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Abstract: Single-cell sequencing provides novel means to interpret the transcriptomic profiles of indi-
vidual cells. To obtain in-depth analysis of single-cell sequencing, it requires effective computational
methods to accurately predict single-cell clusters because single-cell sequencing techniques only
provide the transcriptomic profiles of each cell. Although an accurate estimation of the cell-to-cell
similarity is an essential first step to derive reliable single-cell clustering results, it is challenging to
obtain the accurate similarity measurement because it highly depends on a selection of genes for
similarity evaluations and the optimal set of genes for the accurate similarity estimation is typically
unknown. Moreover, due to technical limitations, single-cell sequencing includes a larger number of
artificial zeros, and the technical noise makes it difficult to develop effective single-cell clustering
algorithms. Here, we describe a novel single-cell clustering algorithm that can accurately predict
single-cell clusters in large-scale single-cell sequencing by effectively reducing the zero-inflated noise
and accurately estimating the cell-to-cell similarities. First, we construct an ensemble similarity
network based on different similarity estimates, and reduce the artificial noise using a random walk
with restart framework. Finally, starting from a larger number small size but highly consistent
clusters, we iteratively merge a pair of clusters with the maximum similarities until it reaches the
predicted number of clusters. Extensive performance evaluation shows that the proposed single-cell
clustering algorithm can yield the accurate single-cell clustering results and it can help deciphering
the key messages underlying complex biological mechanisms.

Keywords: single-cell RNA sequencing; zero-inflated noise reduction; ensemble similarity estimation;
correspondence network; visualization and clustering; imputation

1. Introduction

Single-cell sequencing technologies have been gaining popularity and importance
in biomedical research because it can provide effective means to obtain gene expression
profiles for hundreds of thousands cells in a high-throughput manner [1–4], i.e., although a
next-generation sequencing can measure an average gene expression for numerous cells
in the tissues, the single-cell sequencing enables the profiling of the gene expressions
for individual cells. Due to the distinct advantages of the single-cell sequencing, it can
accelerate a development of novel drugs and effective therapeutic methods for complex
diseases such as cancers and neurodegenerative diseases by providing a breakthrough to
unveil and interpret key messages underlying complex biological mechanisms in different
cell types.

Single-cell clustering is an essential first step of single-cell sequencing for a down-
stream analysis because single-cell sequencing techniques typically do not provide auxiliary
information such as cell types for each gene expression value and their spatial origins in
tissue samples [5]. Once we obtain an accurate identification of single-cell clusters, it can
help identifying cell types and marker genes that can play a pivotal role in elucidating the
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biological insights from biological experiments. However, since the single-cell sequencing
protocols employ relatively the small amount of mRNA samples to read the gene expres-
sion profile for each cell, the true gene expression may not be detected and the missing
information results in excessive zeros in the sequencing results, where it can be modeled as
a zero-inflated noise. The technical noise makes it difficult to develop effective single-cell
clustering algorithms.

Several single-cell clustering methods have been proposed based on different strate-
gies and distinctive strengths. For example, pcaReduce [6] obtain the low-dimensional
feature vector for each cell through PCA (principal component analysis), and it makes the
initial clusters by the K-means clustering algorithm based on the principal components.
Next, it computes the probability density functions for each pair of clusters. Then, based
on the probability density functions, pcaReduce iteratively combines a pair of clusters with
the highest probability until it reaches the user-defined number of clusters. TSCAN [7]
first estimates the similarities between cells through the Euclidean distance and it also
determines the complete linkage based on gene expression patterns of single cells. Then,
it yields the single-cell clustering through a hierarchical clustering. scCLUE [8] first con-
structs an ensemble similarity network by integrating multiple similarity networks that
can represent the cell-to-cell similarities through different similarity estimates. Then, it
yields the accurate and consistent single-cell clusters through the Louvain algorithm [9].
Although the aforementioned algorithms can lead to the accurate prediction of the single-
cell clustering, it requires the true number of clusters as a user input parameter, where
it is typically unknown. To resolve the problem, single-cell clustering algorithms, where
it can automatically determine the number of clusters in the single-cell sequencing data,
have been introduced. Seurat [10] adopts a network-based clustering framework, where
it is also employed in other algorithms [11,12]. Seurat first reduces the dimension of the
single-cell sequencing through PCA and it determines the similarities between cells based
on the first 10 PCs (principal components). Next, it constructs a KNN (K-nearest neighbors)
network based on the estimated similarities. Finally, it identifies the single-cell clusters
through the Louvain algorithm. SIMLR [13] derives a robust estimation of the cell-to-cell
similarity based on the multiple Gaussian kernels with different parameters. Based on the
ensemble learning for the cell-to-cell similarity, SIMLR determines the single-cell clusters
through the K-means clustering algorithm. To the best of our knowledge, CIDR [14] is the
first single-cell clustering algorithm that takes the technical noise into account to derive
a reliable single-cell clustering. First, it reduces the zero-inflated noise in a single-cell se-
quencing data through an implicit imputation method. Then, CIDR obtains the single-cell
clusters through a hierarchical clustering algorithm based on the dissimilarity between
each cell. SC3 [15] constructs the cell-to-cell similarity matrix based on the Euclidean
distance or correlation between cells. Next, it changes the similarity matrix through PCA
or normalized Laplacian. Then, based on the transformed similarity matrix, it determines
the single-cell clustering through a hierarchical clustering algorithm. SinNLRR [16] adopts
subspace clustering approach with low-rank representation to derive accurate estimation
of cell-to-cell similarity. It assumes that the gene expression of one cell can be represented
as the combination of gene expressions of cells in the same type. Based on this assumption,
it constructs the optimization problem with low-rank and non-negative constraints. Then,
it solves the optimization problem through an alternating direction method of multipliers
and obtains a robust clustering through spectral clustering. RGGC [17] also adopts a
subspace clustering method to derive robust single-cell clustering, where it assumes that
each cell can be represented the linear combination of cells in the same subspace. Then, it
employs a regularized Gaussian graphical model to construct the optimization problem
with L2 regularization. Finally, it yields a single-cell clustering through Louvain algorithm.
One distinctive advantage of RGGC is that there is no free parameter so that it can save a
time for parameter tuning.
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In this paper, we propose an accurate single-cell clustering algorithm called SICLEN
(SIngle-cell CLustering based on effective noise reduction through ENsemble similarity
network). First, to avoid the optimal feature gene selection problem, we identify a set of
potential feature genes that can have a high probability to be marker genes for each cell
type. Second, we represent a cell-to-cell similarity through an ensemble similarity network,
i.e., we consider a cell as a node and connect two cells by inserting an edge if a pair of cells
show consistently high similarity based on the multiple similarity estimates that can be
obtained by the different subsamples of the potential feature genes. Then, we effectively re-
duce a zero-inflated noise through a random walk with restart over the ensemble similarity
network and predict the number of clusters using Rubin index [18]. Finally, starting from
a large number of small size but highly coherent single-cell clusters that can be obtained
through the K-means clustering algorithm, we obtain an accurate clustering by iteratively
merging a pair of clusters if they record the highest similarity among the collection of
clusters until it reaches the predicted number of clusters. Based on the comprehensive
evaluations, we demonstrate that the proposed single-cell clustering algorithm can achieve
accurate and reliable clustering results in terms of algorithmic and biological perspectives.

2. Materials and Methods
2.1. Datasets

We employed 12 single-cell sequencing datasets to evaluate the performance of single-
cell clustering algorithms. To obtain the single-cell sequencing datasets, we accessed the
Gene Expression Omnibus (GEO) provided by NCBI (National Center for Biotechnology
Information) and searched the accession number in Table 1. Then, we downloaded a
raw count (or gene expression) matrix for each data. Finally, we obtained the processed
gene expression matrix after removing genes that are not expressed across cells because
these genes are not informative to derive clustering results. Darmanis et al. provided a
gene expression profile for cells in a human brain [19]. Among nine cell types, we only
excluded the cells annotated by ‘hybrid’ because these cells can be considered to be an
intermediate type between neurons and astrocytes [20]. Usoskin et al. obtained a single-cell
sequencing data from mouse sensory neurons, and it includes a gene expression profile for
peptidergic nociceptors (PEP), non-peptidergic nociceptors (NP), neurofilament containing
(NF), and tyrosine hydroxylase containing (TH) [21]. Kolodziejczyk et al. provided a single-
cell sequencing data for pluripotent cells under different environmental conditions [22].
Romanov et al. provided a single-cell sequencing data for a hypothalamus in a mouse brain
and it includes seven major cell types such as oligodendrocytes, astrocytes, ependymal
cells, microglial cells, endothelial cells, vascular and smooth muscle lineage cells, and
neurons [23]. Xin et al. provided a gene expression profile for cells in a human pancreatic
islet [24]. It provides alpha, beta, delta, and gamma cells from non-diabetic and T2D (type
2 diabetes) organ donors. Klein et al. provided a single-cell sequencing data for mouse
embryo stem cells [2]. Braon et al. obtained gene expression profiles for cells in human
and mouse pancreatic islets from four human donors and two mice strains [25]. In these
datasets, we only kept the following cell types: alpha, beta, delta, ductal, gamma, and
acinar because the number of the other types is much smaller than the major cell types.
Additionally, we also removed acinar cells for mouse datasets for the same reason.
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Table 1. Basic statistics of the single-cell sequencing datasets.

Dataset # Genes # Cells # Clusters Source Accession

Darmanis [19] 21,517 420 8 Human brain GSE67835
Usoskin [21] 19,534 622 4 Mouse sensory neurons GSE59739
Kolod. [22] 10,684 704 3 Mouse embryo stem cells E-MTAB-2600

Romanov [23] 21,143 2881 7 Mouse hypothalamus GSE74672
Xin [24] 33,584 1492 4 Human pancreas GSE81608
Klein [2] 24,047 2717 4 Mouse embryo stem cells GSE65525

Baron_h1 [25] 15,452 1622 6 Human pancreas GSE84133
Baron_h2 [25] 15,810 1562 6 Human pancreas GSE84133
Baron_h3 [25] 16,386 3333 6 Human pancreas GSE84133
Baron_h4 [25] 15,285 1225 6 Human pancreas GSE84133
Baron_m1 [25] 13,757 687 5 Mouse pancreas GSE84133
Baron_m2 [25] 14,105 932 5 Mouse pancreas GSE84133

2.2. Parameter Settings for Each Algorithm

We compared the performance of the proposed single-cell clustering algorithm with
the state-of-the-art methods: Seurat [10], SIMLR [13], CIDR [14], and SC3 [15]. We also
compared the proposed method with the clustering results through t-SNE [26] followed by
the K-means clustering algorithm because it is one of the popular approaches to quickly
obtain the naive clustering results. We obtained clustering results for each algorithm based
on the R implementation with the default parameter settings. Moreover, to determine
the number of clusters for each algorithm, we used the recommended method or internal
function for each algorithm so that the number of predicted clusters for each method can be
different. Please note that we only used the true number of clusters for t-SNE followed by
K-means clustering algorithm. We performed all experiments on a Linux (Ubuntu 18.04.4)
server with Intel Xeon processor (2.4 GHz) with 24 cores and 256 GB memory.

2.3. Motivation and Overview of the Proposed Method

To obtain a reliable single-cell clustering result, accurately estimating a cell-to-cell
similarity is a crucial first step. However, from a practical point of view, there are several
hurdles to derive a reliable estimation of the cell-to-cell similarity. First, since a single-cell
sequencing can simultaneously profile the gene expression levels for hundreds of thousands
of cells, each cell can be represented as a high-dimensional vector. It is computationally
intensive to evaluate the pairwise similarities for high-dimensional vectors representing the
gene expression characteristics of numerous cells. Second, due to the technical limitations,
single-cell sequencing data includes a larger number of artificial zeros called dropouts and
the zero-inflated noise makes the problem challenging to derive a reliable estimation of
a cell-to-cell similarity. Furthermore, it is also demanding to select a set of the optimal
genes that can yield a reliable single-cell clustering in terms of the mathematical and
biological perspectives.

To lower these hurdles, we propose a novel method to reliably estimate a cell-to-cell
similarity through an ensemble feature selection and the effective noise reduction based
on a random walk with restart framework. Although a single-cell sequencing includes a
larger number of genes and cells, each cell type generally has distinctive marker genes that
can be highly expressed only in a particular cell type. Hence, if we accurately identify the
marker genes for each cell type of interest, we can dramatically enhance an accuracy of
clustering results and reduce a dimensionality of a single-cell sequencing data, where it
can consequently reduce a computational complexity of single-cell clustering algorithms.
However, it is practically infeasible to determine the optimal marker (or feature) genes
because of the high dimensionality of a single-cell sequencing data. Additionally, it is
also challenging to define an effective objective function to select the effective feature
genes for single-cell clustering algorithms in terms of the biological and mathematical
perspectives. To avoid the optimal feature gene selection problem, we first select a set
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of potential marker genes and we estimate multiple cell-to-cell similarities based on the
different subsets of the potential marker genes, where it can be obtained through the
random gene sampling. Through the multiple estimations of the cell-to-cell similarity
based on the different sets of genes, if two cells achieve consistently high similarity, we
consider that these cells are highly likely to be classified into the same cell type. Although
SC3 exploits different similarity measurements using Euclidean distance, Pearson and
Spearman correlation, it only considers a single set of genes to determine the similarity
estimates. However, the proposed method employs multiple sets of genes to derive
the similarity measurements and integrates these metrics to yield the robust cell-to-cell
similarity, where it is key difference between the proposed method and SC3. Based on
the ensemble similarity measurements, we can construct the ensemble similarity network,
where a cell can be modeled as a node and their similarities can be described as an edge.
For more details, as we can see in a toy example in Figure 1, we can have various similarity
measurements based on the different subsets of feature genes that can be obtained through
a random gene sampling. The diverse similarity measurements can yield different network
topology that can represent the similarity among numerous cells in different perspectives
so that it helps in identifying the cells achieving a consistently high similarity. Next,
we can reduce the zero-inflated noise through the wisdom of the crowd, i.e., since the
cells in the same cell type typically show the similar gene expression patterns, although
there is a missing gene expression value in one cell because of dropout events, the gene
expressions can be clearly captured in the other cells in the same type. Hence, we can
employ the gene expression patterns from the neighboring nodes (i.e., cells) in the ensemble
similarity network to infer the missing gene expression values (For details, see Section 2.6
and Equation (6)). After reducing the technical noise, we first predict a larger number
of small size but highly coherent clusters using the cleaned single-cell sequencing data.
Then, we continuously merge a pair of clusters if they show the largest similarity among
clusters until we reach the reliable clustering results. Based on the above motivation, the
proposed method consists of three major steps: (i) constructing the ensemble similarity
network based on the similarity estimations under different conditions (i.e., feature gene
selections), (ii) reducing the artificial noise through a random walk with restart over the
ensemble similarity network, and (iii) performing an effective single-cell clustering based
on the cleaned gene expression data.

2.4. Data Normalization

Suppose that we have a single-cell sequencing data and it provides gene expression
profiles as the M by N-dimensional matrix Z, where M is the number of genes and N is
the number of cells. Please note that the proposed method can accept non-negative value
(e.g., read counts) as a gene expression profile if it represents the relative expression levels
of each gene. Since cells in a single-cell sequencing typically have different library sizes,
we have normalized the gene expression profile through the counts per million (cpm) to
alleviate an artificial bias induced by the different library sizes. Then, similarly to other
single-cell clustering algorithms [10,13–15], we also take a log-transformation because
relative gene expression patterns may not be clearly captured if a single-cell sequencing
data includes the extremely large numeric values and the concave functions such as a
logarithmic function can effectively scale down the extremely large values into a moderate
range. The normalized gene expression profile X is given by

X = log2(1 + cpm(Z)), (1)

where cpm(·) is a function to normalize the library size through the counts per million.



Genes 2021, 12, 1670 6 of 21

Construct the ensemble 
similarity network

Noise reduction through RWR

Single-cell clustering

scRNA-seq. Cell-to-cell similarity networks 
Random gene 

sampling
Construct an ensemble 

similarity network

Rubin index

scRNA-seq. RWR
Cleaned 

data

Iterative 
merging

Initial 
clustering

Final 
clustering

Estimating 
# clusters

Figure 1. Graphical overview of the proposed single-cell clustering algorithm. Please note that the illustrations in a
highlighted box are a toy example for each step.

2.5. Ensemble Similarity Network Construction

We employ a graphical representation of a single-cell sequencing data in order to
describe the cell-to-cell similarity that can yield an accurate single-cell clustering because a
graph (or network) can provide a compact representation of complex relations between
multiple objects, i.e., we construct the cell-to-cell similarity network G = (V , E), where a
node vi ∈ V indicates i-th cell and an edge ei,j ∈ E represents the similarity between the
i-th and j-th cells. Suppose that the weight of an edge ei,j is proportional to the similarity of
cells so that cells with the larger similarity can have the higher edge weight.

To begin with, given a normalized single-cell sequencing data X, we identify a set of
potential feature genes F, where it is a collection of marker gene candidates for each cell
type. However, if we do not have a biological prior knowledge, it is challenging to collect
reliable marker gene candidates for each cell type in a practical point of view. Moreover,
although we have a domain knowledge for marker genes for each cell type, it is also
possible that the novel marker genes may not be considered to predict single-cell clusters
and this missing information can decrease an accuracy of single-cell clustering results. To
make a reliable collection of marker gene candidates without a biological prior knowledge,
we take the typical properties of marker genes into account. That is, since the marker
genes are generally highly expressed in a specific cell type and rarely expressed in the rest
of cells, we hypothesize that the marker gene candidates have the following properties:
(i) the marker gene candidates are highly expressed so that they also show relatively higher
mean expression values and (ii) the variance of the marker gene candidates across cells is
relatively high. Based on the assumption, we collect the genes with relatively higher mean
and larger variance across cells and define these genes as the set F of the potential feature
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genes. To this aim, we calculate the row-wise mean and variance of the normalized gene
expression matrix X. Then, we select genes whose mean expression level is greater than
the median of the expected gene expression values. Among these genes, we only retain top
K percent genes with the largest variance. Please note that in this study, we select the top
five percent of genes to make the set F of potential feature genes.

Next, to construct the ensemble similarity network GE, we consider each cell as a
node and insert an edge between cells if their similarity is greater than a threshold, i.e.,
in order to accurately represent the cell-to-cell correspondence as an ensemble similarity
network, we obtain multiple similarity measurements based on the different feature sets
and construct the ensemble similarity network by inserting edges between nodes (i.e., cells)
if they show consistently high similarity scores for multiple similarity evaluations. Since
different feature sets can yield different similarity estimations, we can identify cells that
can achieve consistently high similarity through various similarity estimates based on the
random gene sampling. First, we obtain a subset of potential feature genes fl ⊂ F through
a l-th random gene sampling, where it follows a uniform distribution, i.e., each gene in the
set F can have an equal probability to be sampled so that multiple similarity estimations
based on the different gene sampling can increase a diversity of similarity measurements.
Next, we reduce the dimensionality of a single-cell sequencing data through PCA and
evaluate the cell-to-cell similarity using Pearson correlation based on the first 10 PCs
(principal components). Please note that although it can be freely adjusted depending
on the experimental environments, since the explained variance using the first 10 PCS
can cover more than 80% of total variance for each data, we employ the first 10 PCs for
the default setting in the proposed method. Then, based on the estimated similarity (i.e.,
Pearson correlation between cells), we construct a KNN (K-nearest neighbors) network
for the l-th feature sampling by inserting up to K edges for each cell so that they can have
the K neighboring cells with the largest similarity. Please note that based on the empirical
experiments, we set the default parameter of K as 30. Although all nodes in the KNN
network can have up to K neighbors, when considering a profiling capability of single-cell
sequencing techniques, it is completely possible that there are a larger number of cells in the
same type so that using only K neighbors would not be effective approach to represent the
cell-to-cell similarity. To maximize the benefits of the wisdom of the crowd, it is desirable
to introduce a greater number of edges that can correctly connect cells in the same type. In
fact, if we can identify the perfect similarity network, it is a collection of cliques (i.e., an
induced subgraph with every possible edge), but the perfect similarity network is typically
unknown. Given the KNN network for the l-th similarity measurement, a feasible solution
to induce a greater number of edges in the KNN network is introducing a new edge el

i,j if

the correlation between i-th and j-th cells is greater than the threshold el
th. To determine

the threshold el
th, where it can take a reasonable cell-to-cell similarity level into account,

we make a set of edge weights for the l-th KNN network (i.e., Wl =
{

cl
i,j|ei,j > 0

}
, where

cl
i,j is Pearson correlation between i-th and j-th cells based on the l-th similarity estimate).

Then, we decide the threshold el
th as the tenth percentile of the Pearson correlations in the

set Wl . Finally, we can induce new edges el
th if Pearson correlation between i-th and j-th

cell is greater than the threshold el
th. Based on the l-th similarity evaluation, the adjacency

matrix for the updated KNN network is given by

Al [i, j] =

{
1, i f cl

i,j > el
th

0, o.w.
(2)

Through the multiple similarity measurements, we have L adjacency matrices and the
ensemble similarity network GE can be obtained by integrating these adjacency matrices.
The adjacency matrix for the ensemble similarity network GE is given by
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AE =
L

∑
l=l

Al , (3)

where Al is the adjacency matrix for updated KNN network based on the l-th
similarity estimation.

Although the ensemble similarity network GE can provide a robust description for
the cell-to-cell similarity, it still has a probability to include false edges by chance, where
it connects the cells that can be classified in different types if the random gene sampling
unexpectedly results incorrect similarity assessment. However, since it is difficult to decide
indeed false edges, we remove all edges in the ensemble similarity network if their weights
are smaller than L

2 , where L is the number of similarity measurements, because their edge
weights show a high similarity less than 50% for overall estimates. Please note that we use
the 20 similarity measurements for a default parameter. After removing these unreliable
edges, we obtain a refined adjacency matrix ÃE. To obtain the transition probability of a
random walker, we normalize the adjacency matrix ÃE to make it as a legitimate stochastic
matrix, where the transition probability matrix is given by

PE = ÃE ×D, (4)

where D is a |M| × |M|-dimensional diagonal matrix such that D[i, j] = ∑∀j ÃE[i, j]. More-
over, since biological networks typically tend to make a dense connection if two nodes
are in the same community, the neighbors of the neighbors can have a high possibility
to be in a same community and we also take the second order structure of the network
into account [27,28]. If we consider higher order network structure, we can make a denser
network by inducing a greater number of edges. However, since it can also induce a
greater number of false positive edges that can connect two nodes with different labels, we
only consider the second order structure of the network. Since the random walker on the
network can reach neighbors of the neighbors through the two-hops, the final transition
probability matrix of the random walker over the ensemble cell-to-cell similarity network
is given by

R = PE × PE. (5)

2.6. Reducing Zero-Inflated Noise in a Single-Cell Sequencing Data

Once we have the reliable ensemble similarity network that can effectively represent
the cell-to-cell correspondence, we can reduce the zero-inflated noise in a single-cell se-
quencing data to enhance an accuracy of the clustering results. Since a gene expression
profile in the same cell type typically shows the similar patterns, we can leverage the gene
expression patterns of neighboring cells in the learned ensemble similarity network to
reduce the zero-inflated noise, i.e., although there is a missing gene expression in one
cell, it can be captured by the other cells with the same type (i.e., neighboring nodes in
the ensemble similarity network). Therefore, the missing gene expression patterns can
be recovered by employing the information from the neighboring nodes. Based on the
hypothesis, to infer the missing gene expression values, we adopt a random walk with
restart approach over the ensemble similarity network because a random walk with restart
framework can effectively diffuse the gene expression values to its neighboring nodes.
Hence, we can obtain the averaged gene expression of the neighboring cells in the ensemble
similarity network by examining a long-term behavior of the random walker. Additionally,
we can obtain the balanced integration between the gene expression of one cell and the
averaged gene expression from the neighboring nodes by adjusting a restarting probability
of the random walker. Given a transition probability matrix of the random walker, the
long-term characteristic of the random walker can be derived by the following equation:

r = α · R · r + (1− α) · e, (6)
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where α is a weighting coefficient that can adjust the restarting probability of the random
walker, and r is a steady-state probability of the random walker that can indicate the
long-run behavior of the random walker, and e is the initial probability distribution that
can determine the restart location of the random walker. Please note that we exploit the
log-transformed normalized gene expression as the initial probability distribution of the
random walker and the restarting probability of the random walker is set to 0.7 as a default
setting. Since the steady-state probability r indicates the long-run behavior of the random
walker, it can be interpreted as the balanced sum of the gene expression for one cell and the
expected gene expression values from its neighboring nodes, where it is a noise reduced
single-cell sequencing data. The steady-state probability r can be obtained by solving
following linear equation:

A · r = b, (7)

where A is (I− α ·W) and b is (1− α) · e, respectively.

2.7. Method to Estimate the True Number of Clusters

To obtain an accurate single-cell clustering, we need to estimate the number of clusters
(i.e., cell types) in a single-cell sequencing data because the true number of cell types is
typically unknown. Since the zero-inflated noise can be reduced through the random walk
with restart technique, we use the cleaned data to estimate the true number of clusters.
First, we have normalized the cleaned single-cell sequencing data because the denoising
process through the random walk with restart can yield different library sizes, where it
can result undesirable bias of the relative gene expressions across different cells. Next,
to reduce a computational complexity and capture the accurate estimation results, we
identify the feature genes with larger mean and variance, and obtain the low-dimensional
representation through PCA. Based on the first 10 PCs (principal components), we decide
the number of clusters through Rubin index [18], where it is implemented in the R package
called NbClust [29]. Please note that based on our experimental results, we empirically
employ 10 principal components and Rubin index because including a greater number
of principal components would not lead to an improved estimating accuracy and the
combination achieves the best performance in our study.

2.8. Effective Single-Cell Clustering Algorithm through the Ensemble Similarity Network

To obtain an accurate single-cell clustering, we first start from a larger number of
small size but highly consistent clusters and combine two clusters if they show the highest
possibility to be the same cluster. Then, we proceed an iterative cluster merging step until
the number of clusters reaches the estimated number of clusters. To this aim, we identify the
feature genes based on the same approach for the ensemble network construction. Please
note that we exploit one percent of genes for the feature genes. Then, we obtain the initial
clusters through the K-means clustering algorithm because it can easily adjust the number
of clusters. Moreover, since the random walk with restart framework can reduce the
zero-inflated noise in a single-cell sequencing data, it can decrease a distance between cells
in the same type and separate a distance between different cell types. Additionally, since
the K-means clustering algorithm guarantees the convergence, we exploit the K-means
clustering algorithm as a base framework. Please note that we employ 10 PCs and identify
20 initial clusters because we suppose that the single-cell sequencing datasets mostly have
up to 20 cell types. However, these parameters can be adjusted depending on the user
preferences. Since the initial clustering results can have singleton clusters, where it only
has a single object (i.e., cell) in the cluster, we first merge these singleton clusters to another
cluster that can achieve the largest possibility to be the same cell type, i.e., we compare the
Pearson correlation between the gene expression of the cell in the singleton cluster and
the mean expression of the feature genes for each cluster. Then, we combine the singleton
node to the cluster that can achieve the highest Pearson correlation. Once we remove all
singleton nodes, we continue the iterative merging process by comparing the Pearson
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correlation of the mean expression values for the feature genes in each cluster until the
number of clusters is equal to the number of estimated clusters. Algorithm 1 provides the
pseudo-code of the proposed single-cell clustering method. Supplementary Materials S1
provides the sensitivity analysis of SICLEN for different parameter settings.

Algorithm 1: Proposed single-cell clustering algorithm.
Input: Gene expression matrix Z for single-cell sequencing
Result: Estimated membership index for single-cell clustering

1 X = log2(1 + cpm(Z)) ; // Normalization
2 Identify the set F of potential feature genes ;
3 for l ← 1 to L do
4 fl ⊂ F ; // Identify the subset

5 PCs = PCA(X
[
fl , :
]
) ; // Determine principal components

6 C = cor(PCs) ; // Pearson correlation between PCs
7 Construct KNN network Al ;
8 end
9 AE = ∑L

l=1 Al ; // Construct ensemble similarity network
10 Post-processing for the ensemble similarity network AE;
11 R = PE × PE;
12 r = α · R · r + (1− α) · e ; // Reducing noise through RWR
13 Estimate the number of clusters through the Rubin index;
14 cl = kmeans(r) ; // initial clustering
15 Iterative merging the initial cluster cl to obtain a membership index for each cell

2.9. Performance Assessment Metrics

We evaluated the performance of the single-cell clustering algorithms based on the
following perspectives: (i) algorithmic strength and (ii) biological relevance. To assess the
single-cell clustering results in terms of the algorithmic point of view, we used the external
information such as true labels for each cell and computed the following metrics: JCCI
(Jaccard index), ARI (adjusted rand index), and NMI (normalized mutual information).
Please note that higher JCCI, ARI, and NMI generally indicate an improved quality of the
clustering results. To determine the performance metrics, we employed the R package
called ClusterR [30].

Given N cells in a single-cell sequencing data, suppose that we have a collection of
the true cell-type labels for each cell and the predicted cell-type labels (i.e., clustering la-
bels) produced by each clustering algorithm, where the set of true cell-type labels is given by
C =

{
c1, c2, . . . , cJ

}
and the set of predicted clustering labels is given byP = {p1, p2, . . . , pK},

respectively. Then, the Jaccard index (JCCI) is given by

JCCI(P , C) = TP
TP + FP + FN

, (8)

where TP is the number of correct predictions (i.e., correctly clustered cells), and FP is the
number of clustered cells with different true cell-type labels, and FN is the number of cells
divided to the different clusters but they have the same true cell-type label.

Next, the adjusted rand index is given by

ARI(P , C) =
∑ij

( nij
2

)
−
[
∑P

i=1
( ai

2
)

∑K
j=1

( bj
2

)]
/
( n

2
)

1
2

[
∑P

i=1
( ai

2
)
+ ∑K

j=1

(
bi
2

)]
−
[
∑P

i=1
( ai

2
)

∑K
j=1

( bj
2

)]
/
( n

2
) , (9)

where ni,j is the number of cells that have the i-th predicted label but it has the j-th true
cell-type label, and ai and bj is the row and column sum of the contingency matrix (i.e.,
ai = ∑∀j ni,j and bj = ∑∀i ni,j), respectively.
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The normalized mutual information is given by

NMI(P , C) = 2 · I(P , C)
H(P) + H(C) , (10)

where I(P , C) indicates the mutual information between P and C, and H(·) is the entropy
of the clustering labels P and C.

Once we have the predicted clustering labels, a typical subsequent step for a down-
stream single-cell sequencing analysis is identifying the differentially expressed genes
(DEGs), where it can be the marker genes for each cluster (i.e., cell type), because these
DEGs can play an important role to design an accurate diagnosis and effective therapeutic
methods for complex disease. To verify a biological relevance of a single-cell clustering,
we identified the DEGs for each clusters based on the predicted clustering labels and
compared it with the DEGs that are identified through the true cell-type labels because,
if the predicted clustering labels are highly coherent with the true cell-type labels, we
supposed that the DEGs identified through the predicted clustering labels and the true
cell-type labels are also consistent with each other. To verify the accordance of DEGs for the
predicted and true cell-type labels, we first determined DEGs for each cell type based on
the true cell-type labels. In this study, we used the R package called MAST [31] to decide
DEGs for each cell type. After identifying all DEGs, we only retain DEGs whose p-value
is smaller than 0.05 and its fold change is greater than 1.5. We supposed that the DEGs
satisfying the above requirements can have a statistical significance and considered these
genes as a ground truth. Please note that Table 2 shows the total number of DEGs for the
ground truth and these DEGs for the performance assessment are different to the potential
marker genes to construct the ensemble similarity network. Based on the same approach,
we also identified the DEGs through the predicted clustering labels by each algorithm and
evaluated the agreement of DEGs identified by the true and predicted labels based on the
precision, recall, and F-scores.

Table 2. The number of differentially expressed genes for each datasets. Please note that the DEGs
(ground truth) are identified through the raw data and true cell-type labels.

Datasets # DEGs Datasets # DEGs

Darmanis 5828 Baron_h1 695
Usoskin 2730 Baron_h2 494
Kolod. 3278 Baron_h3 566

Romanov 1842 Baron_h4 652
Xin 3499 Baron_m1 399

Klein 4819 Baron_m2 527

The recall is given by

Recall =
TP

TP + FN
, (11)

where FN is the number of DEGs that are not detected by the predicted labels, but it is
discovered the true labels.

The precision is given by

Precision =
TP

TP + FP
, (12)

where TP is the number of DEGs that are consistently detected through the true and
predicted labels, and FP is the number of DEGs that are only identified through the
predicted clustering labels and not detected by the true cell-type labels.
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The F-score is a harmonic mean of the precision and recall, where it is given by

F-score =
2 · Recall · Precision
Recall + Precision

. (13)

3. Results
3.1. Performance Assessment Based on the True Cell-Type Labels

The major goal of the single-cell clustering is making a consistent group of cells
because current single-cell sequencing protocols cannot provide the auxiliary information
such as cell types even though it can simultaneously detect the relative gene expressions
for a larger number of cells. Since a prior knowledge for the true cell type can play a pivotal
role in a comprehensive analysis of the single-cell sequencing such as pseudo-temporal
ordering [32–34] and gene regulatory networks [35–37], it is important to develop the
accurate computational methods to predict the groups of cells with consistent labels.

To evaluate a quality of clustering results, we compared the Jaccard index (JCCI) for
each clustering algorithm because it can effectively assess the accuracy of clustering results
by taking the size (i.e., the number of cells in each cluster) of each cluster into account.
Based on the 12 single-cell sequencing datasets, SICLEN showed remarkably higher JCCI
in Usoskin, Kolod., Xin, Klein, Baron_h1 and Baron_h2 datasets and it also achieved the
comparable performance for other datasets (Figure 2a). Although CIDR achieved the
next best JCCI scores for several datasets, SICLEN showed a clear gap to CIDR for most
cases. Interestingly, the K-means clustering algorithm followed by t-SNE showed the
comparable performance for other cutting-edge algorithms. One possible explanation is
that although the t-SNE followed the K-means clustering algorithm employed the true
number of clusters, each clustering algorithm used the predicted number of clusters
based on their own strategies and it is possible that the algorithms are using the incorrect
prediction for the number of clusters so that it results a severe deterioration the performance
of clustering results. These results showed the importance of the method to predict the
number of clusters in the single-cell sequencing data and we will discuss it in the following
subsection. Next, although JCCI can capture the size factor for each clustering result, one
drawback of the JCCI is that it does not take the true negatives into account. To assess
the performance of the clustering algorithms in different perspectives, we also evaluated
the adjusted rand index (ARI) for each clustering result to prove the effectiveness of the
proposed method. In fact, ARI showed similar patterns to the JCCI for each clustering
algorithm (Figure 2b). For example, although CIDR and SIMLR achieved the best ARI
scores for the Darmanis and Baron_h4 datasets, the performance gap between the SICLEN
and the best algorithm is negligible. However, when SICLEN attained the best performance
in other datasets such as Kolod., Baron_h2, and Xin, it showed a clearly larger gap for the
other competing algorithms. Finally, although the most algorithms showed the similar
NMI scores, SICLEN still achieved distinctively higher NMI scores for most datasets such
as Usoskin, Koloe., Xin, Klein, Baron_h1, and Baron_h2 datasets. Overall, based on the
different performance metrics and datasets, we verified that SICLEN clearly outperformed
the other single-cell clustering algorithms, and these results indicate that SICLEN can yield
the consistent and accurate clustering results in terms of the algorithm perspectives.
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Figure 2. Performance metrics for different clustering algorithms. JCCI, ARI, and NMI are determined through the true
cell-type labels. (a) Jaccard index for 12 single-cell sequencing datasets; (b)Adjusted rand index for 12 single-cell sequencing
datasets; (c) Normalized mutual information for 12 single-cell sequencing datasets.
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3.2. Accurate Estimation of the True Number of Clusters through an Effective Noise Reduction

The accuracy of the single-cell clustering can be highly vulnerable to the following
factors: (i) an accurate estimation of the cell-to-cell similarity, (ii) a tailored clustering
method for the estimated similarity, (iii) a precise estimation of the correct number of
clusters. However, it is easy to overlook the importance of the accurate estimation for the
true number of clusters. As we can see in the previous subsection, if we adopt the incorrect
number of clusters, the sophisticated method such as SC3 showed the inferior single-cell
clustering results compared to the K-means clustering algorithm followed by t-SNE.

To evaluate the accuracy of the inferred number of clusters, we first compared the
true and predicted number of clusters for 12 datasets (Figure 3). As we can see, SC3
typically tends to overestimate the number of clusters and we verified that overestimating
the number of clusters can clearly decrease the accuracy of the clustering results. Although
there is an exceptional result in Seurat, Seurat and SIMLR achieved similar accuracy if we
exclude the extreme result predicted by Seurat. SICLEN showed the smaller deviation
for the predicted number of clusters compared to the other algorithms. To quantitatively
assess the capability to predict the true number of clusters, we evaluated the sum of the
percentage of true error such that ∑∀i

|Ji−Ki |
|Ji |

, where Ji is the true number of clusters and
Ki is the inferred number of clusters for the i-th single-cell sequencing data, respectively.
In fact, although CIDR showed the smallest errors and SICLEN resulted the next smallest
errors, their performance gap is negligible, but SICLEN and CIDR showed clearly smaller
error compared to the other single-cell clustering algorithms, i.e., SICLEN and CIDR
achieved the smallest deviation between the true and predicted number of clusters. One
reasonable explanation is that CIDR and SICLEN adopt the effective method to deal with
the zero-inflated noise in a single-cell sequencing but the other methods do not consider
the technical noise so that the inherent zero-inflated noise can lead to the inferior prediction
results for the other algorithms. Overall, these results clearly support that SICLEN can
accurately estimate the true number of clusters compared to the other algorithms, where it
is essential process to yield a reliable clustering result, and it also addresses the importance
of the noise reduction methods in developing single-cell clustering algorithms.
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Figure 3. Comparison of the true number of clusters and predicted number of clusters for 12 datasets.
Sum of errors can be determined by ∑∀i

|Ji−Ki |
|Ji | , where Ji is the true number of clusters for i-th data

and Ki is the predicted number of clusters for i-th data.
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3.3. Precise Identification of Differentially Expressed Genes through an Accurate Clustering

Identifying differentially expressed genes (DEGs) is one of the core tasks in down-
stream single-cell analysis pipelines because DEGs is the essential information to decipher
key messages underlying complex biological mechanisms. Moreover, it enables the devel-
opment of novel drugs and effective therapeutic methods for complex diseases such as
cancers and neurodegenerative diseases. Since DEGs can be identified by comparing two
groups, the essential prior knowledge to determine DEGs is the accurate cell-type labels
obtained by either biological experiments or computational methods such as single-cell
clustering algorithms. To this end, we hypothesized that if the predicted clustering labels
are well agreed with the true cell-type labels, DEGs identified by the predicted clustering
labels show high agreements to the DEGs derived by the true cell-type labels. Then, we
compared the agreement of DEGs identified by the identified by the predicted clustering
labels and the true cell-type labels. Based on the experimental assumption, we compared
the recall, precision, and F-scores of the DEGs identified by each single-cell clustering result.

First, although SICLEN showed a higher recall for all datasets, the other methods
also attained comparable recall only except CIDR, where it means that all the DEGs
identified through the true cell-type labels are also covered by the DEGs determined by the
predicted clustering labels (Figure 4a). Although the performance gap is not clear, except
the Romanov data, SICLEN still achieved higher or comparable recall for other datasets.
Interestingly, CIDR attained the smaller recall for Romanov, Baron_h1, Baron_h3, Baron_m1,
and Baron_m2 datasets. One plausible explanation for the low recall achieved by CIDR is
that the clustering labels obtained by CIDR may not be effective to predict the DEGs so
that it results relatively the smaller number of DEGs compared to the other methods.

Next, although DEGs obtained by the predicted clustering labels result the high agree-
ment with the true DEGs, if it includes several incorrect DEGs, it can mislead to understand
the core insights in complex biological mechanisms. To verify the reliability of the predicted
DEGs, we also assessed the precision for DEGs derived by each clustering label. Although
SC3 and Seurat recorded the higher recall, their precisions are clearly smaller than SICLEN
for the most datasets (Figure 4b). It means that the DEGs identified the clustering labels
for SC3 and Seurat can have a larger number of incorrect DEGs. Additionally, SIMLR and
CIDR recorded the smaller precision for the most datasets. However, the DEGs evaluated
through the clustering labels by SICLEN still attained the higher precision then the other
cutting-edge algorithms, where it means that the DEGs identified through the clustering
labels of SICLEN includes the smallest number of incorrect DEGs.

Finally, we verified that SICLEN clearly achieved higher F-score for Usoskin, Kolod.,
Xin, Baron_m1, and Baron_m2 (Figure 4c). Additionally, SICLEN showed the comparable
F-scores for the other datasets. In fact, all algorithms showed the similar F-scores for
Darmanis, Klein, and Baron_h4 datasest. These results provide the strong evidence that the
clustering labels produced by SICLEN is highly consistent with the true cell-type labels and
it shows the effectiveness of the proposed single-cell clustering algorithm in applications
of downstream single-cell analysis pipelines.
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Figure 4. Precision, recall, and F-scores of the identification for DEGs through different clustering results. Please note that
DEGs are identified through MAST [31] based on the true and predicted cell-type labels. (a) Recall of the identification for
DEGs. Higher recall represents that a greater number of true DEGs are detected by group comparison; (b) Precision of the
identification for DEGs. Higher precision indicates that there are smaller number of false DEGs in the prediction results; (c)
F-scores of the identification for DEGs.
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3.4. Improved Single-Cell Sequencing Imputation through an Accurate Clustering

Single-cell sequencing techniques have been gaining importance in biomedical re-
search as it can profile cell specific gene expressions, where it is a distinctive advantage
compared to a next-generation sequencing. Compared with the next-generation sequenc-
ing, since the single-cell sequencing protocols use the small amount of mRNA samples to
profile relative gene expressions for individual cells, it is also possible that the expressed
transcripts can be completely missed during reverse transcription steps, where it induces
excessive zeros called the dropout events. To compensate these missing values, several
imputation algorithms have been proposed [38–42]. Among these methods, scImpute [40]
can take advantage of the cell types to infer the missing expression values in a single-cell
sequencing, i.e., it can leverage the prior knowledge for the cell types so that it predicts the
missing gene expressions based on the gene expression of cells that potentially belong to
the same cell type.

To verify the compatibility of the proposed single-cell clustering algorithm in other
single-cell analysis algorithms such as imputation methods, we supposed that if the pre-
dicted clustering labels can yield the high level of accordance with the true cell-type labels,
the imputation results of scImpute based on the true cell type and predicted clustering
labels can also achieve the higher degree of consensuses. To verify the consistency of the
imputation results based on the true and predicted labels, we defined the normalized error

for the gene expression values such that
∑i∈D ∑∀j|xi,j−x̂i,j|

|N|·|D| , where N is the number of cells,
and D is the set of DEGs identified by the group comparison through MAST, xi,j is the
log-transformed gene expression for the i-th gene and j-th cell, where it is obtained by
scImpute based on the true cell-type labels, x̂i,j is the log-transformed gene expression for
the i-th gene and j-th cell, where it obtained by scImpute using the predicted clustering
labels. Among five algorithms, SICLEN showed the smallest normalized errors for the
Darmanis, Usoskin, Kolod., Xin, Klein, and Baron_h3 datasets (Table 3), i.e., the imputation
results through the predicted clustering labels derived by SICLEN showed the minimum
differences to the imputation results using the true cell-type labels. As with the proposed
algorithm, although CIDR also includes the noise reduction process in the main part of the
algorithm, it showed relatively higher normalized error than that of SICLEN. Although
SC3, Seurat, and SIMLR do not have a noise reduction component in the algorithm, their
normalized error is smaller than that of CIDR. Through the result, we confirmed the pow-
erful compatibility of the proposed algorithm because it showed the highest agreement
with the imputation results using true cell-type labels.

Table 3. Normalized error for the noise reduced gene expressions for DEGs. DEGs are identified through MAST and
zero-inflated noise is reduced through scImpute. Please note that the best performers are highlighted as a boldface font.

Method Darmanis Usoskin Kolod. Xin Klein Romanov Baron_h1 Baron_h2 Baron_h3 Baron_h4 Baron_m1 Baron_m2 Total

SC3 0.633 0.608 0.127 0.593 0.379 0.721 0.564 0.631 0.646 0.537 0.799 0.831 7.068
Seurat 0.566 0.636 0.133 0.405 0.400 0.751 0.489 0.581 0.611 0.426 0.850 0.846 6.693
SIMLR 0.729 0.605 0.163 0.344 0.387 0.665 0.479 0.557 0.551 0.376 0.873 0.788 6.515
CIDR 0.605 0.610 0.189 0.364 0.575 0.748 0.721 0.848 0.611 0.654 1.369 0.869 8.164

SICLEN 0.485 0.603 0.015 0.314 0.354 0.769 0.503 0.597 0.535 0.421 0.833 0.869 6.299

Additionally, we compared the low-dimensional visualization of the imputation
results through t-SNE. We obtained the two-dimensional coordinates for each cell using
t-SNE and highlighted their labels based on the true cell types. The low-dimensional
visualization through the imputation results using the predicted labels by SC3 and Seurat
can divide the same cell types into multiple small clusters (Figure 5). Since SC3 and Seurat
can overestimate the number of clusters, it can make multiple small clusters even though
it is originally in the same types. In fact, if one can use the imputation and visualization
results without the true cell-type labels (i.e., without the color labeling in the figure), it
may have a risk to yield incorrect analysis results such as the number of clusters (i.e., cell
types). Additionally, for the Usoskin, Xin, and Klein datasets, SIMLR and CIDR collect the
different cell types into a single cluster. However, SICLEN can yield clear visualization
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for various cell types, where it can collect cells with the same types into a same cluster
and separate cells with different cell types into different groups. Overall, the imputation
results based on the clustering labels predicted by SICLEN can yield the clear separation
for the different cell types and the tight collection for the same cell types. Based on the
results, we verified that the predicted clustering labels obtained by SICLEN is relatively
confident than the other algorithms, and it has a great compatibility to other single-cell
analysis algorithms.
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Figure 5. Low-dimensional visualization of the selected datasets. To visualize, we first reduce the zero-inflated noise through
scImpute based on the true and predicted labels. Then, we obtain the low-dimensional representation through t-SNE.

4. Discussion

We propose a novel single-cell clustering algorithm based on the effective noise
reduction through the ensemble similarity network. First, we identify the set of the
potential feature genes that can have a high probability to be the marker genes for each
cell type. Based on the multiple random gene sampling from the set, we obtain the
multiple cell-to-cell similarity measurements through Pearson correlation and construct the
ensemble similarity network by inserting edges between cells if they achieve consistently
high similarity based on different similarity estimations. Then, we adopt a random walk
with restart approach to reduce the zero-inflated noise in the single-cell sequencing data.
Finally, we drive the accurate single-cell clusters based on the iterative merging process of
small but highly consistent single-cell clusters obtained by a K-means clustering algorithm.
Through a comprehensive evaluation using real-world single-cell sequencing datasets, we
demonstrate the effectiveness of the proposed single-cell clustering algorithm by showing
the accuracy of clustering results, its potential for a downstream biological analysis, and
flexibility to other single-cell analysis algorithms.

One of the major contributions of the proposed single-cell clustering algorithm is
that the proposed method can avoid the complex optimal feature gene selection problem.
Although a performance of the most single-cell clustering algorithms highly depends on
the selection of the feature genes, many single-cell clustering algorithms overlook the
importance of the optimal feature gene selection problem or they simply select a single set
of genes to yield the final clustering results, where it is still not proved that the selected set
is optimal to yield the best clustering results. However, while achieving a reliable clustering
result, the proposed algorithm can avoid the optimal feature selection problem based on the
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multiple similarity estimates through a random gene sampling that can derive the robust
estimation of the cell-to-cell similarity. In fact, although we cannot claim that the estimated
cell-to-cell similarity is optimal, it still results accurate and reliable clustering results based
on our experimental validations. Next, another contribution of the proposed work is
deriving a tailored method to reduce the zero-inflated noise in a single-cell sequencing data.
Although the artificial noise can lead to negative effects on single-cell clustering results,
most of the state-of-the-art single-cell clustering algorithms do not have a noise reduction
component. In the proposed method, the noise reduction module based on a random walk
with restart framework can effectively reduce the noise and enhance the reliability of a
single-cell sequencing data, where it can ultimately yield an accurate single-cell clustering.
Furthermore, it also has a great potential to motivate other preprocessing methods for a
single-cell sequencing data. One advantage of the proposed method is that it has a high
flexibility to existing single-cell analysis pipeline because it does not change the dimension
(i.e., the number of genes and cells) of a single-cell sequencing data. Moreover, since it does
not require a prior knowledge such as marker genes for each cell type and the true number
of clusters, it is quite practical and versatile to apply other single-cell analysis algorithms.

Although the proposed single-cell clustering algorithm have distinctive advantages
over the cutting-edge algorithms, there are inevitable limitations. First, although the
proposed method can estimate the true number of clusters in a single-cell sequencing
data, since it is not a perfect method and there is an inherent error. Moreover, since one
cell type can be divided into multiple subtypes, it is a still challenging open problem
to derive an accurate method to simultaneously estimate the true number of cell types
and subtypes through a precise identification of a hierarchical structure for different cell
types. Second, although reducing zero-inflated noise through a random walk with restart
is one of the distinctive advantages of the propose method over other state-of-the-art
algorithms, if a single-cell sequencing data includes a larger number of dropout events,
the missing gene expression may not be recovered based on the current approach, i.e., if
all genes in a specific cell type are completely missed across the majority of cells because
of severe dropout events, these missing values cannot be inferred based on the current
approach because it requires the gene expression from multiple cells with high similarity.
In fact, this is a common problem for most noise reduction methods using a cell-to-cell
similarity. To resolve the problem, it can be necessary to derive an effective method to
simultaneously employ both a cell-to-cell similarity and gene-to-gene correspondence.
Next, although the proposed method can only predict the clustering labels, to unveil key
biological mechanisms, it requires in-depth analysis such as constructing a gene regulatory
network, pseudo-time ordering and inferring the origin of cells in the tissue samples. To
fill out these gaps, the desirable direction for the future work is developing comprehensive
downstream analysis pipeline by integrating additional biological analysis modules such as
identifying differentially expressed genes, effective low-dimensional visualization methods,
inferring cell-type-specific gene regulatory networks, and pseudo-time ordering based on
the clustering results. Finally, supporting parallel computing to reduce the running time of
the algorithm is also necessary to accelerate an in-depth analysis of a large-scale single-cell
sequencing data and providing a user-friendly UX (user experience) or cloud platform can
be the appropriate future work.
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