A.; Lundman, P.; da Silva, P.M.; Pedersen, T.; et al. Persistent lipid abnormalities in statin-treated patients and predictors of ldl-cholesterol goal achievement in clinical practice in Europe and Canada. Eur. J. Prev. Cardiol. 2012, 19, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Hassoun, S.; Al-Atrash, M.; Alkasim, M.; Dabbous, Z.; Mujahed, O.; DeFronzo, R.A.; Jayyousi, A.; Zirie, M.; Abdul-Ghani, M. Impact of ethnicity and obesity on insulin resistance in two ethnic groups at very high risk of type 2 diabetes. Diabetes Metab. 2017, 43, 292–294. [Google Scholar] [CrossRef]
- Ji, Y.; Yiorkas, A.M.; Frau, F.; Mook-Kanamori, D.; Staiger, H.; Thomas, E.L.; Atabaki-Pasdar, N.; Campbell, A.; Tyrrell, J.; Jones, S.E.; et al. Genome-wide and abdominal mri data provide evidence that a genetically determined favorable adiposity phenotype is characterized by lower ectopic liver fat and lower risk of type 2 diabetes, heart disease, and hypertension. Diabetes 2019, 68, 207–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hebbar, P.; Abu-Farha, M.; Mohammad, A.; Alkayal, F.; Melhem, M.; Abubaker, J.; Al-Mulla, F.; Thanaraj, T.A. Fto variant rs1421085 associates with increased body weight, soft lean mass, and total body water through interaction with ghrelin and apolipoproteins in Arab population. Front. Genet. 2019, 10, 1411. [Google Scholar] [CrossRef]
Qatar | Kuwait | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Trait | SNP | Gene | A1 | A2 | β | p-Value | A1 | A2 | Zscore | p-Value | Trait |
BMI | rs17817449 | FTO | T | G | 0.095 | 2.52 × 108 | T | G | 2.852 | 0.0043 | WT |
2.842 | 0.0044 | DBP | |||||||||
−3.83 | 0.0001 | HDL | |||||||||
3.466 | 0.0005 | TG | |||||||||
3.249 | 0.0011 | BMI | |||||||||
2.865 | 0.0041 | WC | |||||||||
2.276 | 0.0228 | SBP | |||||||||
2.14 | 0.0323 | NON_HDL | |||||||||
HDL-C | rs74869266 | LPL | A | C | 0.236 | 2.65 × 1010 | A | C | 2.002 | 0.0452 | LDL |
HDL-C | rs1077834 | LIPC | T | C | 0.109 | 3.51 × 108 | T | C | 2.807 | 0.005 | logFPG |
HDL-C | rs708272 | CETP | G | A | 0.192 | 1.04 × 1028 | A | G | −6.285 | 3.28 × 1010 | HDL |
2.074 | 0.0381 | TG | |||||||||
2.06 | 0.0393 | NON_HDL | |||||||||
HDL-C | rs7499892 | CETP | C | T | −0.198 | 9.88 × 1019 | T | C | 6.424 | 1.33 × 1010 | HDL |
−2.389 | 0.0168 | HT | |||||||||
LDL-C | rs12740374 | CELSR2 | G | T | −0.192 | 3.83 × 1015 | T | G | 4.412 | 1.02 × 105 | TC |
4.939 | 7.86 × 107 | NON_HDL | |||||||||
4.39 | 1.13 × 105 | LDL | |||||||||
LDL-C | rs1800481 | APOB | G | A | −0.175 | 1.16 × 1012 | A | G | 4.191 | 2.78 × 105 | LDL |
4.068 | 4.74 × 105 | NON_HDL | |||||||||
3.672 | 0.0002 | TC | |||||||||
LDL-C | rs111989435 | SMARCA4 | A | G | −0.192 | 2.42 × 1015 | A | G | −4.937 | 7.93 × 107 | LDL |
−4.13 | 3.63 × 105 | NON_HDL | |||||||||
−4.08 | 4.51 × 105 | TC | |||||||||
2.061 | 0.0393 | DBP | |||||||||
LDL-C | rs111234557 | MAU2 | C | G | −0.207 | 8.60 × 109 | C | G | 2.144 | 0.0319 | HDL |
−5.499 | 3.83 × 108 | NON_HDL | |||||||||
−4.901 | 9.52 × 107 | TG | |||||||||
−4.787 | 1.70 × 106 | TC | |||||||||
−3.492 | 0.0004 | LDL | |||||||||
2.857 | 0.0042 | logFPG | |||||||||
2.308 | 0.021 | logHbA1C | |||||||||
LDL-C | rs429358 | APOE | T | C | 0.23 | 4.22 × 1012 | T | C | −2.226 | 0.026 | logFPG |
2.122 | 0.0338 | TG | |||||||||
−2.849 | 0.0043 | HDL | |||||||||
LDL-C | rs7412 | APOE | C | T | −0.566 | 6.27 × 1029 | T | C | 2.314 | 0.0206 | SBP |
4.233 | 2.31 × 105 | LDL | |||||||||
3.547 | 0.0003 | NON_HDL | |||||||||
3.077 | 0.002 | TC | |||||||||
TG | rs1260326 | GCKR | C | T | 0.122 | 4.11 × 1012 | T | C | 3.292 | 0.0009 | LDL |
−4.833 | 1.35 × 106 | TG | |||||||||
2.545 | 0.0109 | HT | |||||||||
TG | rs33951980 | MLXIPL | C | T | −0.112 | 2.09 × 108 | T | C | 3.595 | 0.0003 | TG |
TG | rs10892002 | AP000770.1 | G | C | 0.098 | 2.25 × 108 | C | G | 2.5 | 0.0124 | TC |
2.126 | 0.0335 | LDL | |||||||||
−2.114 | 0.0345 | WC | |||||||||
TG | rs6589570 | APOA5 | T | A | 0.195 | 4.19 × 1016 | A | T | 2.16 | 0.0307 | LDL |
−4.766 | 1.88 × 106 | TG | |||||||||
TG | rs5095 | APOA4 | A | G | −0.133 | 5.18 × 1012 | A | G | −2.162 | 0.0306 | TG |
TG | rs111234557 | MAU2 | C | G | −0.184 | 4.72 × 108 | C | G | −5.499 | 3.83 × 108 | NON_HDL |
−4.901 | 9.52 × 107 | TG | |||||||||
−4.787 | 1.70 × 106 | TC | |||||||||
−3.492 | 0.0004 | LDL | |||||||||
2.857 | 0.0042 | logFPG | |||||||||
2.308 | 0.021 | logHbA1C | |||||||||
2.144 | 0.0319 | HDL | |||||||||
TCH | rs7528419 | CELSR2 | A | G | −0.175 | 6.51 × 1013 | A | G | −5.046 | 4.51 × 107 | NON_HDL |
−4.547 | 5.45 × 106 | TC | |||||||||
−4.546 | 5.47 × 106 | LDL | |||||||||
TCH | rs1800481 | APOB | G | A | −0.162 | 4.75 × 1011 | A | G | 4.191 | 2.78 × 105 | LDL |
4.068 | 4.74 × 105 | NON_HDL | |||||||||
3.672 | 0.0002 | TC | |||||||||
TCH | rs8106503 | LDLR | T | C | −0.168 | 1.22 × 1012 | T | C | −5.114 | 3.15 × 107 | LDL |
−4.204 | 2.62 × 105 | TC | |||||||||
−4.196 | 2.71 × 105 | NON_HDL | |||||||||
2.232 | 0.0256 | DBP | |||||||||
1.996 | 0.0459 | SBP | |||||||||
TCH | rs111234557 | MAU2 | C | G | −0.238 | 3.54 × 1011 | C | G | −5.499 | 3.83 × 108 | NON_HDL |
−4.901 | 9.52 × 107 | TG | |||||||||
−4.787 | 1.70 × 106 | TC | |||||||||
−3.492 | 0.0004 | LDL | |||||||||
2.857 | 0.0042 | logFPG | |||||||||
2.308 | 0.021 | logHbA1C | |||||||||
2.144 | 0.0319 | HDL | |||||||||
TCH | rs429358 | APOE | T | C | 0.203 | 7.69 × 1011 | T | C | −2.849 | 0.0043 | HDL |
−2.226 | 0.026 | logFPG | |||||||||
2.122 | 0.0338 | TG | |||||||||
TCH | rs7412 | APOE | C | T | −0.422 | 6.52 × 1017 | T | C | 2.314 | 0.0206 | SBP |
4.233 | 2.31 × 105 | LDL | |||||||||
3.547 | 0.0003 | NON_HDL | |||||||||
3.077 | 0.002 | TC |
SNP | Consequence | Gene | MAF | ||||||
---|---|---|---|---|---|---|---|---|---|
Qatar | Kuwait | Continents | |||||||
AFR | AMR | EAS | EUR | SAS | |||||
rs1077834 | downstream | LIPC | 0.23 | 0.22 | 0.57 | 0.43 | 0.42 | 0.21 | 0.31 |
rs10892002 | upstream | AP000770.1 | 0.45 | 0.43 | 0.22 | 0.33 | 0.15 | 0.43 | 0.43 |
rs111234557 @ | intron | MAU2 | 0.07 | 0.08 | 0.02 | 0.11 | 0.18 | 0.11 | 0.16 |
rs111989435 @ | intergenic | SMARCA4 | 0.17 | 0.17 | 0.19 | 0.10 | 0.02 | 0.12 | 0.07 |
rs1260326 | Missense (L446P) | GCKR | 0.42 | 0.47 | 0.09 | 0.36 | 0.48 | 0.41 | 0.20 |
rs12740374 @ | downstream | CELSR2 | 0.17 | 0.16 | 0.25 | 0.20 | 0.04 | 0.21 | 0.26 |
rs7528419 @ | downstream | 0.17 | 0.16 | 0.27 | 0.20 | 0.04 | 0.21 | 0.26 | |
rs17817449 | intron | FTO | 0.47 | 0.44 | 0.38 | 0.25 | 0.17 | 0.41 | 0.29 |
rs1800481 @ | upstream | APOB | 0.16 | 0.18 | 0.29 | 0.13 | 0.00 | 0.19 | 0.11 |
rs33951980 @ | intron | MLXIPL | 0.24 | 0.15 | 0.06 | 0.04 | 0.12 | 0.12 | 0.08 |
rs429358 | downstream | APOE | 0.08 | 0.09 | 0.27 | 0.10 | 0.09 | 0.16 | 0.09 |
rs7412 @ | Missenseandrei (R176C) | APOE | 0.03 | 0.06 | 0.10 | 0.05 | 0.10 | 0.06 | 0.04 |
rs5095 @ | intron | APOA4 | 0.28 | 0.23 | 0.09 | 0.11 | 0.00 | 0.18 | 0.12 |
rs6589570 | intergenic | APOA5 | 0.15 | 0.17 | 0.11 | 0.23 | 0.25 | 0.18 | 0.36 |
rs708272 | intron | CETP | 0.39 | 0.40 | 0.25 | 0.46 | 0.38 | 0.43 | 0.45 |
rs7499892 | intron | CETP | 0.17 | 0.19 | 0.41 | 0.22 | 0.16 | 0.21 | 0.22 |
rs74869266 @ | intergenic | LPL | 0.06 | 0.06 | 0.01 | 0.05 | 0.03 | 0.11 | 0.06 |
rs8106503 @ | downstream | LDLR | 0.18 | 0.18 | 0.30 | 0.17 | 0.04 | 0.11 | 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hebbar, P.; Abu-Farha, M.; Abubaker, J.; Channanath, A.M.; Al-Mulla, F.; Thanaraj, T.A. Generalizability of GWA-Identified Genetic Risk Variants for Metabolic Traits to Populations from the Arabian Peninsula. Genes 2021, 12, 1637. https://doi.org/10.3390/genes12101637
Hebbar P, Abu-Farha M, Abubaker J, Channanath AM, Al-Mulla F, Thanaraj TA. Generalizability of GWA-Identified Genetic Risk Variants for Metabolic Traits to Populations from the Arabian Peninsula. Genes. 2021; 12(10):1637. https://doi.org/10.3390/genes12101637
Chicago/Turabian StyleHebbar, Prashantha, Mohamed Abu-Farha, Jehad Abubaker, Arshad Mohamed Channanath, Fahd Al-Mulla, and Thangavel Alphonse Thanaraj. 2021. "Generalizability of GWA-Identified Genetic Risk Variants for Metabolic Traits to Populations from the Arabian Peninsula" Genes 12, no. 10: 1637. https://doi.org/10.3390/genes12101637
APA StyleHebbar, P., Abu-Farha, M., Abubaker, J., Channanath, A. M., Al-Mulla, F., & Thanaraj, T. A. (2021). Generalizability of GWA-Identified Genetic Risk Variants for Metabolic Traits to Populations from the Arabian Peninsula. Genes, 12(10), 1637. https://doi.org/10.3390/genes12101637