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Abstract: Dynamic studies in time course experimental designs and clinical approaches have been
widely used by the biomedical community. These applications are particularly relevant in stimuli-
response models under environmental conditions, characterization of gradient biological processes
in developmental biology, identification of therapeutic effects in clinical trials, disease progressive
models, cell-cycle, and circadian periodicity. Despite their feasibility and popularity, sophisticated
dynamic methods that are well validated in large-scale comparative studies, in terms of statistical and
computational rigor, are less benchmarked, comparing to their static counterparts. To date, a number
of novel methods in bulk RNA-Seq data have been developed for the various time-dependent stimuli,
circadian rhythms, cell-lineage in differentiation, and disease progression. Here, we comprehensively
review a key set of representative dynamic strategies and discuss current issues associated with the
detection of dynamically changing genes. We also provide recommendations for future directions for
studying non-periodical, periodical time course data, and meta-dynamic datasets.

Keywords: RNA-Seq; time series; temporal dynamic methods; differential expression analyses;
unsupervised clustering; deep machine learning; meta dynamics; disease progression

1. Introduction

Owing to rapid advances in sequencing technologies and affordable costs, more com-
plicated experimental designs and clinical applications, such as time course data and meta
temporal dynamics, have become feasible and popular in genomic research [1–7]. Over
the past decade, numerous statistical and computational strategies for the characterization
of dynamically changing genes over a particular time period have been developed [8–36].
Nevertheless, such dynamic methods have their own pros and cons and are limited in
their capability to fully characterize temporal dynamic biological processes [32,37–43].
In addition, there exist critical and challenging issues that should be addressed in the
development of methodological research to detect temporal changes.

First, the complexity of the architecture in identification of significant dynamic changes
that are involved with cellular functions and molecular processes over a series of time
points should be carefully examined by a set of coordinated gene structures in an ensemble
fashion of multivariate gene-to-gene approaches, as well as single gene-by-gene testing in
a univariant strategy. Second, it is well-known that pre-processing, such as normalization
procedures, is required for making samples comparable and for adjusting sample-to-
sample variations of biological or technical origin in sequencing based temporal dynamic
data [44–49]. Moreover, it is worth noting that normalized data are often associated
with unwanted systematic artifacts due to batch factors, implying that the commonly
employed normalization methods do not fully adjust such systematic biases of sample-to-
sample variations [1,44,50–55]. Third, unlike static methods, many representative dynamic
counterparts widely adopted in the community have not been thoroughly evaluated and
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validated in large-scale comparative studies. It is, therefore, critical to benchmark these
methods, particularly to verify their performance and rank multiple dynamic methods
in several time course data in terms of power and accuracy of detection of dynamically
changing genes [36]. In addition, it seems relevant to evaluate pre-processing procedures
inherent in these methods including, but not limited, to pre-filtering, normalization, and
batch correction of systematic artifacts [36,47].

Lastly, one of the significant advances is the conception of meta-framed data analysis
in which multiple time course datasets collected from different laboratories or multiple
data generated by different platforms are fully integrated [1–7]. While these integrated
data have made it possible to access a wealth of dynamic data resources, investigators
are required to more carefully recognize how to reduce systematic biases/artifacts in data
integration in each step of the experimental and analytical pipelines.

The central goal of this review is to provide well-documented guidance for the analyt-
ical pipelines by examining existing dynamic methods in both gene-wise testing strategies
and gene-to-gene interaction tools, as there are currently no unanimously validated dy-
namic methods that are deemed optimal under various scenarios [36]. Further, we attempt
to summarize current challenges in dynamic approaches and discusses the importance of in-
tegrated multi-platform genomic data in uncovering various cell lineages in differentiation
and disease progressive models.

2. Single Gene-by-Gene Testing for Non-Periodical Time Course Data

RNA-Seq has considerably revolutionized the transcriptome studies in the last decade
and more complicated experimental designs has been popularly conducted in temporal
(and/or spatial) data allowing main biological factors of interest and other nuisance factors
at each time point and even in integrated meta-data [1,3,8,16,18,32,39,56–67]

In the statistical testing of differential expression analyses, basically static methods
[68–72] assume that the collected samples at a fixed time point between treatments/conditions/
groups are independent. In contrast, the temporal dynamic methods [1,15,26,62,66,73]
precisely account for the time dependent data structure to define time-varying trajec-
tory patterns by assuming that the expression levels at previous time points affect those
of later time points and the observed samples between different time points could not
be independent, but they are dependently correlated in neighboring time points, such
as auto-regressive models, hidden Markov approaches, natural cubic spline functions,
non-stationary gaussian processes, and state-transition theory. Importantly, inference of
time-varying trajectories is performed in the setting of individual gene-by-gene testing.
Supposedly, one gene is not inter-correlated with another gene, or a set of genes; and that
each gene behaves independently during biological processes [12,14,15,19–21,26,74,75].
The previous dynamic studies for microarrays have contributed significantly and the corre-
sponding literatures can be found elsewhere [76–79]. Recently, the remarkable advances in
developing dynamic gene-wise tools on RNA-Seq time course data have been made. Here
we review a set of the representative gene-by-gene dynamic methods for RNA-Seq time
course data in this section (also listed in Table 1).
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Table 1. Dynamic gene-by-gene (gene-wise) testing tools for non-periodical time course RNA-Seq data.

Tools Features/Functionalities # of Conditions
Per Time

Experimental Designs
(Data Type)

Parameters Used in the
Study: T(time), R(rep),

C(cond)
Compared Tools

in the Study

Next maSigpro [14]

time-based polynomial
regression;

step-wise best fitted
model selection;

differential splicing
events at isoform levels

w/o condition or w/
two or more

crorss-sectional time course,
i.e., non-longitudinally
measured samples in

single-(one-), two-, and
multi-series of time course;
balanced/unbalanced time

course;
normalized data for input

T(4,6), R(2,3,5), C(2) maSigPro-LM, edgeR

DyNB [16]
non-parametric

gaussian process with
metropolis hasting;

w/ two conditions
longitudinally measured
two-series time course;

balanced design
T(5), R(3), C(2) DESeq

EBSeq-HMM [26,80]

auto-regressive hidden
Markov approach;

estimates of hidden
paths DE (up/down)

and EE

w/o condition

longitudinally measured
single-series time course;

balanced/unbalanced time
course

at least two replicates per
time

T(5,7), R(3), C(NA)
EBSeq, DESeq2,
edgeR, voom,

maSigPro

Ngsp [29] non-stationary gaussian
process in Bayesian w/ two conditions

longitudinally measured
two-series time course;

qPCR time course
T((9), R(3),C(2) GP two sample

Lmms [19]

linear mixed model
splines;

unified strategy of
pre-filtering, gene-wise

testing, and static
clustering

w/o condition or w/
two conditions

one or two-series time
course;

microarray and proteomics T(4,6,), R(2,5,),C(2) limma for array

timeSeq [12]

negative binomial
mixed effects model
with time, condition,
and interaction terms;

non-parallel vs parallel
temporal patterns

w/ two conditions

two-series time course;
balanced/unbalanced time

course;
not handling the variability

for replicates

T(6,9), R(1,3), C(2) MLL-ratio

splineTimeR [15]

natural cubic spline
regression;

unified strategy
between gene-wise

testing and gene
association network

w/ two conditions

two-series time course;
balanced design;

replicates are not required T(7), R(1), C(2) BETR for array

ImpluseDE2 [21,62]

iterative optimization
clustering;

the parameters of initial
peak and steady state,
temporal transitions,

and slopes for
transitions based on the
mean expression profile

within each cluster

w/o condition or
w/ two conditions

longitudinally measured
single- or two series time
course, e.g., early on-set

perturbated dynamic
alterations compared to

control group;
RNA-Seq and Chip-Seq

dynamics

T(6,7,10,23), R(3), C(1,2)
DESeq2,

DESea2splines,
edgeR, limma,

ImpulseDE

Trendy [73]

segmented regression
model w/ breakpoint in

Bayesian information
criterion;

the estimates of
breakpoints for DE
(up/down) vs EE

(steady)

w/o condition

longitudinally measured
sing-series time course;

replicates are not required;
microarray and RNA-Seq

dynamics

T(17, 25, 48, 50), R(3),
C(NA) EB-Seq, funPat

AR [1] auto-regressive model
based on MCMC w/o condition

longitudinally measured
single-series time course;

balanced design;
replicates are not required

T(2,5), R(8), C(NA) Next maSigPro-GLM,
DESEq2, edgeR

MAPTest [20]

maximum average
power testings;

k component latent
mixture gaussian
negative binomial
model in a finite

structure

w/ two conditions

longitudinally measured
two series time course;

at least two replicates and
three time points per
condition are needed;

balanced design

T(4,6,10), R(3,6), C(2)
DESeq2, splineTimeR,
Next maSigPro-GLM,

ImpluseDE

TimeMeter [64]

dynamic time warping
algorithm;

metrices for similar
temporal patterns;

progression advance
scores

w/o conditions

comparative method for two
single-series time course
data; no parameters for

dispersion and biological
replicates

T(9,16,26),
R(NA),
C(NA)
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Table 1. Cont.

Tools Features/Functionalities # of Conditions
Per Time

Experimental Designs
(Data Type)

Parameters Used in the
Study: T(time), R(rep),

C(cond)
Compared Tools

in the Study

PairGP [61]

non-stationary
Gaussain process;

exponentiated quadratic
kernel;

w/ two ore more
conditions

longitudinal time course
with paired multi-group

conditions

T(9),R(3),
C(2,3,4)

base model w/o
pairing effect

GPrank [81]

Gaussian process;
radial basis kernel;
logarithm of Bayes

Factor for two models

w/o condition balanced/unbalanced
single-series time course

T(10),
R(0–3), C(NA)

Dream [60]

linear mixed model;
limma/voom-
incorporated

Bioconductor package;
multiple random effects:

Kenward-Roger
approximation

for small samples;

w/ two or more
conditions

longitudinally meausred
multi-series of time course

data

R(2–4)
Individuals(4–50)

DESeq2, limm/voom,
macau2

rmRNAseq [82]

genelized linear model;
voom-incorporated

R package;
continuous

autoregressive
correlation; parametric

bootstrap; residual
maximum likelihood;

w/ two or more
conditions

longitudinally measured
multi-series of time course

data

T(4), R(4),
C(2)

edgeR, DESeq2,
splineTimeR,
ImpulseDE2

Comparative study
[36]

comparison of dynamic
gene-wise testing tools

data sets w/ two
conditions

next maSigpro, DyNB,
EBSeq-HMM, ngsp, lmms,
splineTimeR, ImpulseDE2,

T( >=4), R(3), C(2)

In the # of replicates, it represents the number of biological replicates in each of studies. In the data type, one represents a single(one)-series
of time course data without conditions at each time point, two represents two-series of time course data, i.e., a case-control type of time
course data containing two levels of the condition group at each time point, and multi-represents the data type where there are at least
three condition levels at each time point.

A. Next maSigpro (prev. maSigPro) [14]: It uses either one- or multi-series time course
data as input. It is based on a polynomial regression model for a time variable. A stepwise
best fitted model selection procedure identifies genes that are significantly differentially
expressed in a temporal manner, based on R-squared values, multiple-corrected p-values,
and estimates of coefficients.

B. DyNB [16]: It has been developed for two series time course data based on non-
parametric gaussian process and significant temporal alternations are inferred using a
function of time variable in the regression model of gaussian process. Hyperparameters
are estimated by the Metropolis Hasting (MH) algorithm in Bayesian sampling technique.
Based on negative binomial distribution for read counts, over-dispersed sample variability
is assessed.

C. EBSeq-HMM (prev. EBSeq) [26,80]: It takes into account the sequential property of
time course experimental designs in an auto-regressive hidden Markov approach. Gene or
isoform level quantification is required as input. It aims at detecting dynamically changing
genes (or isoforms) between time points, detected by posterior probabilities, representing
each state with a differential expression (DE: Up/down), or equal expression (EE) as the
outcome. The time-varying trajectory patterns are further classified into clusters with
similar patterns of paths.

D. ngsp [29]: It is used for either one- or two-series time course data. The statistical
rationale relies on a non-stationary gaussian process (nsgp) model using the Bayesian
technique [83]. In contrast with discrete inference of temporal dynamics, ngsp estimates
various continuous dynamically changing patterns by accounting for the unobserved
intervals between given time points across the entire time period. It is advantageous
when investigators need to interpolate temporal dynamic patterns beyond such sparsely
measured time points due to limited sampling procedures and costs associated with
sequencing large-scale time course experimental designs.

E. lmms [19]: Linear Mixed Model Splines (LMMS), another unified dynamic method,
has been developed for multi-factorial time course data obtained from microarrays and
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proteomics. Notably, this unified strategy has the following functionality: (1) Pre-filtering
procedure, (2) identification of individual gene/molecule to represent dynamic changes,
and (3) clustering for omics-type time course data. The unified workflow in LMMS between
differential expression in multi-factorial time course data and clustering techniques, as
well as pre-filtering procedure make it an excellent launch pad for developing improved
integrative methodologies for dynamic data.

F. timeSeq in NBMM [12]: It was developed by Negative Binomial Mixed Effects
Model (NBMM) with main factors, time, and condition, and an interaction term in the
setting of two series time course RNA-Seq data. It allows to distinguish non-parallel versus
parallel temporal changes between conditions over time by employing bivariate function
of time, which is similar to a two-way ANOVA analysis.

G. splineTimeR [15]: Originally developed for two series time course data in the
microarrays, it is a unified strategy to combine (1) the identification of significantly tempo-
rally differentially expressed genes and (2) gene association networks (GANs) relevant to
controlling key pathways and biological functions between different conditions over time.

H. ImpulseDE2 (prev. ImpulseDE) [21,62]: It has been proposed for one- or two-
series time course data, particularly for characterizing early on-set perturbated dynamic
alterations, such as impulse-like changes. Updated ImpulseDE2 has been released for
longitudinally measured RNA-Seq and Chip-Seq data [62]. ImpulseDE2/ImpulseDE is
not appropriate for datasets with fewer than six time points. This is a common caveat
in practice. However, this method is suitable for moderate or large series of time course
RNA-Seq data. The main work-flow is conducted by k-means clustering in the iterative
optimization clustering procedure that the pre-user defined k value is not needed. Next,
the parameters based on mean-expression profile within each cluster are then fitted to each
gene model by minimizing sum of squared errors. The statistical significance for each gene
model is given by false discovery rate (FDR).

I. Trendy [73]: It is developed on the basis of the segmented regression modeling
approach with breakpoints for the given time points. The optimal number of breakpoints
in the model is chosen by the Bayesian Information Criterion. This method provides the
estimated breakpoints to represent statistically significant changes of patterns between time
points for up/down/steady expression, corresponding segment slopes, and the adjusted
R-squared values for goodness-of-fit. The detected dynamically changing genes are further
grouped by co-expression patterns in the visualization procedure implemented by R/Shiny.

J. AR (auto-regressive model) [1]: It has been developed for single-series longitudinal
RNA-Seq time course data by accounting for serial correlations in the auto-regressive model
between successive time points using the Bayesian technique. This method provides the
posterior probabilities for model parameters. A tail probability is also given representing
the statistical significance of serial correlation between neighboring time points for each
gene model that can be directly compared to other non-Bayesian methods with multiple-
corrected p-values. However, this method is with some limitations: It requires a balanced
longitudinal data with equal sample size between time points; additionally, as the number
of time points increases, it takes much longer to run than other dynamic methods. The
method has been implemented by R and Winbugs and can also be run in JAGS.

K. MAPTest [20]: It relies on maximum average power testing while controlling the
average type I error rate [84]. The underlying distributional assumption is given by a
K-component latent mixture gaussian negative binomial model in a finite mixture structure.
This method has been designed for two series time course RNA-Seq data and is especially
suitable for longitudinal settings in repeatedly measured samples. The method facilitates
classification between non-parallel differential expression or parallel differential expression
as in previously discussed timeSeq [12] of NBMM dynamic method. These two methods
have not been directly compared, though.

L. TIMEOR (Trajectory Inference and Mechanism Exploration using Omics data in
R) [85]: It is a user-friendly web-server interface to infer gene regulatory networks using
time series multi-omics data: Such as RNA-Seq time series data, Chip-Seq protein-DNA
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binding sites, and motif information. The goal of this versatile dynamic tool is to provide the
complete analytical pipelines to define the interactive gene regulatory networks between
genes with the temporal alternation and transcriptional factors. The entire workflow
includes (1) pre-processing procedures including alignment, quantification of expression
abundances, sample-to-sample normalization, and further correction of batch factors using
Combat-Seq and Harman R package; (2) central analyses to detect dynamically changing
genes and their regulatory trajectory patterns using existing dynamic gene-wise tools and
clustering R packages, ImpluseDE2, next maSigPro, DESeq2, Cluster, and ClusteProfiler;
and (3) further investigation for potential coherent gene functional activities based on
gene ontology and enrichment pathway analysis using existing pathview and STRING R
packages, and de novo motif finding step with MEME, respectively.

M. TimeMeter [64]: Another R package, named with TimeMeter has been proposed to
facilitate the comparative time series of gene expression profiling data in terms of time-shift
patterns with similarity on temporal dynamics or differentially progressing patterns of
dynamically changing genes (with different speed of dynamic changes). In a proof-of-
principle, it is based on dynamic time warping algorithm to align two different sequences,
i.e., query versus reference with various temporal patterns by further incorporating the
advanced features, (1) truncating the sequences in order to make the time windows compa-
rable each other (2) computing the metrics of similarity patterns: Percentage of alignments;
spearman rank correlation between two alignments; and statistical significance, and (3)
progression advance score based on the slopes in segmented piecewise regressions to rep-
resent how much deviated from the diagonal line. Thus, this dynamic method is designed
for the comparison of two different set of single series of time course data.

N. PairGP [61]: This dynamic method has been implemented by python to account
for the longitudinally measured time series data with multiple conditions, especially
when having the same biological replicates to be measured in different conditions, i.e.,
paired multi-group conditions. The rationale of this method is based on a non-stationary
Gaussian process with the exponentiated quadratic kernel functions for the response model
for treatments, pairing effect model within the same biological replicate, and random
fluctuation noise. Given the number of conditions, the log marginal likelihood for each
partitioning set from Bell number is evaluated with the base response model that does
not have the pairing effect. This dynamic method is designed for a multi-series of paired
longitudinal time course data in which the same biological replicates are matched in
different conditions.

O. GPrank [81]: This dynamic method has been implemented by R package and the
rationale of this method is on the basis of two different Gaussian process models, time-
dependent versus independent model using the estimated mean abundance matrices and
corresponding variances for a given single series of time course data. Time dependency is
captured by squared exponential, radial basis kernel function and the temporal changes of
gene expression patterns are evaluated by the natural logarithm of Bayes Factor to rank the
most significant dynamically changing genes (or other genomic elements). This method
is robust for a short and irregularly measured time points in single-(one-) series of time
course data.

P. dream (differential expression for repeated measures) [60]: This dynamic method
has been implemented within a variance Partition Bioconductor package, incorporated
with limma and voom. And this method has been applied for the large-scale of cohort
studies [63,86] with multiple condition groups (e.g., four different brain regions) in a multi-
series of longitudinally-measured time course RNA-Seq data. This method is based on
linear mixed models to account for arbitrary multiple random effects for a given particular
gene, varying variances terms across genes, precision weight functions considering random
effects for samples within-individual, and small sample issues for hypothetical testing with
Kenward–Roger approximation.

Q. rmRNAseq [82]: As another voom-incorporated R package, it has been also pro-
posed for the longitudinally measured multi-series of time course data to account for
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correlated samples within-individual. It is based on generalized linear model with the
continuous autoregressive correlation structure, parametric bootstrap method for estima-
tion of temporally differential expression, residual maximum likelihood for estimation
of parameters.

State-Transition Analysis by Rockne et al (2020) [87] has been conducted to identify
the critical points representing the initiation and development of acute myeloid leukemia
disease progression from the reference normal hematopoiesis to disease state of leukemia.
It is mathematically based on state-transition theory, stochastic differential equation for a
double-well quasipotential of 4th-degree polynomial in an energy function with "w"-shape
of two stable valleys and an unstable peak, and eigengenes in principle component analyses.
It defines the critical points during the development of leukemia in a given time points,
(1) stable reference normal state of hematopoiesis in control group, (2) stable reference
state of perturbed hematopoiesis without evidence of disease, (3) unstable transition state
from normal to leukemia, and (4) stable state of leukemia. This method has been analyzed
for two-series of time course RNA-seq data. However, source codes and manual for
this dynamic method with an example data are not currently available in public. Albeit
ChromTime is designed particularly for Chip-Seq time-series data [88], we wanted to
mention ChromTime for Chip-Seq time course epigenomics data here, as we will discuss
the integrative dynamic tools in later sections, including Chip-Seq data. It has been
developed for modeling spatio-temporal changes of chromatin marks as the dynamic peak
caller. The main conceptual idea fully accounts for the inference of the territorial peak
boundaries in blocks in genomic sequences and then defines their different behaviors in
spatial patterns, expanding, contradicting, and steady during time points. The estimation of
optimal model parameters is given by expectation maximization. Thus, the advantageous
feature of this spatio-temporal peak caller for the dynamic epigenomic data sets, such as
Chip-Seq and other variants enables to better characterize the temporally differentially
changing peaks and the changes of spatial structures in territorial boundaries of peaks
including asymmetric patterns and longer peaks.

Due to the lack of holistic comparative studies of various dynamic methods, there
will be no universally or widely accepted or best methods available for different scenarios
under time course experimental designs. Therefore, we recommend the development
of a complete analytical pipeline to better characterize dynamic changes and to reduce
misleading results (Figure 1) with detailed descriptions for each step) [1,6,10,15,17,19,20,23,
25,28,33,44,46,47,49–51,53–55,58,59,62,67,68,71,72,74–76,81,89–103].
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Figure 1. It depicts the schematic illustration of complete analytical pipeline for the dynamic time course data.

3. Single Gene-By-Gene Testing for Periodical Time Course Data

Circadian rhythms can regulate periodical gene expression according to daily or 24-h
(or 8, or 12 h) oscillations. Over the last decades, the genetic regulatory mechanisms of
circadian genes have been thoroughly explored to characterize clock-controlled dependency,
such as that observed in physiology, metabolism, and mental illness [10,13,17,22,27,30,31,
33,35,41–43,74,75,104–110]. Moreover, it is evident that aberrant expression patterns and
mal-functionalities in circadian clock-controlled genes, as well as their oscillating systems,
have been highly associated with human diseases and therapeutic effects in the field of
biomedical research and pharmaceutical chronotherapy [110]. Here we review gene-wise
methods for circadian rhythmic changes and cell-cycling genes in RNA-Seq periodical
datasets (Also listed in Table 2).

Table 2. Dynamic gene-by-gene (gene-wise) testing tools for periodical time course RNA-Seq data.

Dynamic Tools in
Periodicity Method Exeternal Factors

at a Time Experimental Design Competiting Methods

JTK_CYCLE [74] Jonckheere_Terpstra
Kendal’s statistics w/o condition single series periodical

time course
COSOPT,

Fisher’s G test

MetaCycle [17] meta tool among ARSER,
JTK_CYCLE, LS w/o condition single series periodical

time course

RAIN [102]
umbrella alternatives for

steep rise and slow falling,
or vice versa

w/o condition single series periodical
time course JTK_CYCLE

DODR [103]

parametric and
non-parametric

non-gaussian measurement
for noise

w/ two conditions two series periodical
time course

LimoRhyde [101] cosinor regression w/ two or more
conditions

two or multi-series
time course DODR



Genes 2021, 12, 352 9 of 23

A. JTK_CYCLE [74]: It was originally developed for microarrays to identify a certain
set of genes representing periodicity of circadian rhythms in terms of period length, phase,
and amplitude. The main rationale is based on a non-parametric strategy that includes
the Jonckheere–Terpstra method, which characterizes the monotonic patterns in ordered
groups over time, and Kendal’s tau rank correlation between two groups. The JTK_CYCLE
statistic is given by the exact permutation null distribution, resulting in multiple corrected
p-values for each gene. Later, Hutchison et al. (2014) [100] further improved JTK_CYCLE
with empirical p-values by comparing other competing methods including the original
JTK_CYCLE, ANOVA, Fourier projection method based on microarray periodical data sets.

B. MetaCycle [17]: It is the result of the integration of multiple existing methods
for periodical time course data, ARSER (ARS) [35], JTK_CYCLE [74], and Lomb–Scargle
(LS) [30]. Fisher’s combined p-value is used to define a common set of candidate genes
among three dynamic methods. In two built-in functions within this meta-method, the
meta2d function to integrate outcomes from three different dynamic methods, whereas
the meta3d function is to merge outcomes from multiple individuals (biological replicates)
within a single dataset by choosing a specific dynamic method, such as JTK_CYCLE, or
ARS or LS. Thus, this method can be extended by combining additional methods to identify
periodicity in the later version of the meta2d function. However, the current version does
not allow to integrate results from three dynamic methods and multiple individual sets
simultaneously.

C. RAIN (Rhythmicity Analysis Incorporating Non-parametric method) [102]: It has
been developed to detect periodical changes, amplitudes, phases, and peaks to better
account for asymmetric behaviors such as steep rises and slow fallings, and vice versa in
umbrella alternatives, especially compared to JTK_CYCLE test. This robust method has
been implemented in R package and a user-friendly web-server interface.

D. DODR [103]: Unlike the aforementioned tools, it has been proposed to identify
differential rhythmicity in the factorial time course designs in periodicity in which there
are two different condition groups such as mutant vs wildtype samples in animals and
humans. The rationale is based on both parametric and non-parametric rank-based tests
by assuming non-Gaussian measurement noisy errors to detect significant alterations in
rhythms, amplitudes, and phases.

E. LimoRhyde [101]: When compared to DODR and other naive periodical methods,
it is a more generalized strategy to allow more complicated multi-factorial time course
designs in periodicity where two or more conditions at each time point for external stimuli
and other covariates such as age, gender, and other batches are available. Basically, it
is designed to identify a certain set of genes with differential rhythmicity indicating the
significant changes both between conditions and during the zeitgeber/circadian time
period by using cosinor regression decomposing zeitgeber/circadian time onto sine or
cosine period of 24 h and empirical Bayes approach for shrinkage sharing information
across genes analogous to limma.

4. State-Of-The-Art Batch Detection Methods for Removing Unwanted Biases in Data
Integration

The batch issue in data integrations not only an RNA-Seq specific problem inherent in
the current technology, but also an issue that has been steadily discussed in the history of
high-throughput of datasets [1,44,46,48,50–55,58,91,111–114]. Nevertheless, most existing
dynamic methods solely focused on the inference of dynamic trajectories, frequently failing
to capture the issues related to precise prerequisite analytical procedures that can reduce
noise or bias. Here we highlight several advanced batch detection methods that are able
to characterize and remove unwanted systematic artifacts due to nuisance factors. (Also
listed in Table 3).
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Table 3. State-of-art batch detection tools.

Tools Features

ARSyN [113]

microarray dynamic time course data;
batch-free expression data after removal of unwanted biases;

both known and unknown batch factors;
multiple batch factors

Combat-Seq/Combat [55]

microarray and RNA-Seq static and dynamic time course data;
known batch factors;

batch-free data after removal of unwanted biases;
multiple batch sources

RUV-Seq [46]

RNA-Seq static data;
both known and unknown batch factors;

estimates of batch effects;
user-defined k value for hidden factors

svaseq/sva [52,91]
microarray and RNA-Seq static data;

both known and unknown batch factors:
estimates of batch effects

gPCA [90] microarray and RNA-Seq static data with one known batch factor;

Harman [58] microarray and RNA-Seq static and dynamic data w/ one known batch factor

MMD-ResNet [89] static and dynamic RNA-Seq or other types of omics data w/ both known and
unknown batch source

A. ARSyN (ASCA Removal of Systematic Noise) [113]: It has been originally devel-
oped for time series microarrays by using ANOVA simultaneous component analysis [115],
wherein it is primarily utilized as a simple exploratory diagnostic tool rather than the
batch correction method. As the extension of the initial approach, the residuals of raw
expression profile data are identified, subtracted from the terms, noise of signals, and
signals of noise from data decomposition. This ARSyN batch tool provides the adjusted
expression profiling data after batch removal that can be directly utilized in the subsequent
step to infer time-varying trajectories. The major advantage is the ability to identify both
known and unknown batch factors. Prefiltered and normalized data can be used as input.

B. Combat-Seq/Combat [55]: It is based on by empirical Bayes (EB) estimates for
batch effects by borrowing information common across genes when removing the batch
effect in terms of location and scale parameter from the standardized expression data for
each gene, which could be more robust estimates when small sample size is available for
given batch factor. The latest version of Combat (Combat-Seq) has also been developed
for RNA-Seq data by accounting for the count property in the identical scale of log link
function in generalized linear modeling (GLM) approaches when there are known batch
factors. As ARSyN, it also provides the batch-free expression profiles that can be directly
applied for dynamic gene-wise methods. For input data, the pre-filtered and normalized
data can be used.

C. RUVSeq [46]: Similar to Combat-Seq/Combat, it is specifically designed for RNA-
Seq data. As the input data, normalized counts by edgeR, DESeq2, or upper-quantile
normalization can be uploaded. It has been developed from factor analysis of singular
value decomposition (SVD). Depending on the use of negative control genes/samples as the
reference set representing the constant expression patterns for a biological factor of interest,
RUVg/RUVs is employed. When such negative reference sets are unavailable, residual
expression profiling matrix subtracted from the fitted values of the primary variable, such
as tissue type, can be applied for RUVr. This tool can be applied for both cases when batch
factors are known and unknown and it also allows the multiple batch factors. However,
users should select the number of hidden factors (k value) for unwanted batch sources.
RUVSeq batch tool is used for simple pairwise or multi-group comparison at a fixed time
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point in RNA-Seq static data. However, it is unclear whether or not the incorporation of
estimates for batch factors on each of the trajectory models is used to identify temporally
differential expression of dynamically altered genes.

D. svaseq/sva [52,91]: It is based on the following steps: (1) Extracting the residual
expression profiling data, subtracted from the fitted values of the primarily main factor of
interest in the study; (2) based on the residual expression data, the selection of orthogonal
eigenvalues on singular value decomposition indicating surrogate variables; and (3) the
statistical significance of each eigengene under the null bootstrapping distribution. The de-
tected batch factors can be incorporated with a subsequent differential expression method,
such as limma; however, this batch correction method does not provide a batch-corrected
expression matrix. Recently, it has been further developed in the updated version of the
original sva with svaseq, and logarithmic transformation is carried out on the same scale as
the GLM model by considering the count property for RNA-Seq datasets. Similar to RUVg,
a set of negative control genes that could be affected by batch factors, but not affected by
primary biological factors of interest, are used to infer batch effects, known as supervised
svaseq (ssvaseq). However, such inferred batch factors cannot be directly applied to each
of the dynamic methods that have been developed for single-series (including longitudinal
data), case-control time course, multi-series time course, or periodical data sets.

E. gPCA (guided-PCA) [90]: It is also based on the extension of singular value decom-
position in the naive principal component analysis (PCA) method using a batch indicator
matrix to represent whether the sample belongs to the batch factor or not to replace the
original normalized expression matrix (referred to as the guided-PCA in the study). The
method was developed using the score metric to measure the proportion of the total vari-
ance contributed by the batch factor as the ratio by comparing the explained variances
between guided-PCA vs naive PCA method. The statistical significance is evaluated using
the permutation test by randomly reshuffling the labels of samples in the batch source.
However, this method is not applicable when the batch factor is unknown and where
exist multiple batch sources in the complicated dynamic datasets, such as dynamic meta
datasets.

F. Harman [58]: Analogous to Combat-Seq/Combat and ARSyN, it also provides the
batch-free expression profile data after the removal of unwanted systematic biases, which
can be directly applied for any types of time course dynamic tools. As already discussed in
the previous studies [46,51,52,113], note that it is very critical to preserve the true biological
signal when removing the batch noise. Thus, they proposed another PCA-based batch
correction method while well preserving the true biological signals and removing batch
noise in the simple algebra form and its performance has been compared to Combat and
uncorrected data. This method is also unsuitable to the datasets in which the batch is
unknown to investigators or there exist multiple batch factors.

G. Maximum Mean Discrepancy and Residual Nets (MMD-ResNet) [89]: It is based
on the mathematical properties of Maximum Mean Discrepancy, loss function, Residual
Neural Network strategy for more recent technologies, protein mass cytometry and single-
cell RNA-Seq data. In principle, adjusted (calibrated) sample data after removal of the
batch effect are generated by residual neural network techniques. In its current version,
the input data are analyzed with only one batch factor, regardless of the type of platforms
for various modalities and data types, either static or dynamic time course data. This
method cannot be run for more complicated cases, when there exist multiple batch factors
and unbalanced samples within a batch factor. the improvement can be made to address
these issues in. The capability to use in well-balanced experimental designs are always
recommended.

In conclusion, the use of Combat-Seq/Combat, gPCA, and Harman, is generally
limited because batch factors are identifiable and known to investigators only in few case
studies. RUVSeq works for studies with both known and unknown factors; however, users
need to select the k value as an arbitrary number. svaseq can also be applied for unknown
batch cases. Both methods have been originally implemented for RNA-Seq specific static
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multi-group studies. As for dynamic time course datasets, we recommend Combat-Seq,
svaseq, and RUVSeq as default batch detection methods, which can be performed with
pre-filtered and normalized datasets together in the initial step of exploratory diagnostic
analyses. However, to incorporate detected batch effects with subsequent dynamic methods
to identify time-variant trajectory patterns in RNA-Seq time course datasets, Combat-Seq
and Harman should be used since both provide adjusted expression profiling data after
batch removal when batch factors are known. Additionally, MMD-ResNet can be applied
for dynamic specific designs with single batch factor as it is not restricted to any specific
experimental design and/or platform.

Batch-free data should be analyzed using dynamic methods to infer time-variance
trajectory patterns. Versatile batch detection methods are needed to cover a wide range
of dynamic data including non-periodical and periodical data. As meta-dynamic data in
the post-genomic era become increasingly available, sophisticated analytical methods are
urgently needed.

5. Coherent Gene-To-Gene Strategies for (Non)-Periodical Time Course Data

Genes that are relevant to cellular perturbations by external environmental factors,
such as drug treatments, are regulated with several other genes by interacting with trans-
acting and cis-regulatory elements in the genetic transcriptional regulatory machinery to
represent different biological pathways or differential networks. It is very important to
infer more reliable sets of pre-defined genes that are associated with functional pathways,
network modules, and clusters of co-expressed patterns in the sparse and irregular time
series RNA-Seq data. Motivated by single gene-by-gene dynamic methods, researchers
have started to recognize the importance to characterize dynamic gene-to-gene interactions
in the following paradigms [8,11,23,28,116–120], unsupervised clustering techniques, gene
set analyses, and machine learning strategies including deep neural network for time
course RNA-Seq data as well as their integration with other types of omics data sets.

Basically, the gene list selected from temporally differential expression analyses is
further analyzed in subsequent down-stream analyses to identify gene interactions in the
separate analytical pipelines [14,19,21,26], such as gene clustering, enrichment gene set test,
and gene regulatory networks (GRNs). However, the vast majority of commonly employed
gene clustering, gene set tests, and network tools have been originally implemented
for static data. Therefore, they provide identical results even when switching sample
labels in a time course dataset, which does not practically translate to biological dynamic
processes [121–123]. Thus, to fully characterize a given dynamic biological function,
gene clustering, gene set tests, and differential network modeling approaches should
be continuously developed specifically for dynamic data [8,11,23,73,76,98,116,117,121,122].
We review the existing dynamic gene-to-gene interaction tools in this section (also listed
in Table 4).

5.1. Dynamic Gene Set Analysis Tools

Variance component score test (tcgsaseq, Gene Set Test) [8]: The initial pioneering
work [11] has been attempted to identify a pre-defined gene sets that are temporally differ-
entially co-expressed and are also functionally enriched for single-series of longitudinal
time course array data, a.k.a. TcGSA (Time-Course Gene Set Analysis) in the R package. It
aims to precisely account for the heterogeneity within gene sets due to patients by assigning
as the random factor in the linear mixed effects model. For RNA-Seq specific longitudinal
data, as the new tool, tcgsaseq, followed by TcGSA has been further developed to iden-
tify significant enrichment gene sets. In principle, the variance component strategy has
been applied under the assumption of asymptotic distribution by fully addressing mean-
variance relationships and small sample sizes within gene sets in a permutation-based
test. The robustness of this method has been demonstrated, particularly when samples
(subjects) show substantial heteroscedasticity in various longitudinal settings. The input
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requires log-transformed normalized data. This method should be further updated to run
multi-series time course datasets with two or more distinct conditions at each time point.

5.2. Dynamic Clustering Tools

A. funPat (Functional-based Pattern analysis) [23]: It is for both single- or multi-series
time course RNA-Seq data. Analogous to splineTimeR and lmms, this approach is also a
unified strategy based on the smooth integration of following three main steps. It includes
(1) the best fitted gene model for which dynamic gene-by-gene testing under the empirical
null hypothesis is selected by the precision values of estimated parameters among gamma,
log-normal, and Weibull distributions; (2) funPat linear model-based clustering for time-
dependent data structure; and (3) mapping procedures between detected co-expression
temporal patterns and the given annotation information of gene ontology and pathways
to assess whether or not the significant dynamical changing genes and their temporal
trajectory patterns detected in the previous steps are highly associated with the given
gene sets.

B. DPGP [116]: It is for single-series time course RNA-Seq data. In order to better
incorporate the data-driven features, i.e., (1) time-dependent structure in the inference of
time-varying trajectories and (2) the choice of proper number of clusters, this tool is based
on the combination of Dirichlet Prior mixture models of Gaussian Processes by estimating
the posterior probabilities of model parameters via Monte Carlo Markov Chain simulations.

C. LPWC [117]: Similar to DPGP, it is also able to handle single series time course
RNA-Seq data, such as those obtained from impulse-like perturbation experiments. This
method is based on the Lag-Penalized Weighted Correlation (LPWC) approach to fully
take into account the lagged temporal profiles between genes by assigning a Gaussian
kernel penalty score to reduce the chance of higher weighted correlations for such genes.
However, one of the constraints in this method similar to other state-of-the-art-clustering
tools, one gene/sample should belong to a cluster.

EPIG-Seq clustering method [124] allows to include multiple group conditions, al-
though it has been implemented for static data. It incorporates the correlation metric for
counts, Wilcoxon rank-sum non-parametric test for detection of magnitude of change be-
tween samples, and estimation of dispersion parameter by quasi-Poisson regression model.
Trendy tool [73], as discussed before, as a dynamic clustering tool, can also be applied
for a single-series time course RNA-Seq. Several research groups have also highlighted
the importance of development of dynamic clustering tools for time course experimental
designs in conventional microarrays [98,121–123,125]. The fundamental structure of time
course data contains three-dimensional formats such as genes-conditions-times. While the
majority of clustering tools assume that one gene/sample should be allocated to a cluster, as
more flexible and improved strategies for unsupervised clustering techniques [65,126–128],
for instance, Biclustering (a two-way in genes-conditions) and Triclustering (a three-way,
e.g., genes–times–conditions and drugs–genes–dose levels) methods have been proposed
to better account for the property that a gene/condition/sample/time could be assigned to
multiple clusters. This extension to better characterize the higher order of factors/variable
sets in time course data structures is critical for properly grouping genes/samples in terms
of biological relevance as some of genes are coordinately regulated in multiple cellular
processes and biological functions. For a fully comprehensive review and discussion,
readers of interest should consult with Hendriquez and Madeira (2018) [127], in which
various Triclustering algorithms and their applications in biological time course data and
other types of three-dimensional are further discussed.

5.3. Dynamic Machine Learning Tools

In order to infer the functional interplay amongst genes affected by the initial stimuli
in perturbated cells or other types of time course data, the plethora of dynamic gene
regulatory network (dynamic GRN) methods have been steadily proposed from arrays
until present Seq-based data. In essence, dynamic GRN methods are mainly grouped into
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three categories: (1) Continuous state space models, (such as Dynamic Bayesian Network:
DBN, Markov Model: MM, State Space Model: SSM, and Ordinary Differential Equation:
ODE); versus (2) discrete state space models (such as Boolean Network: BN and Probability
Bayesian Network: PBN). And both models account for structure and temporal dynamics
when inferring the causal network modules, whereas, there exists (3) Relevant Network
(RN) and Bayesian Network (BN) to consider only structure [129]. In this section, we
discuss the applications of dynamic GRN methods and deep machine learning tools.

(i) Dynamic GRN tools for RNA-Seq data: dynGENIE3 tool [118] has been developed
by using ordinary differential equation and random forest tree-based approaches to define
the network modules for both the steady-state and dynamic time course RNA-Seq data.
More recently, as another ordinary differential equation GRN method, BINGO tool [119] to
capture the interactive gene networks for RNA-Seq time course data has been proposed on
the basis of non-parametric gaussian process with Monte Carlo Markov Chain sampling
procedures and non-linear function to the probabilities of trajectories in ordinary differential
equation instead to the derivatives. It is also based on benchmarked data by comparing
some existing tools such as dynGENIE3 [118]. As one of the most recent advances, BETS
(Bootstrap Elastic net regression Time-Series) tool [120] has been developed for RNA-Seq
time series data with perturbation. For a given time lag, a vector autoregressive modeling
approach as the granger causality has been applied for the set of temporally differentially
expressed genes (~2800 genes) during 12 h after A549 cells exposed to glucocorticoids.

(ii) GRNs in traditional microarrays: Time-varying multivariate state space model
(SSM) tool [99] is designed for a short series of time course expression profiles where
measurements from samples are collected between sparse and uneven time points. With
the combination of Hidden Makov model and Dynamic Bayesian Network, HMDBN
tool [95] is proposed by incorporating the non-stationary DBNs in which the structure
and parameters are not fixed over a series of time points. Accordingly, in the method,
Structural Expectation Maximization (SEM) and improved Bayesian Information Criterion
sharing information between times are employed. Boolean Function Network tool [24,25]
for array cell cycling data has been implemented in Matlab, which requires a transformed
expression as input, with a range of (0, 1) interval by an empirically cumulative distribution
function. The pre-defined regulators of transcriptional factors should also be uploaded.
Note that Boolean Function Network is based on pairwise dependencies between genes to
infer the optimal function of global state trajectory over time points. It is fairly a gene-wise
approach to identify causal relationship between genes to account for time-delay, however,
we have placed this tool in this section of coherent gene-to-gene strategies as it is not a
statistical testing procedure for each gene. Additionally, at least ten time points should be
included in the input dataset to identify reliable gene regulatory networks (GRNs) that
are relevant to pathways and biological functions in cell cycles and oscillations. Time-
Delay ARACNE tool [10] has been implemented for identifying gene regulatory association
networks on the basis of an information-theoretic approach of mutual information, and
statistical dependency to assign gene-to-gene interactions [130]. TD-ARACNE defines
GRNs in time course experimental designs, such as cell cycles, by precisely incorporating
time-dependent data structure assuming that gene expression level at the current state is
affected by the previous time points of other genes.

Importantly, the inference of dynamic gene regulatory networks based solely on time
course RNA-Seq data has limitations as the significant changes on gene expression levels
over time points for the particular biological dynamic process are involved with TF, histone
modifications (HM), other cis- and trans-acting elements in the gene regulatory machinery.
Therefore, we review the GRN methods in time series RNA-seq data and its integration in
the following.

(iii) More informative dynamic GRN tools for data integration: CRNET tool [131] has
been proposed to infer functional regulatory networks by incorporating the efficient Gibbs
sampling procedures to estimate the hidden TF activities and the posterior probabilities
for binding events for the integrated Chip-Seq data and time series of RNA-Seq data.



Genes 2021, 12, 352 15 of 23

On the other hand, iDREM tool [94] was developed aiming at visualizing the interactive
relationships of dynamic GRNs for integration of multi-omics data, including time-series
data of mRNA, miRNA-Seq, epigenomics, proteomics, scRNA-Seq, and static TF-gene,
and protein–protein interaction data. More recently, a comprehensive review [96] to cover
dynamic functional regulatory network tools for time course multi-omics data including
different layers, transcriptome, genomics, epigenomics, metabolomics, variomics, and
proteomics has been published. For the dynamic specific tools of gene functional regulatory
networks, several unsupervised/supervised methods are well described in the review.
In addition, the importance to infer more precise regulatory networks for the interactive
relationships between platforms from multiple omics data in the system biological aspects
of personalized medicine has been emphasized.

(iv) GRN tools for scRNA-Seq data: While we primarily focus on the dynamic tools for
bulk RNA-Seq transcriptome time course data, the recent advances on machine learning
tools and their applications for scRNA-Seq studies have been omitted for the sake of brevity.
Instead, an excellent comprehensive review [132] for the diverse gene regulatory networks
tools using scRNA-Seq data alone, integration with genomics or single cell epigenomics
data can be found in the reference. Additionally, a review for GRN methods utilized in
single cell RNA-Seq data is also available [133].

(v) Dynamic differential networks: In order to define differential networks repre-
senting group-specific differences over time using inferred gene regulatory networks,
DryNetMC tool [28] has been developed. Input file formats include, normalized read
counts, such as those normalized by DESeq or further adjusted by advanced normalization
methods [49,68,71,72,92] in case-control time course RNA-Seq data. Thus, this dynamic
method is not suitable for one- or multi-series time course data with more than two levels
of the condition group. Furthermore, parameters to infer sample-to-sample variations for
biological or technical replicates in the model are not defined.

As a differential network tool for static multi-omics data (miRNA, mRNA, and pro-
teomics), iDINGO tool [134,135] has been proposed to define group difference on differ-
ential networks (e.g., disease patient groups vs normal controls). Differential networks
are defined by the conditional dependency by simultaneously accounting for both intra-
(within platform) and inter- (between platforms) conditional dependencies. The input files
can include up to three different matrices with matched samples among platforms while
the output generates the multiple correction p-value across edges in differential networks
and visualization outcomes that show group-specific changes in the chain graphical model.
As the method allows only two group conditions at each platform, the current version is
not applicable for multi-group conditions or continuous types of covariates, such as age
and time.

(vi) Deep learning neural network approaches in current genomics data: We also
want to describe the deep machine learning tools that have been widely applied to current
genomic data analyses for the purpose of predictions and classification problems. A com-
prehensive review to fully discuss their applications in the epigenomic and genomic data
is currently available [136]. As discussed in the study [136], while the ability to interpret
and explain for the selected features from neural network methods is still needed to be
addressed, current approaches for interpretation methods can be partitioned into two
major categories: 1) Convolution neural network (CNN), sub-categorized into input modi-
fication, deconvolution, and input reconstruction and 2) recurrent neural network (RNN)
in attention mechanism based on the remarks of Grün et al [137] and Singh et al [138].
These deep learning tools can be used for the identification of (1) motif discovery for
DNA/RNA sequence alternations associated with protein binding, (2) epigenetic effects on
DNA sequence alternations, (3) chromatin interactions and predictions, (4) gene expres-
sion prediction, and (5) non-coding RNA identification and regulation [136]. Further, a
prediction deep learning tool [139] for gene expression has been proposed by given infor-
mation of knockout experiments and master regulator genes in perturbations, compared to
others including classical RNN and bidirectional RNN. On the other hand, a prediction
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tool KEGRU [140] for transcription factor binding sites (TFBSs) has been developed by
the means of bidirectional gated recurrent unit (GRU) networking and k-mer embedding,
which are utilized for identifying the feature information from DNA sequences. The feature
information is then used for the prediction of TFBSs. As dynamic Bayesian neural networks,
hidden Markov neural networks can be applied for time series data [97]. The detailed
mathematical formulas, notations, and algorithms have been given by [97], though they
discuss the applications on non-biological time series data sets.

Table 4. Coherent gene-to-gene dynamic methods for non-periodical time course data.

Coherent
Gene-to-Gene

Dynamic Methods
Method Exeternal Factors

at a Time Experimental Design Competiting Methods

Tcgsaseq [8,11]
variance component score;
linear mixed effects model;

permutation test
w/o condition

single series of
longitudinally

measured time course

voom-Roast, Roast,
edgeR-Roast

FunPat [23]

best fitted model selection
for each gene;

linear model-based
clustering;

integration with the given
gene ontology and

pathway information

w/o condition single- or multi-series
of time course

edgR, maSigPro, FPCA;
HC, k-means, MBC

DPGP [116]

inferene of time-varying
trajectories; Dirichlet prior

mixture models;
Gaussian process

w/o condition single series of
time course

HC,
k-means, Mclust,

SplineCluster, GIMM,
BHC

LPWC [117]
lag-penalized weighted

correlation;
Gaussian penalty score;

w/ two conditions single-series of
time course

HC, k-means, DTW w/
HC, STS w/ HC

6. Meta Analyses in Cell-Lineage Differentiation and Disease Progressive Models

More recently, several studies [4,6,7,16,32,66,67,141,142] of high-resolution genome-
wide datasets obtained using different platforms have been conducted to unravel molecular
mechanisms underlying cell differentiation using various models, such as in T17 cells,
hematopoiesis of blood formation, mouse bone-marrow induced dendritic cells to stimula-
tion, and dynamic response of yeasts to lipopolysaccharide stimulation. Integration ap-
proaches between RNA-Seq and Chip-Seq/Methylation/Proteomics/microRNA have been
utilized in developmental biology, stimuli-response animal models, pharmacogenomics to
characterize target therapeutic effects on treatments, disease progressive models for tumors,
as well as in age-related human diseases, such as Alzheimer’s disease [4,5,67,143–148].
These studies [141,142] highlighted the importance of characterization of chromatin state
dynamics during cell differentiations. Moreover, mechanistic understanding of perturba-
tions during differentiation, using synergistically integrated strategies between Chip-Seq
and RNA-Seq, in time course experimental designs will allow us to dissect biological
pathways controlling these processes. Large-scale of meta-analyses across different plat-
forms have been conducted to increase the power of detection and to fully characterize
dynamically changing genes and their functional roles that are related to explicitly or im-
plicitly causal and consequential effects in the complexity of trans-acting and cis-regulatory
elements that regulate biological processes.

Altogether, it is timely crucial to establish general framework and guiding principles
for analyzing various time course datasets with well validated dynamic methods that will
reduce method-, study-, and platform-specific artifacts, which will lead to a conclusive
consensus and reproducible results in the diverse range of dynamic studies, such as
perturbative cellular models, cell-lineage programs, disease progressions, and other types
of dynamic processes [7,149].
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7. Summary and Future Perspectives

Although many of dynamic tools dealing with the diverse types of RNA-Seq time
course data in differential expression analyses have been widely adopted for the purpose
of identification of dynamically changing genes, more challenges still exist and need to
be to be properly addressed. Each method has its own unique characteristics and data
distributional assumptions as well as input/output formats, running procedures, and
estimated parameters. As shown in static methods without regards to time, such as
edgeR and DESeq2 [68–72,92] under the major assumption that observed samples are
collected independently at a fixed time point, all dynamic methods with regards to a series
of time points should have potential to serve as universal tools handling all necessary
pre-processing procedures within their own built-in structure.

In addition, the comparative study to evaluate the performance between dynamic
gene-wise testing methods has been conducted recently [36] whereas there are no large-
scale of comparative studies available for the exploitation of the impact of pre-processing
steps, the choice of pre-processing tools, or dynamic methods with regards to the inference
of dynamically changing genes based on gold-standard reference sets. Such comparative
studies should also include various time points (short 3–4 points; moderate 5–7 points; long
series ≥8 time points), different numbers of replicates, multiple conditions, and variable
noise levels.

Normalization procedures outweigh differential methods themselves in determine
the outcome in the identification of differentially expressed gene sets [36,45,47]. More
importantly, significant batch effects, even after normalization procedures, exist due to
confounding nuisance factors. Generally, metadata are subjected to higher chances of batch
contamination. Unbalanced samples within a batch factor should also be considered in
batch detection methods. To better define dynamically changing genes with conditions
over time, the issues in pre-processing procedures prior to trajectory inferences should be
precisely addressed.

In addition, the development and application of dynamic tools have significant im-
pacts on post-genomic era data analyses, particularly for the characterization of gene-to-
gene interactions using unsupervised clustering techniques, pre-defined gene sets, gene
regulatory networks, and deep machine learning tools. It is conceivable that the evalua-
tion and validation based on benchmarked datasets with robustness and reproducibility
will undoubtedly facilitate our understanding of complex biological processes underlying
diseases. Importantly, user-friendly web-based interfaces or packages (instead of separate
stepwise analyses) for enhanced and unified analytical strategies (meta-pipelines) that
are more capable of characterizing dynamically changing genes, GANs, and their corre-
sponding roles in biological pathways are urgently needed. Integrated dynamic methods
should be implemented by addressing the following issues related to time course datasets
and their metadata: (1) Normalization, (2) filtering genes or samples with low expression
and quality, (3) unbalanced or unevenly measured time points and replicates, (4) batch
removal or incorporation of batch factor in the detection model of dynamic changes in the
inference of trajectory patterns, (5) dynamic specific methods in co-expression clustering
methods, gene set enrichment tests, GRNs, and (6) differential networks to represent time-
and condition-specific dynamic changes for personalized medicine. We believe this review
serves as a template for more precisely analyzing dynamically changing genes over a broad
range of time points or repeated measures in experimental and clinical applications while
addressing the necessary next step in meta-dynamic data analysis.
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