Decoding the Reproductive System of the Olive Fruit Fly, Bactrocera oleae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Fly Culture and Stock
2.3. Tissue Collection
2.3.1. Tissue Collection from Virgin Flies
2.3.2. Tissues Collection from Mated Flies
2.4. RNA Extraction
2.5. qPCR Reactions
2.6. Next-Generation Sequencing
2.7. In Vitro Double-Stranded (ds)RNA Synthesis
2.8. dsRNA Treatment: Oviposition Rate
2.9. Bioinformatics Analyses
2.10. Statistical Tests
3. Results and Discussion
3.1. Transcriptome Sequencing Assembly
3.2. Genomic Annotation of Reproductive Genes
3.3. Transcriptional Analysis of the Differentially Expressed Genes
3.4. Inhibition of Reproductive Genes through RNAi Silencing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tombes, A.S.; Roppel, R.M. Ultrastructure of the spermatheca of the granary weevil, Sitophilus granarius (L.) (Coleoptera: Curculionidae). Int. J. Insect Morphol. Embryol. 1972, 1, 141–152. [Google Scholar] [CrossRef]
- Bailey, W.J.; Nuhardiyati, M. Copulation, the dynamics of sperm transfer and female refractoriness in the leafhopper Balclutha incisa (Hemiptera: Cicadellidae: Deltocephalinae). Physiol. Entomol. 2005, 30, 343–352. [Google Scholar] [CrossRef]
- Oppelt, A.; Heinze, J. Dynamics of sperm transfer in the ant Leptothorax gredleri. Naturwissenschaften 2007, 94, 781–786. [Google Scholar] [CrossRef]
- Walker, M.J.; Rylett, C.M.; Keen, J.N.; Audsley, N.; Sajid, M.; Shirras, A.D.; Isaac, R.E. Proteomic identification of Drosophila melanogaster male accessory gland proteins, including a pro-cathepsin and a soluble γ-glutamyl transpeptidase. Proteome Sci. 2006, 4, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laflamme, B.A.; Wolfner, M.F. Identification and function of proteolysis regulators in seminal fluid. Mol. Reprod. Dev. 2013, 80–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirot, L.K.; Hardstone, M.C.; Helinski, M.E.H.; Ribeiro, J.M.C.; Kimura, M.; Deewatthanawong, P.; Wolfner, M.F.; Harrington, L.C. Towards a semen proteome of the dengue vector mosquito: Protein identification and potential functions. PLoS Negl. Trop. Dis. 2011, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Begun, D.J.; Lindfors, H.A.; Thompson, M.E.; Holloway, A.K. Recently evolved genes identified from Drosophila yakuba and D. erecta accessory gland expressed sequence tags. Genetics 2006, 172, 1675–1681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neafsey, D.E.; Waterhouse, R.M.; Abai, M.R.; Aganezov, S.S.; Alekseyev, M.A.; Allen, J.E.; Amon, J.; Arcà, B.; Arensburger, P.; Artemov, G.; et al. Highly evolvable malaria vectors: The genomes of 16 Anopheles mosquitoes. Science 2015, 347, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Ravi, R.K.; Wolfner, M.F. Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction. Integr. Comp. Biol. 2007, 47, 427–445. [Google Scholar] [CrossRef] [Green Version]
- Findlay, G.D.; Maccoss, Y.X.; Swanson, M.J. Proteomics reveals novel Drosophila seminal fluid proteins transferred at mating. PLoS Biol. 2008, 6, e178. [Google Scholar] [CrossRef]
- Findlay, G.D.; MacCoss, M.J.; Swanson, W.J. Proteomic discovery of previously unannotated, rapidly evolving seminal fluid genes in Drosophila. Genome Res. 2009, 19, 886–895. [Google Scholar] [CrossRef] [Green Version]
- Karr, T.L.; Southern, H.; Rosenow, M.A.; Gossmann, T.I.; Snook, R.R. The old and the new: Discovery proteomics identifies putative novel seminal fluid proteins in Drosophila. Mol. Cell Proteom. 2019, 15 (Suppl 1), S23–S33. [Google Scholar] [CrossRef] [Green Version]
- Sepil, I.; Hopkins, B.R.; Dean, R.; Thézénas, M.-L.; Charles, P.D.; Konietzny, R.; Fischer, R.; Kessler, B.M.; Wigby, S. Quantitative proteomics identification of seminal fluid proteins in male Drosoph. melanogaster. Mol. Cell. Proteom. 2019, 18, S46–S58. [Google Scholar] [CrossRef] [Green Version]
- Wigby, S.; Brown, N.C.; Allen, S.E.; Misra, S.; Sitnik, J.L.; Sepil, I.; Clark, A.G.; Wolfner, M.F. The Drosophila seminal proteome and its role in postcopulatory sexual selection. Philos. Trans. R. Soc 2020, B375, 20200072. [Google Scholar] [CrossRef] [PubMed]
- Dottorini, T.; Nicolaides, L.; Ranson, H.; Rogers, D.W.; Crisanti, A.; Catteruccia, F. A genome-wide analysis in Anopheles gambiae mosquitoes reveals 46 male accessory gland genes, possible modulators of female behavior. Proc. Natl. Acad. Sci. USA 2007, 104, 16215–16220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirot, L.K.; Poulson, R.L.; McKenna, M.C.; Girnary, H.; Wolfner, M.F.; Harrington, L.C. Identity and transfer of male reproductive gland proteins of the dengue vector mosquito, Aedes aegypti: Potential tools for control of female feeding and reproduction. Insect Biochem. Mol. Biol. 2009, 38, 176–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Degner, E.C.; Ahmed-Braimah, Y.H.; Borziak, K.; Wolfner, M.F.; Harrington, L.C.; Dorus, S. Proteins, transcripts, and genetic architecture of seminal fluid and sperm in the mosquito, Aedes aegypti. Mol. Cell Proteom. 2019, 15 (Suppl. 1), S6–S22. [Google Scholar] [CrossRef] [PubMed]
- Boes, K.E.; Ribeiro, J.M.C.; Wong, A.; Harrington, L.C.; Wolfner, M.F.; Sirot, L.K. Identification and characterization of seminal fluid proteins in the Asian tiger mosquito, Aedes albopictus. PLoS Negl. Trop. Dis. 2014, 8, e2946. [Google Scholar] [CrossRef]
- Miyatake, T.; Chapman, T.; Partridge, L. Mating-induced inhibition of remating in female mediterranean fruit flies Ceratitis capitata. J. Insect Physiol. 1999, 45, 1021–1028. [Google Scholar] [CrossRef]
- Papanicolaou, A.; Schetelig, M.F.; Arensburger, P.; Atkinson, P.W.; Benoit, J.B.; Bourtzis, K.; Castañera, P.; Cavanaugh, J.P.; Chao, H.; Childers, C.; et al. The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species. Genome Biol. 2016, 17, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Kuba, H.; Itô, Y. Remating inhibition in the melon fly, Bactrocera (=Dacus) cucurbitae (Diptera: Tephritidae): Copulation with spermless males inhibits female remating. J. Ethol. 1993, 11, 23–28. [Google Scholar] [CrossRef]
- Soltani-Mazouni, N.; Bordereau, C. Changes in the cuticle, ovaries and colleterial glands during the pseudergate and neotenic molt in Kalotermes flavicollis (FABR.) (Isoptera: Kalotermitidae). Int. J. Insect Morphol. Embryol. 1987, 16, 221–235. [Google Scholar] [CrossRef]
- Rosetto, M.; Belardinelli, M.; Fausto, A.M.; Marchini, D.; Bongiorno, G.; Maroli, M.; Mazzini, M. A mammalian-like lipase gene is expressed in the female reproductive accessory glands of the sand fly Phlebotomus papatasi (Diptera, Psychodidae). Insect Mol. Biol. 2003, 12, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Wagner, R.M.; Woods, C.W.; Hayes, J.A.; Kochansky, J.P.; Hill, J.C.; Fraser, B.A. Isolation and identification of a novel peptide from the accessory sex gland of the female house fly, Musca domestica. Biochem. Biophys. Res. Commun. 1993, 194, 1336–1343. [Google Scholar] [CrossRef]
- Marchini, D.; Bernini, L.F.; Marri, L.; Giordano, P.C.; Dallai, R. The female reproductive accessory glands of the medfly Ceratitis capitata: Antibacterial activity of the secretion fluid. Insect Biochem. 1991, 21, 597–605. [Google Scholar] [CrossRef]
- Marchini, D.; Marri, L.; Rosetto, M.; Manetti, A.G.O.; Dallai, R. Presence of antibacterial peptides on the laid egg chorion of the medfly Ceratitis capitata. Biochem. Biophys. Res. Commun. 1997, 240, 657–663. [Google Scholar] [CrossRef]
- Craig, G.B.; Hickey, W.A. Current status of the formal genetics of Aedes aegypti. Bull. World Health Organ. 1967, 36, 559–562. [Google Scholar] [PubMed]
- Radhakrishnan, P.; Taylor, P.W. Seminal fluids mediate sexual inhibition and short copula duration in mated female Queensland fruit flies. J. Insect Physiol. 2007, 53, 741–745. [Google Scholar] [CrossRef]
- Shutt, B.; Stables, L.; Aboagye-Antwi, F.; Moran, J.; Tripet, F. Male accessory gland proteins induce female monogamy in anopheline mosquitoes. Med. Vet. Entomol. 2010, 24, 91–94. [Google Scholar] [CrossRef]
- Abraham, S.; Goane, L.; Cladera, J.; Vera, M.T. Effects of male nutrition on sperm storage and remating behavior in wild and laboratory Anastrepha fraterculus (Diptera: Tephritidae) females. J. Insect Physiol. 2011, 57, 1501–1509. [Google Scholar] [CrossRef]
- Chen, S. The Functional Morphology and Biochemistry of Insect Male Accessory Glands and their Secretions. Annu. Rev. Entomol. 1984, 29, 233–255. [Google Scholar] [CrossRef]
- Jang, E.B. Effects of mating and accessory gland injections on olfactory-mediated behavior in the female mediterranean fruit fly, Ceratitis capitata. J. Insect Physiol. 1995, 41, 705–710. [Google Scholar] [CrossRef]
- Barnes, A.I.; Wigby, S.; Boone, J.M.; Partridge, L.; Chapman, T. Feeding, fecundity and lifespan in female Drosophila melanogaster. Proc. R. Soc. B Biol. Sci. 2008, 275, 1675–1683. [Google Scholar] [CrossRef] [Green Version]
- Lawniczak, M.K.N.; Begun, D.J. A genome-wide analysis of courting and mating responses in Drosophila melanogaster females. Genome 2004, 47, 900–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mack, P.D.; Kapelnikov, A.; Heifetz, Y.; Bender, M. Mating-responsive genes in reproductive tissues of female Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2006, 103, 10358–10363. [Google Scholar] [CrossRef] [Green Version]
- Kocher, S.D.; Richard, F.J.; Tarpy, D.R.; Grozinger, C.M. Genomic analysis of post-mating changes in the honey bee queen (Apis mellifera). BMC Genom. 2008, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kocher, S.D.; Tarpytt, D.R.; Grozinger, C.M. The effects of mating and instrumental insemination on queen honey bee flight behaviour and gene expression. Insect Mol. Biol. 2010, 19, 153–162. [Google Scholar] [CrossRef]
- Manfredini, F.; Brown, M.J.F.; Vergoz, V.; Oldroyd, B.P. RNA-sequencing elucidates the regulation of behavioural transitions associated with the mating process in honey bee queens. BMC Genom. 2015, 16, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomulski, L.M.; Dimopoulos, G.; Xi, Z.; Scolari, F.; Gabrieli, P.; Siciliano, P.; Clarke, A.R.; Malacrida, A.R.; Gasperi, G. Transcriptome profiling of sexual maturation and mating in the mediterranean fruit fly, Ceratitis capitata. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, D.W.; Whitten, M.M.A.; Thailayil, J.; Soichot, J.; Levashina, E.A.; Catteruccia, F. Molecular and cellular components of the mating machinery in Anopheles gambiae females. Proc. Natl. Acad. Sci. USA 2008, 105, 19390–19395. [Google Scholar] [CrossRef] [Green Version]
- Gabrieli, P.; Kakani, E.G.; Mitchell, S.N.; Mameli, E.; Want, E.J.; Anton, A.M.; Serrao, A.; Baldini, F.; Catteruccia, F. Sexual transfer of the steroid hormone 20E induces the postmating switch in Anopheles gambiae. Proc. Natl. Acad. Sci. USA 2014, 111, 16353–16358. [Google Scholar] [CrossRef] [Green Version]
- Alfonso-Parra, C.; Ahmed-Braimah, Y.H.; Degner, E.C.; Avila, F.W.; Villarreal, S.M.; Pleiss, J.A.; Wolfner, M.F.; Harrington, L.C. Mating-Induced Transcriptome Changes in the Reproductive Tract of Female Aedes aegypti. PLoS Negl. Trop. Dis. 2016, 10, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Marchini, D.; Del Bene, G. Comparative fine structural analysis of the male reproductive accessory glands in Bactrocera oleae and Ceratitis capitata (Diptera, Tephritidae). Ital. J. Zool. 2006, 73, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Sagri, E.; Reczko, M.; Tsoumani, K.T.; Gregoriou, M.E.; Harokopos, V.; Mavridou, A.M.; Tastsoglou, S.; Athanasiadis, K.; Ragoussis, J.; Mathiopoulos, K.D. The molecular biology of the olive fly comes of age. BMC Genet. 2014, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zervas, G.A.; Economopoulos, A.P. Mating frequency in caged populations of wild and artificially reared (normal or γ-sterilized) olive fruit flies. Environ. Entomol 1982, 17–20. [Google Scholar] [CrossRef]
- Loher, W.J.; Zervas, G. The mating rhythm of the olive fruitfly, Dacus oleae Gmelin. J. Appl. Entomol. 1979, 88, 425–435. [Google Scholar] [CrossRef]
- Economopoulos, A.P.; Tsitsipis, J. The importance of conditions during the adult stage in evaluating an artificial food for larvae of Dacus oleae (Gmel.) (Diptera, Tephritidae). Z. Angew. Entomol. 1967, 59, 127–130. [Google Scholar] [CrossRef]
- Scolari, F.; Gomulski, L.M.; Ribeiro, J.M.C.; Siciliano, P.; Meraldi, A.; Falchetto, M.; Bonomi, A.; Manni, M.; Gabrieli, P.; Malovini, A.; et al. Transcriptional Profiles of Mating-Responsive Genes from Testes and Male Accessory Glands of the Mediterranean Fruit Fly, Ceratitis capitata. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [Green Version]
- Tsiropoulos, G.J.; Tzanakakis, M.E. Mating frequency and inseminating capacity of radiation-sterilized and normal males of the olive fruit fly. Ann. Entomol. Soc. Am. 1970, 63, 1007–1010. [Google Scholar] [CrossRef] [PubMed]
- Sagri, E.; Koskinioti, P.; Gregoriou, M.E.; Tsoumani, K.T.; Bassiakos, Y.C.; Mathiopoulos, K.D. Housekeeping in Tephritid insects: The best gene choice for expression analyses in the medfly and the olive fly. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rothberg, J.M.; Hinz, W.; Rearick, T.M.; Schultz, J.; Mileski, W.; Davey, M.; Leamon, J.H.; Johnson, K.; Milgrew, M.J.; Edwards, M.; et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 2011, 475, 348–352. [Google Scholar] [CrossRef]
- Horn, T.; Boutros, M. E-RNAi: A web application for the multi-species design of RNAi reagents—2010 update. Nucleic Acids Res. 2010, 38, W332–W339. [Google Scholar] [CrossRef] [PubMed]
- Bayega, A.; Djambazian, H.; Tsoumani, K.T.; Gregoriou, M.E.; Sagri, E.; Drosopoulou, E.; Mavragani-Tsipidou, P.; Giorda, K.; Tsiamis, G.; Bourtzis, K.; et al. De novo assembly of the olive fruit fly (Bactrocera oleae) genome with linked-reads and long-read technologies minimizes gaps and provides exceptional Y chromosome assembly. BMC Genom. 2020, 21, 259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-seq data with or without a reference genome. Bioinform. Impact Accurate Quantif. Proteom. Genet. Anal. Res. 2014, 41–74. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2009, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Götz, S.; García-Gómez, J.M.; Terol, J.; Williams, T.D.; Nagaraj, S.H.; Nueda, M.J.; Robles, M.; Talón, M.; Dopazo, J.; Conesa, A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008, 36, 3420–3435. [Google Scholar] [CrossRef]
- Olivieri, G.; Olivieri, A. Autoradiographic study of nucleic acid synthesis during spermatogenesis in Drosophila melanogaster. Mutat. Res. Fundam. Mol. Mech. Mutagen. 1965, 2, 366–380. [Google Scholar] [CrossRef]
- Wasbrough, E.R.; Dorus, S.; Hester, S.; Howard-Murkin, J.; Lilley, K.; Wilkin, E.; Polpitiya, A.; Petritis, K.; Karr, T.L. The Drosophila melanogaster sperm proteome-II (DmSP-II). J. Proteom. 2010, 73, 2171–2185. [Google Scholar] [CrossRef]
- Wei, D.; Li, H.M.; Yang, W.J.; Wei, D.D.; Dou, W.; Huang, Y.; Wang, J.J. Transcriptome profiling of the testis reveals genes involved in spermatogenesis and marker discovery in the oriental fruit fly, Bactrocera dorsalis. Insect Mol. Biol. 2015, 24, 41–57. [Google Scholar] [CrossRef] [PubMed]
- McGraw, L.A.; Clark, A.G.; Wolfner, M.F. Post-mating gene expression profiles of female Drosophila melanogaster in response to time and to four male accessory gland proteins. Genetics 2008, 179, 1395–1408. [Google Scholar] [CrossRef] [Green Version]
- Prokupek, A.; Hoffmann, F.; Eyun, S.I.; Moriyama, E.; Zhou, M.; Harshman, L. An evolutionary expressed sequence tag analysis of drosophila spermatheca genes. Evolution (N. Y.) 2008, 62, 2936–2947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braswell, W.E.; Andrés, J.A.; Maroja, L.S.; Harrison, R.G.; Howard, D.J.; Swanson, W.J. Identification and comparative analysis of accessory gland proteins in Orthoptera. Genome 2006, 49, 1069–1080. [Google Scholar] [CrossRef] [Green Version]
- Tian, C.-B.; Wei, D.; Xiao, L.-F.; Dou, W.; Liu, H.; Wang, J.-J. Comparative transcriptome analysis of three Bactrocera dorsalis (Diptera: Tephritidae) organs to identify functional genes in the male accessory glands and ejaculatory duct. Fla. Entomol. 2017, 100, 42–51. [Google Scholar] [CrossRef]
- Swanson, W.J.; Vacquier, V.D. The rapid evolution of reproductive proteins. Genetics 2002, 3, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Mueller, J.L.; Ripoll, D.R.; Aquadro, C.F.; Wolfner, M.F. Comparative structural modeling and inference of conserved protein classes in Drosophila seminal fluid. Proc. Natl. Acad. Sci. USA 2004, 101, 13542–13547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, P.H. Genetic manipulation of the circadian clock’s timing of sexual behaviour in the Queensland fruit flies, Dacus tryoni and Dacus neohumeralis. Physiol. Entomol. 1979, 4, 71–78. [Google Scholar] [CrossRef]
- Tychsen, P.H.; Fletcher, B.S. Studies on the rhythm of mating in the Queensland fruit fly, Dacus Tryoni. J. Insect Physiol. 1971, 17, 2139–2156. [Google Scholar] [CrossRef]
- Beaver, L.M.; Rush, B.L.; Gvakharia, B.O.; Giebultowicz, J.M. Noncircadian Regulation and Function of Clock Genes period and timeless in Oogenesis of Drosophila melanogaster. J. Biol. Rhythm. 2003, 18, 463–472. [Google Scholar] [CrossRef]
- Kotwica-Rolinska, J.; Gvakharia, B.O.; Kedzierska, U.; Giebultowicz, J.M.; Bebas, P. Effects of period RNAi on V-ATPase expression and rhythmic pH changes in the vas deferens of Spodoptera littoralis (Lepidoptera: Noctuidae). Insect Biochem. Mol. Biol. 2013, 43, 522–532. [Google Scholar] [CrossRef]
- Robinett, C.C.; Giansanti, M.G.; Gatti, M.; Fuller, M.T. TRAPPII is required for cleavage furrow ingression and localization of Rab11 in dividing male meiotic cells of Drosophila. J. Cell Sci. 2009, 122, 4526–4534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dow, M.A. The genetic basis of receptivity of yellow mutant Drosophila melanogaster females. Behav. Genet. 1976, 6, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.; Burnet, B.; Eastwood, L.; Connolly, K. Behavioural pleiotropy of the yellow gene in Drosophila melanogaster. Genet. Res. 1976, 28, 75–88. [Google Scholar] [CrossRef] [Green Version]
- Burnet, B.; Wilson, R. Pattern mosaicism for behaviour controlled by the yellow locus in Drosophila melanogaster. Genet. Res. 1980, 36, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Drapeau, M.D.; Radovic, A.; Wittkopp, P.J.; Long, A.D. A gene necessary for normal male courtship, yellow, acts downstream of fruitless in the Drosophila melanogaster larval brain. J. Neurobiol. 2003, 55, 53–72. [Google Scholar] [CrossRef] [PubMed]
- Drapeau, M.D.; Cyran, S.A.; Viering, M.M.; Geyer, P.K.; Long, A.D. A cis-regulatory sequence within the yellow locus of Drosophila melanogaster required for normal male mating success. Genetics 2006, 172, 1009–1030. [Google Scholar] [CrossRef] [Green Version]
- Prud’homme, B.; Gompel, N.; Rokas, A.; Kassner, V.A.; Williams, T.M.; Yeh, S.D.; True, J.R.; Carroll, S.B. Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene. Nature 2006, 440, 1050–1053. [Google Scholar] [CrossRef]
- Han, Q.; Fang, J.; Ding, H.; Johnson, J.K.; Christensen, B.M.; Li, J. Identification of Drosophila melanogaster yellow-f and yellow-f2 proteins as dopachrome-conversion enzymes. Biochem. J. 2002, 368, 333–340. [Google Scholar] [CrossRef]
- Wittkopp, P.J.; True, J.R.; Carroll, S.B. Reciprocal functions of the Drosophila Yellow and Ebony proteins in the development and evolution of pigment patterns. Development 2002, 129, 1849–1858. [Google Scholar]
- Thiam, A.R.; Farese, R.V.; Walther, T.C. The biophysics and cell biology of lipid droplets. Nat. Rev. Mol. Cell Biol. 2013, 14, 775–786. [Google Scholar] [CrossRef] [Green Version]
- Massey, J.; Chung, D.; Siwanowicz, I.; Stern, D.; Wittkopp, P. The yellow gene influences Drosophila male mating success through sex comb melanization. eLife 2019, 8, e49388. [Google Scholar] [CrossRef] [PubMed]
- Thul, P.; Tschapalda, K.; Kolkhof, P.; Thiam, A.R.; Oberer, M.; Beller, M. Targeting of the Drosophila protein CG2254/Ldsdh1 to a subset of lipid droplets J. Cell Sci. 2017, 130, 3141–3157. [Google Scholar] [CrossRef] [Green Version]
- Griffith, M.; Griffith, O.L.; Mwenifumbo, J.; Goya, R.; Morrissy, A.S.; Morin, R.D.; Corbett, R.; Tang, M.J.; Hou, Y.C.; Pugh, T.J.; et al. Alternative expression analysis by RNA sequencing. Nat. Methods 2010, 7, 843–847. [Google Scholar] [CrossRef]
- Asmann, Y.W.; Klee, E.W.; Thompson, E.A.; Perez, E.A.; Middha, S.; Oberg, A.L.; Therneau, T.M.; Smith, D.I.; Poland, G.A.; Wieben, E.D.; et al. 3′ tag digital gene expression profiling of human brain and universal reference RNA using Illumina Genome Analyzer. BMC Genom. 2009, 10, 531. [Google Scholar] [CrossRef] [Green Version]
- Wu, A.R.; Neff, N.F.; Kalisky, T.; Dalerba, P.; Treutlein, B.; Rothenberg, M.E.; Mburu, F.M.; Mantalas, G.L.; Sim, S.; Clarke, M.F.; et al. Quantitative assessment of single-cell RNA-sequencing methods. Nat. Methods 2014, 11, 41–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; He, M. Differential gene expression identified by RNA-Seq and qPCR in two sizes of pearl oyster (Pinctada fucata). Gene 2014, 538, 313–322. [Google Scholar] [CrossRef]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet 2009, 10, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Ramskold, D.; Wang, E.T.; Burge, C.B.; Sandberg, R. An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS Comput. Biol. 2009, 5. [Google Scholar] [CrossRef] [PubMed]
- Meslin, C.; Plakke, M.S.; Deutsch, A.B.; Small, B.S.; Morehouse, N.I.; Clark, N.L. Digestive organ in the female reproductive tract borrows genes from multiple organ systems to adopt critical functions. Mol. Biol. Evol. 2015, 32, 1567–1580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cayre, M.; Strambi, C.; Charpin, P.; Augier, R.; Renucci, M.; Strambi, A. Inhibition of polyamine biosynthesis alters oviposition behavior in female crickets. Behav. Neurosci. 1996, 110, 1117–1125. [Google Scholar] [CrossRef]
- Wyatt, G.R.; Rothaus, K.; Lawler, D.; Herbst, E.J. Ornithine decarboxylase and polyamines in silkmoth pupal tissues: Effect of ecdysone and injury. Biochim. Biophys. Acta. 1973, 304, 482–494. [Google Scholar] [CrossRef]
- Birnbaum, M.J.; Gilbert, L.I. Juvenile hormone stimulation of ornithine decarboxylase activity during vitellogenesis in Drosophila melanogaster. J. Comp. Physiol. B 1990, 160, 145–151. [Google Scholar] [CrossRef]
- Kogan, P.H.; Hagedorn, H.H. Polyamines, and effects from reducing their synthesis during egg development in the yellow fever mosquito, Aedes aegypti. J. Insect Physiol. 2000, 46, 1079–1095. [Google Scholar] [CrossRef]
- Kuniyoshi, H.; Baba, K.; Ueda, R.; Kondo, S.; Awano, W.; Juni, N.; Yamamoto, D. lingerer, a Drosophila gene involved in initiation and termination of copulation, encodes a set of novel cytoplasmic proteins. Genetics 2002, 162, 1775–1789. [Google Scholar]
- Kaartinen, V.; Nagy, A. dbest1, a Drosophila homolog of human Bestrophin, is not required for viability or photoreceptor integrity. Genesis 2001, 31, 130–136. [Google Scholar] [CrossRef]
- Williams, T.D. Mechanisms Underlying the Costs of Egg Production. Bioscience 2005, 55, 39. [Google Scholar] [CrossRef] [Green Version]
- Goldman, T.D.; Arbeitman, M.N. Genomic and functional studies of Drosophila sex hierarchy regulated gene expression in adult head and nervous system tissues. PLoS Genet. 2007, 3, e216. [Google Scholar] [CrossRef]
- Handler, A.M.; Postlethwait, J.H. Endocrine control of vitellogenesis in Drosophila melanogaster: Effects of the brain and corpus allatum. J. Exp. Zool. 1977, 202, 389–401. [Google Scholar] [CrossRef]
- Sappington, T.W.; Raikhel, A.S. Molecular characteristics of insect vitellogenins and vitellogenin receptors. Insect Biochem. Mol Biol. 1998, 28, 277–300. [Google Scholar] [CrossRef]
- Balogh, L.M.; Atkins, W.M. Interactions of glutathione transferases with 4-hydroxynonenal. Drug Metab. Rev. 2011, 43, 165–178. [Google Scholar] [CrossRef] [Green Version]
- Baer, B.; Heazlewood, J.L.; Taylor, N.L.; Eubel, H.; Millar, A.H. The seminal fluid proteome of the honeybee Apis mellifera. Proteomics 2009, 9, 2085–2097. [Google Scholar] [CrossRef]
- Jones, J.C.; Wheeler, R.E. Studies on Spermathecal Filling in Aedes aegypti (Linnaeus). II. Experimental Author (s): Jack Colvard Jones and Ronald E. Wheeler. Biol. Bull. 1965, 129, 532–545. [Google Scholar] [CrossRef] [PubMed]
- Dapples, C.C.; Foster, W.A.; Lea, A.O. Ultrastructure of the accessory gland of the male mosquito, Aedes aegypti (L.) (Diptera: CUlicidae). Int. J. Insect Morphol. Embryol. 1974, 3, 279–291. [Google Scholar] [CrossRef]
- Ramalingam, S. Secretion in the male accessory glands of Aedes aegypti (L.) (Diptera: Culicidae). Int. J. Insect Morphol. Embryol. 1983, 12, 87–96. [Google Scholar] [CrossRef]
- Lagos, D.; Koukidou, M.; Savakis, C.; Komitopoulou, K. The transformer gene in Bactrocera oleae: The genetic switch that determines its sex fate. Insect Mol. Biol. 2007, 16, 221–230. [Google Scholar] [CrossRef]
- Tsoumani, K.T.; Belavilas-Trovas, A.; Gregoriou, M.-E.; Mathiopoulos, K.D. Anosmic flies: What Orco silencing does to olive fruit flies. BMC Genet. 2020, 18 (Suppl. 2), 140. [Google Scholar] [CrossRef]
- Gregoriou, M.-E.; Mathiopoulos, K.D. Knocking down the sex peptide receptor by dsRNA feeding results in reduced oviposition rate in olive fruit flies. Arch. Insect Biochem. Physiol. 2020, 104, e21665. [Google Scholar] [CrossRef] [PubMed]
- Daniel, R.G.P.; John, A.G. RNAi-mediated crop protection against insects. Trends Biotechnol. 2008, 26, 393–400. [Google Scholar] [CrossRef]
- Chen, S.L.; Dai, S.M.; Liu, K.H.; Chang, C. Female-specific doublesex dsRNA interrupts yolk protein gene expression and reproductive ability in oriental fruit fly, Bactrocera dorsalis (Hendel). Insect Biochem. Mol. Biol. 2008, 38, 155–165. [Google Scholar] [CrossRef]
- Heifetz, Y.; Wolfner, F.M. Mating, seminal fluid components, and sperm cause changes in vesicle release in the Drosophila female reproductive tract. PNAS 2004, 101, 6261–6266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borovsky, D. Insect peptide hormones and RNA-mediated interference (RNAi): Promising technologies for future plant protection. Phytoparasitica 2005, 33, 109–112. [Google Scholar] [CrossRef]
- Knorr, E.; Fishilevich, E.; Tenbusch, L.; Frey, M.L.; Rangasamy, M.; Billion, A.; Worden, S.E.; Gandra, P.; Arora, K.; Lo, W.; et al. Gene silencing in Tribolium castaneum as a tool for the targeted identification of candidate RNAi targets in crop pests. Sci. Rep. 2018, 8, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Meccariello, A.; Tsoumani, K.T.; Gravina, A.; Primo, P.; Buonanno, M.; Mathiopoulos, K.D.; Saccone, G. Targeted somatic mutagenesis through CRISPR/Cas9 ribonucleoprotein complexes in the olive fruit fly, Bactrocera oleae. Arch. Insect Biochem. Physiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Koidou, V.; Denecke, S.; Ioannidis, P.; Vlatakis, I.; Livadaras, I.; Vontas, J. Efficient genome editing in the olive fruit fly, Bactrocera Oleae Insect. Mol. Biol. 2020, 29, 363–372. [Google Scholar] [CrossRef]
- Esvelt, K.M.; Smidler, A.L.; Catteruccia, F.; Church, G.M. Concerning RNA-guided gene drives for the alteration of wild populations. eLife 2014, 3, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Burt, A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc. R. Soc. B Biol. Sci. 2003, 270, 921–928. [Google Scholar] [CrossRef] [Green Version]
Name | LogFC | Name | LogFC | Name | LogFC |
---|---|---|---|---|---|
Testes | MAGs/Ejaculatory Bulb | Female Lower Reproductive Tract | |||
c15699 | 8.7 | timeless | −11.7 | troponin C | −14.9 |
c58283 | 8.6 | c52416 | −9.7 | yolk protein-2 | −14.6 |
c37552 | 7.5 | CG2254-like | −12.3 | lingerer | −11.7 |
hemolectin | 7.6 | brunelleschi | −9.5 | glutathione S-transferase e class | 8.8 |
cation transporter | 6.6 | yellow-g | −10.5 | bestrophin 2 | −15.4 |
c42518 | 5.5 | c53574 | −11.7 | ornithine decarboxylase antizyme | −14.3 |
scribbler isoform J | −3.3 | ||||
mucin | 8.2 | ||||
c52071 | −4.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gregoriou, M.-E.; Reczko, M.; Kakani, E.G.; Tsoumani, K.T.; Mathiopoulos, K.D. Decoding the Reproductive System of the Olive Fruit Fly, Bactrocera oleae. Genes 2021, 12, 355. https://doi.org/10.3390/genes12030355
Gregoriou M-E, Reczko M, Kakani EG, Tsoumani KT, Mathiopoulos KD. Decoding the Reproductive System of the Olive Fruit Fly, Bactrocera oleae. Genes. 2021; 12(3):355. https://doi.org/10.3390/genes12030355
Chicago/Turabian StyleGregoriou, Maria-Eleni, Martin Reczko, Evdoxia G. Kakani, Konstantina T. Tsoumani, and Kostas D. Mathiopoulos. 2021. "Decoding the Reproductive System of the Olive Fruit Fly, Bactrocera oleae" Genes 12, no. 3: 355. https://doi.org/10.3390/genes12030355
APA StyleGregoriou, M. -E., Reczko, M., Kakani, E. G., Tsoumani, K. T., & Mathiopoulos, K. D. (2021). Decoding the Reproductive System of the Olive Fruit Fly, Bactrocera oleae. Genes, 12(3), 355. https://doi.org/10.3390/genes12030355