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Supplementary Methods

Model architecture and training

Our model consisted of two components: a CDR3B embedding network (Figure S1) that maps
the Atchley representation x of a CDR3B sequence to a vector f(x) in a 32-dimensional latent
vector space and an epitope mapping network (Figure S2) that maps the Atchley representation
y of an epitope sequence to the parameters u(y) and a(y) specifying a Gaussian distribution over
the same latent vector space. The CDR3B embedding network passes x, which takes the form of
a 20x6 matrix, through two 1D convolutional layers and an output fully connected layer. The first
convolution layer had 128 filters using 3x6 kernels, convolving the rows with a stride of 1. The
second convolution layer had 64 filters using 4x6 kernels, convolving the rows with a stride of 1.
Outputs of the convolutional layers were padded with zeros to maintain the same dimension as
the inputs before undergoing batch normalization. The activation function used in the
convolutional layers was the Rectified Linear Unit (ReLU). The output fully connected layer
consisted of 32 neurons, resulting in a 32-dimensional vector representation f(x) for the given
CDR3B sequence x.

The epitope mapping network first passed input y, which takes the form of a 10x6 matrix,
through a single 1D convolutional layer that had 64 filters using 5x6 kernels, convolving the rows
with a stride of 1. The output of the convolutional layer was padded with zeros to maintain the
same dimension as the input before being passed to two separate fully connected layers, each of
dimension 32. The outputs of the two fully connected layers, denoted as u(y) and o(y), were
taken as the parameters of a multivariate Gaussian distribution with diagonal covariance matrix,
with u(y) taken to be the mean vector and o(y) corresponding to the diagonal entries of the
diagonal covariance matrix X(y). Given CDR3B sequence x and epitope sequence y, the

unnormalized binding affinity p was thus calculated by the following:
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where |X(y)| was the determinant of Z(y).

Although calculating unnormalized binding affinity involved only the CDR3B embedding
network and epitope mapping network, tuning the parameters of these two networks to perform
TCR-epitope prediction required the training of two additional neural networks: the Triplet Network
and the modal alignment network. The Triplet Network (Figure S3) (1) was a single neural network
composed of 3 CDR3B embedding networks which shared parameters and utilized Triplet Loss,
a loss function that encouraged clustering of CDR3B embeddings by binding epitope. The Triplet
Network took “valid triplets” of CDR3B sequences as input, with valid triplets defined as a set of
three CDR3B sequences in which two sequences, denoted by x* and xP and termed the “anchor”
and “positive” respectively, bind the same epitope, while the third, denoted by x™ and termed the
“negative”, binds an alternative epitope or is derived from the negative binding set (Methods:
Positive binding and negative binding datasets). Given the function f, which represented the
embedding of CDR3B sequences to vectors in a latent space by the CDR3B embedding network,
and a margin parameter m, the Triplet Network calculated the Triplet LoSS Lr,.;,. for a valid triplet
as follows:

Lrripier (%, xP,x™) = Max(|If (x®) = fP)I? = If x*) = fFMI? + m, 0).
Intuitively, training the Triplet Network to minimize Triplet Loss tuned the parameters of the
CDR3B embedding network to decrease the distance between the latent space embeddings of
the anchor and positive and increase the distance between the latent space embeddings of the
anchor and negative. The margin parameter m roughly established the length scale of the

clustering in latent space and was set to 0.1.



The modal alignment network took as input a pair of binding CDR3B and epitope
sequences, denoted as x and y respectively, and passed them through their respective CDR3B
embedding and epitope mapping networks (Figure S4). The corresponding loss function, the
negative log likelihood loss Ly;;, was defined as

Ly (x,y) = —log (p(x,¥)).
Intuitively, minimizing Ly;; tuned the parameters of both the CDR3B embedding network and the
epitope mapping network to maximize the probability of observing f(x) given the multivariate
Gaussian distribution parametrized by u(y) and o (y).

During model training, the training set was divided into minibatches of 128 CDR3B
sequences. For each minibatch, a set of valid triplets were extracted from the 128 possible triplets
of CDR3B sequences and a separate set of CDR3B sequences was constructed by including only
those CDR3B sequences in the minibatch from the positive binding set. Let v index each triplet in
the set of valid triplets, with the anchor, positive, and negative of a triplet denoted as x%, x?, and
x5, respectively. Let CDR3B sequences from the positive binding set and their binding epitope
sequences be denoted as x, and y,, respectively, with u indexing each pair. The model was

trained by minimizing the combined loss function £.,pinea for each minibatch of data, defined as
Lcombined = Z LTriplet(xg' xf,’, xg) +a z LNLL (xw yu)
v u

with o being the parameter that tunes the relative strength of the two loss functions. Parameter a
was set to 0.0001. We trained the model using the Adam optimizer with learning rate 10~°. During
each epoch of training, the average combined loss function for the validation set was plotted.
Training was stopped at the epoch at which the lowest approximated combined loss function for
the validation set was achieved. The models were constructed and trained using the python

package Keras version 2.0.8.



MCMC method of model interpretation
The MCMC method of model interpretation, using the maximum entropy approach of (2), sampled
the space of CDR3B sequences with a bias towards those sequences with higher predicted
binding affinity to a given epitope. Sampling occurred by first successively proposing new
sequences generated from a seed sequence through a single amino-acid mutagenesis process,
whereby a position in the CDR3B sequence, excluding the 4 positions at the N- and C-terminus,
was randomly chosen to have its amino acid randomly replaced, under uniform sampling of
positions and amino acids. The proposed sequence was accepted as the next sampled sequence
according to an acceptance probability r. Given the original sequence x, proposal sequence x’,
and epitope sequence y, the acceptance probability was given by
e~ PE(X"y)

r = min (1,m>.
where the energy function

E(x,y) = —log (p(x,¥))
was the negative log likelihood loss of the modal alignment network and f was an inverse
temperature parameter. Setting f « 1 flattened the energy landscape, ensuring that the proposal
sequence was always accepted, whereas setting f > 1 increasingly limited the MCMC sampling
to sequences near the minima of the energy landscape, corresponding to sequences with the
highest predicted binding affinities. § was chosen by running the MCMC method with g taking
values between 1 and 3 with 0.1 step size and choosing the value of g producing weblogos (3)
with coherent motifs. Since the MCMC sampling procedure did not change the length of the
CDR3B sequence, all subsequently sampled CDR3B sequences derived from a seed CDR3B
sequence shared the same sequence length as the seed. Therefore, seeds of different length
were chosen to visualize the motifs of CDR3B sequences of varying length. For each of 12

combinations of CDR3B sequence length and epitope sequence — corresponding to CDR3B

sequences of length 13, 14, and 15 binding to the top 4 epitopes with the most data, GILGFVFTL,



NLVPMVATV, GLCTLVAML, and ELAGIGILTV — we obtained 40 seed CDR3B sequences by
first training the model for 120 epochs on a pair of training and test sets specified by taking the
top 4 epitopes as the seen epitope set (Methods: Model evaluation for specific seen epitope sets)
and taking the top 40 CDR3B sequences in the combined set of training and test data with highest
predicted binding affinity to each corresponding epitope as seeds. Five MCMC chains, or runs,
were initiated and simulated for 20,000 steps from each of the 40 seeds, resulting in a total of 200
MCMC runs for each combination of CDR3B sequence length and epitope sequence. MCMC runs
obtained in this manner were termed “individual” MCMC runs.

In order to consolidate similar individual MCMC runs, we clustered the 200 individual
MCMC runs using agglomerative clustering with complete linkage. Clustering with agglomerative
clustering required a notion of distance between individual MCMC runs, which we defined as
follows. Let 4;(j) be the empirical probability of seeing the jt* amino acid at position i for MCMC
run A and B;(j) be the equivalent for MCMC run B. We defined the distance D between runs A

and B to be
DAB) = ) JSDACIB()

where JSD(A;()|IB;(-)) denoted the Jensen-Shannon divergence between the amino acid
distributions at position i for A and B. The number Q of clusters was chosen by calculating the
silhouette score for Q ranging in value from 2 to 40 and choosing the value Q displaying the
highest peak in silhouette score. MCMC runs that were contained within the same cluster were
appended together to form “cluster” MCMC runs.

To rank the cluster MCMC runs according to their uniqueness, we constructed a
uniqueness score U for cluster MCMC runs as follows. Let Cj; be a cluster MCMC run where k
indexes the epitope sequence and [ indexes the CDR3B sequence length. Let E,,, be a

“representative” MCMC run, constructed by appending all 200 individual MCMC runs associated



with the epitope sequence indexed by m and CDR3B sequence of length n. The uniqueness score
U(Cy,;) was calculated as follows:

Zm#k,n=l D(Ckl: Emn)
Zm:tk,n:l 1

U(Cr) =

)

where D(Cy;, Ejny) is the distance between MCMC runs Cy; and E,,,,.

In order to measure the importance of a position in the CDR3B region for a given MCMC
run, we constructed a salience metric s defined as follows. First, given MCMC run W, let W;(j) be
the empirical probability of seeing the jt* amino acid at position i for MCMC run W. Then, we
defined

sw, i) = KLW;O1|Z2()),
where Z(j) denoted the uniform distribution over amino acids j.

To investigate the results of the MCMC interpretation method in terms of the physical and
biochemical properties of amino acids, we constructed a 5 x L matrix from each individual MCMC
run, termed the “individual” matrix, with the 5 rows corresponding to the 5 entries of the amino
acid vector representation and the L columns corresponding to the positions of the CDR3B
sequence of length L. The individual matrix was constructed as follows. Let F;(j) be the empirical
probability of seeing the j** amino acid at position i for MCMC run F and let a,,(j) be the m*"*
entry out of the first 5 entries of the Atchley representation of amino acid j. The individual matrix

G (F) corresponding to MCMC run F was constructed as
Gmi(F) = ) Fi()am(j)
j

To consolidate individual matrices with redundant information, we clustered the individual
matrices using agglomerative clustering with the distance between individual matrices defined by
their Frobenius distance. The number R of clusters was chosen by calculating the silhouette score
for R ranging in value from 2 to 40 and choosing the value R displaying the highest peak in

silhouette score. Individual matrices that were contained within the same cluster were averaged



together to form “cluster” matrices. To rank the cluster matrices according to their uniqueness, we
constructed a uniqueness score V for cluster matrices as follows. Let Hy; be a cluster matrix where
k indexes the epitope sequence and [ indexes the CDR3B sequence length. Let J,,, be a
“representative” matrix, formed by constructing the corresponding matrix for the representative
MCMC run, with epitope sequence indexed by m and CDR3B sequence of length n. The

uniqueness score V(Cy;) was calculated as follows:

Zm:k,n=l”Hkl - ]mn”F

V(Hg) =
( kl) Zm:tk,n:ll

With || || denoting the Frobenius norm.



Supplementary Tables

Amino Acid Entry 1 Entry 2 Entry 3 Entry 4 Entry 5 Entry 6
A 0.23693 0.06158 0.51254 1.00000 0.50432 1.00000
C 0.00000 0.55173 0.49612 0.29962 0.48656 1.00000
D 0.75394 0.50652 0.14051 0.50541 0.00000 1.00000
E 0.85066 0.01969 0.79381 0.60600 0.39176 1.00000
F 0.10618 0.25908 0.84651 0.46809 0.59521 1.00000
G 0.30214 0.88100 0.77511 0.85803 0.86431 1.00000
H 0.52899 0.30707 0.39290 0.17685 0.51539 1.00000

| 0.03277 0.27101 0.87705 0.68172 0.66102 1.00000
K 1.00000 0.26713 0.67367 0.50054 0.79655 1.00000
L 0.10208 0.14896 0.41428 0.91779 0.37954 1.00000
M 0.21424 0.00000 0.88825 0.30368 0.72553 1.00000
N 0.72086 0.65243 0.77116 0.52975 0.68008 1.00000
P 0.48267 1.00000 0.39863 0.68929 0.30135 1.00000
Q 0.71645 0.37309 0.22337 0.43943 0.22626 1.00000
R 0.90769 0.40749 0.79700 0.69443 1.00000 1.00000
S 0.35129 0.81082 0.00000 0.75663 0.09692 1.00000
T 0.41304 0.51318 0.88749 0.82098 0.74198 1.00000
\Y 0.00189 0.34535 0.53659 0.91130 0.32253 1.00000
W 0.23566 0.42524 0.69136 0.00000 0.49813 1.00000
Y 0.50504 0.65298 1.00000 0.34884 0.77439 1.00000
- 0.50000 0.50000 0.50000 0.50000 0.50000 0.00000

Table S1: The Atchley representations of the amino acids. Entries 1-5 correspond to the min-
max scaled factor scores obtained from (4), while entry 6 corresponds to an indicator variable
denoting presence of a real amino acid. The amino acid symbol “-“ represents the placeholder
amino acid used to pad sequences to a predefined length.



Epitope Number of TCRs
GILGFVFTL 4200
NLVPMVATV 3761
GLCTLVAML 999
ELAGIGILTV 764
LLWNGPMAV 423
EAAGIGILTV 272
CINGVCWTV 112
AMFWSVPTV 110
FLYNLLTRV 96
YVLDHLIVV 79
NLNCCSVPV 67
LLFGYPVYV 62
VLFGLGFAI 61
KMVAVFYTT 50
VVLSWAPPV 48
RTLNAWVKV 46
VVMSWAPPV 44
ILTGLNYEV 42
SLFENTVATLY 38
SLYNTVATL 35
KLMNIQQKL 35
FLASKIGRLV 34
ILTGLNYEA 33
KLSALGINAV 32
FLYALALLL 28

Table S2: The top 25 epitopes with the most recorded instances of CDR3B binding
interactions in the fixed dataset. The entries are ranked in descending order.
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N Terminus C Terminus
Proper TCRs Improper TCRs Proper TCRs Improper TCRs
Sequence Count Sequence Count Sequence Count Sequence Count
ASS 5241 ASS 5945 EQY 1363 EQY 1709
SAR 260 SAR 360 NEQ 1149 TQY 1498
ASR 250 ASR 331 TQY 986 GYT 922
AST 193 ATS 227 EQF 894 PQH 621
ATS 170 AST 163 TEA 715 PLH 187
AWS 103 AWS 117 GYT 672 TIY 168
ASG 103 ASG 112 GEL 632 QY 109
SVE 85 SVE 95 EAF 632 VLT 105
AIS 58 ASN 83 PQH 498 EAF 92
SAS 55 AIS 71 ELF 432 ELF 84
SVG 49 SAS 60 EKL 226 EQF 79
ASN 46 ASA 42 TIY 166 GEL 60
ASA 35 ASK 41 KLF 154 DQY 39
SAP 30 ASI 39 PLH 143 NEQ 35
SAT 24 SVG 36 DEQ 123 TEA 33
ASK 24 SVD 33 GEQ 78 RLT 22
SVP 24 SAP 32 VLT 63 YGY 22
ASI 21 SAT 30 QY 62 SYT 19
ASM 20 ASL 29 AEA 59 EKL 18
SVD 18 ANS 25 YEQ 43 DTQ 16

Table S3: The number of occurrences of each 3-mer at the N-terminus and C-terminus for
native proper and improper TCRs. Conserved C at N-terminus and conserved F at C-terminus
were excluded in the analysis.
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Top 2 Classes Top 3 Classes Top 4 Classes Top 5 Classes
Epitope Mean AUC | Std AUC Mean AUC Std AUC Mean AUC Std AUC Mean AUC Std AUC
GILGFVFTL 0.7757 0.0032 0.7639 0.0099 0.7588 0.0084 0.7538 0.0067
NLVPMVATV 0.7678 0.0053 0.7612 0.0139 0.7410 0.0094 0.7261 0.0168
GLCTLVAML 0.6616 0.0244 0.6818 0.0202 0.6801 0.0338
ELAGIGILTV 0.7558 0.0147 0.7802 0.0310
LLWNGPMAV 0.8010 0.0143

Table S4: Table of the mean and standard deviation of Area Under the ROC Curve (AUC)
scores of the model on Task 1 for each epitope class using the fixed dataset. Performance
was assessed using 5-fold cross validation. The seen epitope set ranged from the top 2 epitopes
to the top 5 epitopes with the largest number of reported interactions (Table S2).
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Top 5 Classes Top 10 Classes Top 15 Classes Top 20 Classes
Epitope Mean AUC Std AUC Mean AUC Std AUC Mean AUC Std AUC Mean AUC Std AUC
EAAGIGILTV 0.7689 0.0275 0.7969 0.0173 0.7801 0.0206 0.7827 0.0295
CINGVCWTV 0.5828 0.0978 0.6510 0.0655 0.6459 0.0578 0.6236 0.0852
AMFWSVPTV 0.7990 0.0815 0.8228 0.0762 0.8062 0.0698 0.8017 0.1019
FLYNLLTRV 0.7936 0.0322 0.7974 0.0355 0.7669 0.0641 0.8177 0.0542
YVLDHLIVV 0.6231 0.0539 0.5889 0.0669 0.5841 0.0505 0.6269 0.1207
NLNCCSVPV 0.6179 0.0909 0.6947 0.0472 0.7140 0.1150
LLFGYPVYV 0.7275 0.0690 0.5770 0.1115 0.6364 0.0775
VLFGLGFAI 0.4875 0.0847 0.4394 0.0749 0.4673 0.0547
KMVAVFYTT 0.5567 0.0646 0.5011 0.1538 0.5590 0.0544
VVLSWAPPV 0.5940 0.0635 0.8649 0.0535 0.9115 0.0801
RTLNAWVKV 0.5861 0.0450 0.6254 0.1440
VVMSWAPPV 0.8895 0.0772 0.9464 0.0662
ILTGLNYEV 0.6601 0.0665 0.8828 0.0755
SLFENTVATLY 0.5814 0.0783 0.6834 0.0647
SLYNTVATL 0.6763 0.1192 0.7068 0.0766
KLMNIQQKL 0.8875 0.0912
FLASKIGRLV 0.5481 0.1252
ILTGLNYEA 0.7117 0.1224
KLSALGINAV 0.9515 0.0720
FLYALALLL 0.8583 0.0667

Table S5: Table of the mean and standard deviation of Area Under the ROC Curve (AUC)
scores of the model on Task 1 for each epitope class using the “reduced fixed dataset”.
The reduced fixed dataset (Methods: Model evaluation for specific seen epitope sets) was
constructed from the fixed dataset by removing CDR3B sequences binding the top 5 epitopes
with the largest number of reported interactions (Table S2). Performance was assessed using 5-
fold cross validation. Analysis included seen epitope sets corresponding to the top 5, 10, 15, and
20 epitopes with the largest number of reported interactions in the reduced fixed dataset.
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ERGO TCRGP
Peptide McPAS + VDJdb (B.3), LOSO (B,3), unique | Our Model
AE LSTM LOO
GILGFVFTL 0.725 0.712 0.818 0.822 0.662
NLVPMVATV 0.624 0.632 0.587 0.651 0.761
GLCTLVAML 0.708 0.686 0.782 0.852 0.7639

Table S6: Comparison of our model with the ERGO model (5) and the TCR Gaussian
Process (TCRGP) model (6). Our model and TCRGP were evaluated on Task 1, while ERGO

was evaluated on a classification task similar to Task 1, which they term single peptide binding

(SPB). Results shown for ERGO correspond to evaluation of the model on a combined set of
McPAS (7) and VDJdb (8) data. Results shown for TCRGP are from evaluating the model only
on the CDR3B data, referred to as (B,3), from (9). Our model was evaluated on a combined set
of McPAS (7), VDJdb (8), IEDB (10), and PIRD (11) data. Some of the difference in the
performance of TCRGP compared to ERGO and our approach may be attributed to the difference
in the utilized CDR3B training and test data.
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Supplementary Figures

Input
CDR3B Convolution Convolution Dense
Sequence —
20x6 128 @ 20 x 6 64 @20x6 1x32

Figure S1: CDR3B embedding network architecture. A 20 x 6 Atchley representation of a
CDR3B sequence is passed through two 1D convolutional layers with filter sizes {128, 64}, stride
{1, 1}, and kernel sizes {3x6, 4x6}, respectively, before being passed to a dense layer of dimension
1 x 32 (Supplementary Methods: Model architecture and training). The output of the dense layer
is taken to be the latent space representation of the CDR3B sequence.
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Figure S2: Epitope mapping network architecture. A 10 x 6 Atchley representation of an
epitope sequence is passed through a single 1D convolutional layer with filter size 64, kernel size
5x6, and stride 1 before being passed to two dense layers, each of dimension 1 x 32
(Supplementary Methods: Model architecture and training). The output of the two dense layers
are taken to be the parameters of a multivariate Gaussian distribution in latent space.
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Figure S3: Triplet Network architecture. Three CDR3B sequences corresponding to anchor,
negative, and positive sequences are each passed through the CDR3B embedding network,
sharing the same parameters. The Triplet Loss is calculated from the latent space representations
and used to force CDR3B sequences to cluster in latent space.

17



Input
epitope
sequence

10x6
Input
CDR3B
Sequence Convolution
20x6 128 @ 20 x 6

———

Convolution

64 @ 10x6

Convolution

64 @ 20 x 6

Dense

1x32

1x32

1x32

NLL Loss

Figure S4: Modal alignment network architecture. The unnormalized binding affinity of a
CDR3B sequence and epitope sequence is found by calculating the probability density of the
point in latent space representing the CDR3B sequence given by the Gaussian distribution

corresponding to the epitope sequence.
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main Figure 3A.
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Figure S7: Plots of Silhouette scores, obtained by clustering individual MCMC runs, with
respect to number of clusters. Final number of clusters chosen is marked by a point with
coordinates.
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Figure S8: Weblogos visualizing the most unique “cluster” MCMC run for each
combination of CDR3B sequence length and epitope sequence. Logo size at each position

represents the extent of sequence conservation.

22



GILGFVFTL NLVPMVATV GLCTLVAML ELAGIGILTV

6 7 8 9 6 7 8 6 7 8 6 7 8
Position in CDR3B Position in CDR3B Position in CDR3B Position in CDR3B

s 6 71 8 9 10 6 71 8 9 6 7 8 9 6 7 8 9
Position in CDR3B Position in CDR3B Position in CDR3B Position in CDR3B

[ 10 M [

6 b 9 b 10 6 b 8 9 10 b 8 9 10
Position in CDR3B Position in CDR3B Position in CDR3B Position in CDR3B

Figure S9: Heatmaps visualizing the “representative” matrix for each combination of

CDR3B sequence length and epitope sequence. The four conserved positions at the N- and
C- terminus are excluded for clarity.
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Figure S10: Plots of Silhouette scores, obtained by clustering individual matrices, with
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Figure S11: Heatmaps visualizing the most unique “cluster” matrix for each combination
of CDR3B sequence length and epitope sequence. The four conserved positions at the N- and
C- terminus are excluded for clarity.
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Figure $12: Heatmaps visualizing the pairwise physical distance between amino acids

in

the CDR3B sequence and amino acids in the epitope sequence. The distance was calculated
from TCR-pMHC crystal structures (12) (Methods: TCR-pMHC structure analysis). Each heatmap

corresponds to a specific combination of epitope and fixed CDR3B sequence length.
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Each bar chart corresponds to a specific combination of epitope and fixed CDR3B sequence
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Figure S14: Matrix of bar charts showing the median KL divergence at each position within
the CDR3B sequence derived from the MCMC interpretation method. Each bar chart
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