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Supplementary Table S1 Average concentration of serological indices during five periods

Serological Indices 1 2 3 4 5

E(pg/mL) 53.41+9.55% 35.54+7.342 53.79+6.01° 47.32+15.27% 33.86+18.35%
FSH(mIU/mI) 6.22+0.78 5.58+2.03 5.65+0.76 5.11+1.16 6.06+1.85
T4(ng/mL) 171.3+45.91 195.72+32.07 191.0+22.52 228.85+13.68 169.58+38.95
CT(pg/mL) 45.37+4.49 50.40+1.51 41.55+7.98 36.99+12.48 41.99+10.24
GH(ng/mL) 15.18+2.76% 15.48+4.10® 12.77+2.792 18.34+1.80° 16.98+3.66%
PROG(pmol/L) 1004.89+84.05 1151.87+361.95 1102.88+378.04 1155.23+199.43 1107.32+306.62
TSH(mU/L) 9.97+2.11% 11.12+2.94% 11.85+2.34% 9.33+1.13? 13.16+1.46°

Note: Values in the same row with the same or no letter superscripts mean no significant difference (p > 0.05),
while with different small letter superscripts mean significant different (p < 0.05).



Supplementary Table S2 Summary statistics for sequence quality of 30 samples

Samples Raw Reads Raw bases Clean Clean bases Q20 Q30 GC content
(109 (109 Reads (10°) (10°) (%) (%) (%)
1-1-0 48.71 7355.73 45.58 6883.05 97.22 92.84 51.99
1-1-h 44.88 6776.65 42.11 6359.27 97.06 92.39 49.78
1-2-0 45.95 6937.83 42.88 6475.32 97.22 92.75 50.72
1-2-h 44.93 6784.03 42.10 6357.15 96.91 92.09 49.86
1-3-0 48.27 7288.34 45.18 6822.24 97.01 92.36 51.33
1-3-h 43.15 6515.45 40.38 6097.26  97.12 92.58 49.83
2-1-0 46.43 7011.22 43.35 6545.67 97.17 92.59 50.31
2-1-h 49.69 7503.31 46.57 7031.88 97.13 92.6 50.01
2-2-0 42.92 6480.30 40.16 6063.80 96.95 92.15 50.38
2-2-h 47.44 7164.17 44.44 6711.19 97.12 92.56 49.99
2-3-0 43.25 6531.05 40.43 6104.54 97.18 92.61 50.44
2-3-h 48.43 7312.23 45.61 6886.87 97.14 92.62 49.93
3-1-0 40.87 6130.03 37.91 5686.19 97.68 94.24 50.54
3-1-h 41.72 6258.21 38.75 5812.03 97.55 93.96 49.25
3-2-0 42.48 6372.62 39.22 5882.57 97.16 92.55 49.39
3-2-h 44.55 6682.44 41.36 6203.45 97.62 94.01 49.33
3-3-0 38.63 5794.97 35.95 5392.27 97.69 94.21 49.53
3-3-h 41.55 6232.85 38.54 5781.74  97.41 93.59 49.48
4-1-0 43.33 6498.75 40.40 6060.07  96.97 92.73 50.21
4-1-h 50.82 7622.77 47.42 7113.36  96.67 92.11 49.64
4-2-0 46.53 6979.16 43.48 6522.42  96.91 92.51 49.81
4-2-h 53.53 8029.17 49.99 7498.31 96.81 92.39 49.76
4-3-0 46.65 6997.53 43.60 6539.85 97.03 92.67 49.46
4-3-h 51.22 7682.71 48.03 7204.12  96.77 92.25 49.48
5-1-0 53.25 7987.22 49.03 7353.82  97.72 93.96 47.86
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Supplementary Table S3 DEGs between 10 groups in the hypothalamus and ovary

Period Tissue Down-regulated genes  Up-regulated genes  Total DEGs
1-vs-2  hypothalamus 71 113 184
ovary 173 200 373
1-vs-3  hypothalamus 310 1179 1489
ovary 842 1688 2530
1-vs-4  hypothalamus 197 344 541
ovary 380 808 1188
1-vs-5  hypothalamus 68 118 186
ovary 577 431 1008
2-vs-3  hypothalamus 158 932 1090
ovary 326 875 1201
2-vs-4  hypothalamus 99 226 325
ovary 35 143 178
2-vs-5  hypothalamus 13 10 23
ovary 40 26 66
3-vs-4  hypothalamus 486 100 586
ovary 420 153 573
3-vs-5  hypothalamus 941 124 1065
ovary 721 161 882
4-vs-5  hypothalamus 217 74 291

ovary 152 41 193




Supplementary Table S4 DEGs whose expression trends were consistent with ELR were
related to aging, autophagy or apoptosis, development

Genes function Genes and corresponding references
(Numbers)
cell aging (45) ABCBS8[1], BMP8A[2], BOLA3[3], CCK[4], CDKN1CI5, 6], CFD[7], COX5A[8],

FAM171A2[9], FBX046[10], FGFR4[11, 12], FMC1[13], FOXC1[14],
FOXL2[15, 16], FZD5[17], GGCX[18], HIF3A[19], HNRNPAO[20], IGFBP4[21],
MANF[22], MRPS12[23], MTERF4[24], NAT8B[25], NEDD8[26], NOG[27],
NOG2[28], PABPN1[29], POLDA4[30], POLE4[31], PPP1R1B[32], RAD9A[33],
RBMB8A[34], RPL35A[35], SELENOH[36], SEMA6C[37], SNCB[38], SOCS1[39,
40], SREBF1[41], SST[42], SUV39H1[43], TAP1[44], TCN2[45], TINAGL1[46],
UCP3[47, 48], ZAR1[49], ZC3H10[50]

cell autophagy or ~ ANKRD39[34], CBLN4[34], GRN [51], PAXX [52], PPIL1[53], S100A16[54],
apoptosis (8) SCYL1[55], TGFB1[56]

Cell development  ACP5[57], ADAMTS4[58, 59], CARTPT [60, 61], CDK5R1[62], CDK5R2[63],
(12) FIX1[64], GTPBP3[65], H2AFV [66], HSD17B1[67], RENBP [68], VSTM2L [69],
WBP1[70]




Supplementary Table S5 Top five genes in the network of the top 100 brown genes ranked
by the MCC method

Rank Name Score  Description
1 INO8OD 38 INO80 complex subunit D
2 HELZ 10 helicase with zinc finger
3 AGO4 2 argonaute RISC component 4
3 ROCK?2 ’ Rho associated coiled-coil containing protein

kinase 2
3 RFEX7 2 regulatory factor X7




The Significantly Enriched GO Terms
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Supplementary Figure S1 Significant GO enrichment of DEGs (P < 0.05) for comparison of
1-vs-2 in the hypothalamus.



The Significantly Enriched GO Terms
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Supplementary Figure S2 Significant GO enrichment of DEGs (P < 0.05) for comparison of
1-vs-2 in the ovary.



The Significantly Enriched GO Terms
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Supplementary Figure S3 Significant GO enrichment of DEGs (P < 0.05) for comparison of
2-vs-3 in the hypothalamus.



The Significantly Enriched GO Terms
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Supplementary Figure S4 Significant GO enrichment of DEGs (P < 0.05) for comparison of
2-vs-3 in the ovary.



The Significantly Enriched GO Terms
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Supplementary Figure S5 Significant GO enrichment of DEGs (P < 0.05) for comparison of
3-vs-5 in the hypothalamus.



The Significantly Enriched GO Terms
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Supplementary Figure S6 Significant GO enrichment of DEGs (P < 0.05) for comparison of
3-vs-5 in the ovary.
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Supplementary Figure S7 Determination of the soft threshold (3=8). The left panel shows
the analysis of scale-free fit index and the right panel refers to the analysis of mean

connectivity.
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